/* * ***** BEGIN LICENSE BLOCK ***** * Version: MPL 1.1/GPL 2.0/LGPL 2.1 * * The contents of this file are subject to the Mozilla Public License Version * 1.1 (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * Software distributed under the License is distributed on an "AS IS" basis, * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License * for the specific language governing rights and limitations under the * License. * * The Original Code is the elliptic curve math library for prime field curves. * * The Initial Developer of the Original Code is * Sun Microsystems, Inc. * Portions created by the Initial Developer are Copyright (C) 2003 * the Initial Developer. All Rights Reserved. * * Contributor(s): * Douglas Stebila , Sun Microsystems Laboratories * * Alternatively, the contents of this file may be used under the terms of * either the GNU General Public License Version 2 or later (the "GPL"), or * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), * in which case the provisions of the GPL or the LGPL are applicable instead * of those above. If you wish to allow use of your version of this file only * under the terms of either the GPL or the LGPL, and not to allow others to * use your version of this file under the terms of the MPL, indicate your * decision by deleting the provisions above and replace them with the notice * and other provisions required by the GPL or the LGPL. If you do not delete * the provisions above, a recipient may use your version of this file under * the terms of any one of the MPL, the GPL or the LGPL. * * ***** END LICENSE BLOCK ***** */ #ifndef __gfp_ecl_h_ #define __gfp_ecl_h_ #ifdef NSS_ENABLE_ECC #include "secmpi.h" /* Checks if point P(px, py) is at infinity. Uses affine coordinates. */ extern mp_err GFp_ec_pt_is_inf_aff(const mp_int *px, const mp_int *py); /* Sets P(px, py) to be the point at infinity. Uses affine coordinates. */ extern mp_err GFp_ec_pt_set_inf_aff(mp_int *px, mp_int *py); /* Computes R = P + Q where R is (rx, ry), P is (px, py) and Q is (qx, qy). * Uses affine coordinates. */ extern mp_err GFp_ec_pt_add_aff(const mp_int *p, const mp_int *a, const mp_int *px, const mp_int *py, const mp_int *qx, const mp_int *qy, mp_int *rx, mp_int *ry); /* Computes R = P - Q. Uses affine coordinates. */ extern mp_err GFp_ec_pt_sub_aff(const mp_int *p, const mp_int *a, const mp_int *px, const mp_int *py, const mp_int *qx, const mp_int *qy, mp_int *rx, mp_int *ry); /* Computes R = 2P. Uses affine coordinates. */ extern mp_err GFp_ec_pt_dbl_aff(const mp_int *p, const mp_int *a, const mp_int *px, const mp_int *py, mp_int *rx, mp_int *ry); /* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters * a, b and p are the elliptic curve coefficients and the prime that * determines the field GFp. Uses affine coordinates. */ extern mp_err GFp_ec_pt_mul_aff(const mp_int *p, const mp_int *a, const mp_int *b, const mp_int *px, const mp_int *py, const mp_int *n, mp_int *rx, mp_int *ry); /* Converts a point P(px, py, pz) from Jacobian projective coordinates to * affine coordinates R(rx, ry). */ extern mp_err GFp_ec_pt_jac2aff(const mp_int *px, const mp_int *py, const mp_int *pz, const mp_int *p, mp_int *rx, mp_int *ry); /* Checks if point P(px, py, pz) is at infinity. Uses Jacobian * coordinates. */ extern mp_err GFp_ec_pt_is_inf_jac(const mp_int *px, const mp_int *py, const mp_int *pz); /* Sets P(px, py, pz) to be the point at infinity. Uses Jacobian * coordinates. */ extern mp_err GFp_ec_pt_set_inf_jac(mp_int *px, mp_int *py, mp_int *pz); /* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and * Q is (qx, qy, qz). Uses Jacobian coordinates. */ extern mp_err GFp_ec_pt_add_jac(const mp_int *p, const mp_int *a, const mp_int *px, const mp_int *py, const mp_int *pz, const mp_int *qx, const mp_int *qy, const mp_int *qz, mp_int *rx, mp_int *ry, mp_int *rz); /* Computes R = 2P. Uses Jacobian coordinates. */ extern mp_err GFp_ec_pt_dbl_jac(const mp_int *p, const mp_int *a, const mp_int *px, const mp_int *py, const mp_int *pz, mp_int *rx, mp_int *ry, mp_int *rz); /* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters * a, b and p are the elliptic curve coefficients and the prime that * determines the field GFp. Uses Jacobian coordinates. */ mp_err GFp_ec_pt_mul_jac(const mp_int *p, const mp_int *a, const mp_int *b, const mp_int *px, const mp_int *py, const mp_int *n, mp_int *rx, mp_int *ry); #define GFp_ec_pt_is_inf(px, py) GFp_ec_pt_is_inf_aff((px), (py)) #define GFp_ec_pt_add(p, a, px, py, qx, qy, rx, ry) \ GFp_ec_pt_add_aff((p), (a), (px), (py), (qx), (qy), (rx), (ry)) #define GFp_ECL_JACOBIAN #ifdef GFp_ECL_AFFINE #define GFp_ec_pt_mul(p, a, b, px, py, n, rx, ry) \ GFp_ec_pt_mul_aff((p), (a), (b), (px), (py), (n), (rx), (ry)) #elif defined(GFp_ECL_JACOBIAN) #define GFp_ec_pt_mul(p, a, b, px, py, n, rx, ry) \ GFp_ec_pt_mul_jac((p), (a), (b), (px), (py), (n), (rx), (ry)) #endif /* GFp_ECL_AFFINE or GFp_ECL_JACOBIAN*/ #endif /* NSS_ENABLE_ECC */ #endif /* __gfp_ecl_h_ */