/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifndef MOZILLA_GFX_POLYGON_H #define MOZILLA_GFX_POLYGON_H #include "Matrix.h" #include "mozilla/Move.h" #include "nsTArray.h" #include "Point.h" #include "Triangle.h" #include namespace mozilla { namespace gfx { template Point4DTyped CalculateEdgeIntersect(const Point4DTyped& aFirst, const Point4DTyped& aSecond) { static const float w = 0.00001f; const float t = (w - aFirst.w) / (aSecond.w - aFirst.w); return aFirst + (aSecond - aFirst) * t; } template nsTArray> ClipHomogeneous(const nsTArray>& aPoints) { nsTArray> outPoints; const size_t pointCount = aPoints.Length(); for (size_t i = 0; i < pointCount; ++i) { const Point4DTyped& first = aPoints[i]; const Point4DTyped& second = aPoints[(i + 1) % pointCount]; if (!first.w || !second.w) { // Skip edges at infinity. continue; } if (first.w > 0.0f) { outPoints.AppendElement(first); } if ((first.w <= 0.0f) ^ (second.w <= 0.0f)) { outPoints.AppendElement(CalculateEdgeIntersect(first, second)); } } return outPoints; } template nsTArray> ToPoints4D(const nsTArray>& aPoints) { nsTArray> points; for (const Point3DTyped& point : aPoints) { points.AppendElement(Point4DTyped(point)); } return points; } // PolygonTyped stores the points of a convex planar polygon. template class PolygonTyped { typedef Point3DTyped Point3DType; typedef Point4DTyped Point4DType; public: PolygonTyped() {} explicit PolygonTyped(const std::initializer_list& aPoints) : mNormal(DefaultNormal()), mPoints(ToPoints4D(nsTArray(aPoints))) { #ifdef DEBUG EnsurePlanarPolygon(); #endif } explicit PolygonTyped(const nsTArray& aPoints) : mNormal(DefaultNormal()), mPoints(ToPoints4D(aPoints)) { #ifdef DEBUG EnsurePlanarPolygon(); #endif } explicit PolygonTyped(const nsTArray& aPoints, const Point4DType& aNormal = DefaultNormal()) : mNormal(aNormal), mPoints(aPoints) {} explicit PolygonTyped(nsTArray&& aPoints, const Point4DType& aNormal = DefaultNormal()) : mNormal(aNormal), mPoints(Move(aPoints)) {} RectTyped BoundingBox() const { if (mPoints.IsEmpty()) { return RectTyped(); } float minX, maxX, minY, maxY; minX = maxX = mPoints[0].x; minY = maxY = mPoints[0].y; for (const Point4DType& point : mPoints) { minX = std::min(point.x, minX); maxX = std::max(point.x, maxX); minY = std::min(point.y, minY); maxY = std::max(point.y, maxY); } return RectTyped(minX, minY, maxX - minX, maxY - minY); } nsTArray CalculateDotProducts(const PolygonTyped& aPlane, size_t& aPos, size_t& aNeg) const { // Point classification might produce incorrect results due to numerical // inaccuracies. Using an epsilon value makes the splitting plane "thicker". const float epsilon = 0.05f; MOZ_ASSERT(!aPlane.GetPoints().IsEmpty()); const Point4DType& planeNormal = aPlane.GetNormal(); const Point4DType& planePoint = aPlane[0]; aPos = aNeg = 0; nsTArray dotProducts; for (const Point4DType& point : mPoints) { float dot = (point - planePoint).DotProduct(planeNormal); if (dot > epsilon) { aPos++; } else if (dot < -epsilon) { aNeg++; } else { // The point is within the thick plane. dot = 0.0f; } dotProducts.AppendElement(dot); } return dotProducts; } // Clips the polygon against the given 2D rectangle. PolygonTyped ClipPolygon(const RectTyped& aRect) const { if (aRect.IsEmpty()) { return PolygonTyped(); } return ClipPolygon(FromRect(aRect)); } // Clips the polygon against the given polygon in 2D. PolygonTyped ClipPolygon(const PolygonTyped& aPolygon) const { const nsTArray& points = aPolygon.GetPoints(); if (mPoints.IsEmpty() || points.IsEmpty()) { return PolygonTyped(); } PolygonTyped polygon(mPoints, mNormal); const size_t pointCount = points.Length(); for (size_t i = 0; i < pointCount; ++i) { const Point4DType p1 = points[(i + 1) % pointCount]; const Point4DType p2 = points[i]; const Point4DType normal(p2.y - p1.y, p1.x - p2.x, 0.0f, 0.0f); const PolygonTyped plane({p1, p2}, normal); ClipPolygonWithPlane(polygon, plane); if (polygon.IsEmpty()) { // The clipping created a polygon with no area. return PolygonTyped(); } } return polygon; } static PolygonTyped FromRect(const RectTyped& aRect) { return PolygonTyped { Point3DType(aRect.x, aRect.y, 0.0f), Point3DType(aRect.x, aRect.y + aRect.height, 0.0f), Point3DType(aRect.x + aRect.width, aRect.y + aRect.height, 0.0f), Point3DType(aRect.x + aRect.width, aRect.y, 0.0f) }; } const Point4DType& GetNormal() const { return mNormal; } const nsTArray& GetPoints() const { return mPoints; } const Point4DType& operator[](size_t aIndex) const { MOZ_ASSERT(mPoints.Length() > aIndex); return mPoints[aIndex]; } bool IsEmpty() const { // If the polygon has less than three points, it has no visible area. return mPoints.Length() < 3; } void SplitPolygon(const Point4DType& aNormal, const nsTArray& aDots, nsTArray& aBackPoints, nsTArray& aFrontPoints) const { static const auto Sign = [](const float& f) { if (f > 0.0f) return 1; if (f < 0.0f) return -1; return 0; }; const size_t pointCount = mPoints.Length(); for (size_t i = 0; i < pointCount; ++i) { size_t j = (i + 1) % pointCount; const Point4DType& a = mPoints[i]; const Point4DType& b = mPoints[j]; const float dotA = aDots[i]; const float dotB = aDots[j]; // The point is in front of or on the plane. if (dotA >= 0) { aFrontPoints.AppendElement(a); } // The point is behind or on the plane. if (dotA <= 0) { aBackPoints.AppendElement(a); } // If the sign of the dot products changes between two consecutive // vertices, then the plane intersects with the polygon edge. // The case where the polygon edge is within the plane is handled above. if (Sign(dotA) && Sign(dotB) && Sign(dotA) != Sign(dotB)) { // Calculate the line segment and plane intersection point. const Point4DType ab = b - a; const float dotAB = ab.DotProduct(aNormal); const float t = -dotA / dotAB; const Point4DType p = a + (ab * t); // Add the intersection point to both polygons. aBackPoints.AppendElement(p); aFrontPoints.AppendElement(p); } } } nsTArray> ToTriangles() const { nsTArray> triangles; if (IsEmpty()) { return triangles; } for (size_t i = 1; i < mPoints.Length() - 1; ++i) { TriangleTyped triangle(Point(mPoints[0].x, mPoints[0].y), Point(mPoints[i].x, mPoints[i].y), Point(mPoints[i+1].x, mPoints[i+1].y)); triangles.AppendElement(Move(triangle)); } return triangles; } void TransformToLayerSpace(const Matrix4x4Typed& aTransform) { TransformPoints(aTransform, true); mNormal = DefaultNormal(); } void TransformToScreenSpace(const Matrix4x4Typed& aTransform) { MOZ_ASSERT(!aTransform.IsSingular()); TransformPoints(aTransform, false); mPoints = ClipHomogeneous(mPoints); // Normal vectors should be transformed using inverse transpose. mNormal = aTransform.Inverse().Transpose().TransformPoint(mNormal); } private: void ClipPolygonWithPlane(PolygonTyped& aPolygon, const PolygonTyped& aPlane) const { size_t pos, neg; const nsTArray dots = aPolygon.CalculateDotProducts(aPlane, pos, neg); nsTArray backPoints, frontPoints; aPolygon.SplitPolygon(aPlane.GetNormal(), dots, backPoints, frontPoints); // Only use the points that are behind the clipping plane. aPolygon = PolygonTyped(Move(backPoints), aPolygon.GetNormal()); } static Point4DType DefaultNormal() { return Point4DType(0.0f, 0.0f, 1.0f, 0.0f); } #ifdef DEBUG void EnsurePlanarPolygon() const { if (mPoints.Length() <= 3) { // Polygons with three or less points are guaranteed to be planar. return; } // This normal calculation method works only for planar polygons. // The resulting normal vector will point towards the viewer when the // polygon has a counter-clockwise winding order from the perspective // of the viewer. Point3DType normal; const Point3DType p0 = mPoints[0].As3DPoint(); for (size_t i = 1; i < mPoints.Length() - 1; ++i) { const Point3DType p1 = mPoints[i].As3DPoint(); const Point3DType p2 = mPoints[i + 1].As3DPoint(); normal += (p1 - p0).CrossProduct(p2 - p0); } // Ensure that at least one component is greater than zero. // This avoids division by zero when normalizing the vector. bool hasNonZeroComponent = std::abs(normal.x) > 0.0f || std::abs(normal.y) > 0.0f || std::abs(normal.z) > 0.0f; MOZ_ASSERT(hasNonZeroComponent); normal.Normalize(); // Ensure that the polygon is planar. // http://mathworld.wolfram.com/Point-PlaneDistance.html const float epsilon = 0.01f; for (const Point4DType& point : mPoints) { const Point3DType p1 = point.As3DPoint(); const float d = normal.DotProduct(p1 - p0); MOZ_ASSERT(std::abs(d) < epsilon); } } #endif void TransformPoints(const Matrix4x4Typed& aTransform, const bool aDivideByW) { for (Point4DType& point : mPoints) { point = aTransform.TransformPoint(point); if (aDivideByW && point.w > 0.0f) { point = point / point.w; } } } Point4DType mNormal; nsTArray mPoints; }; typedef PolygonTyped Polygon; } // namespace gfx } // namespace mozilla #endif /* MOZILLA_GFX_POLYGON_H */