/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- * * The contents of this file are subject to the Netscape Public License * Version 1.0 (the "NPL"); you may not use this file except in * compliance with the NPL. You may obtain a copy of the NPL at * http://www.mozilla.org/NPL/ * * Software distributed under the NPL is distributed on an "AS IS" basis, * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL * for the specific language governing rights and limitations under the * NPL. * * The Initial Developer of this code under the NPL is Netscape * Communications Corporation. Portions created by Netscape are * Copyright (C) 1998 Netscape Communications Corporation. All Rights * Reserved. */ #include "nsCSSRendering.h" #include "nsStyleConsts.h" #include "nsIPresContext.h" #include "nsIImage.h" #include "nsIFrame.h" #include "nsPoint.h" #include "nsRect.h" #include "nsIViewManager.h" #include "nsIPresShell.h" #include "nsIFrameImageLoader.h" #include "nsIStyleContext.h" #include "nsStyleUtil.h" #include "nsIScrollableView.h" #include "nsLayoutAtoms.h" static NS_DEFINE_IID(kScrollViewIID, NS_ISCROLLABLEVIEW_IID); #define BORDER_FULL 0 //entire side #define BORDER_INSIDE 1 //inside half #define BORDER_OUTSIDE 2 //outside half //thickness of dashed line relative to dotted line #define DOT_LENGTH 1 //square #define DASH_LENGTH 3 //3 times longer than dot /** The following classes are used by CSSRendering for the rounded rect implementation */ #define MAXPATHSIZE 12 #define MAXPOLYPATHSIZE 1000 enum ePathTypes{ eOutside =0, eInside, eCalc, eCalcRev }; static void GetPath(nsPoint aPoints[],nsPoint aPolyPath[],PRInt32 *aCurIndex,ePathTypes aPathType,PRInt32 &aC1Index,float aFrac=0); // Draw a line, skipping that portion which crosses aGap. aGap defines a rectangle gap // This services fieldset legends and only works for coords defining horizontal lines. void nsCSSRendering::DrawLine (nsIRenderingContext& aContext, nscoord aX1, nscoord aY1, nscoord aX2, nscoord aY2, nsRect* aGap) { if (nsnull == aGap) { aContext.DrawLine(aX1, aY1, aX2, aY2); } else { nscoord x1 = (aX1 < aX2) ? aX1 : aX2; nscoord x2 = (aX1 < aX2) ? aX2 : aX1; nsPoint gapUpperRight(aGap->x + aGap->width, aGap->y); nsPoint gapLowerRight(aGap->x + aGap->width, aGap->y + aGap->height); if ((aGap->y <= aY1) && (gapLowerRight.y >= aY2)) { if ((aGap->x > x1) && (aGap->x < x2)) { aContext.DrawLine(x1, aY1, aGap->x, aY1); } if ((gapLowerRight.x > x1) && (gapLowerRight.x < x2)) { aContext.DrawLine(gapUpperRight.x, aY2, x2, aY2); } } else { aContext.DrawLine(aX1, aY1, aX2, aY2); } } } // Fill a polygon, skipping that portion which crosses aGap. aGap defines a rectangle gap // This services fieldset legends and only works for points defining a horizontal rectangle void nsCSSRendering::FillPolygon (nsIRenderingContext& aContext, const nsPoint aPoints[], PRInt32 aNumPoints, nsRect* aGap) { if (nsnull == aGap) { aContext.FillPolygon(aPoints, aNumPoints); } else if (4 == aNumPoints) { nsPoint gapUpperRight(aGap->x + aGap->width, aGap->y); nsPoint gapLowerRight(aGap->x + aGap->width, aGap->y + aGap->height); // sort the 4 points by x nsPoint points[4]; for (PRInt32 pX = 0; pX < 4; pX++) { points[pX] = aPoints[pX]; } for (PRInt32 i = 0; i < 3; i++) { for (PRInt32 j = i+1; j < 4; j++) { if (points[j].x < points[i].x) { nsPoint swap = points[i]; points[i] = points[j]; points[j] = swap; } } } nsPoint upperLeft = (points[0].y <= points[1].y) ? points[0] : points[1]; nsPoint lowerLeft = (points[0].y <= points[1].y) ? points[1] : points[0]; nsPoint upperRight = (points[2].y <= points[3].y) ? points[2] : points[3]; nsPoint lowerRight = (points[2].y <= points[3].y) ? points[3] : points[2]; if ((aGap->y <= upperLeft.y) && (gapLowerRight.y >= lowerRight.y)) { if ((aGap->x > upperLeft.x) && (aGap->x < upperRight.x)) { nsPoint leftRect[4]; leftRect[0] = upperLeft; leftRect[1] = nsPoint(aGap->x, upperLeft.y); leftRect[2] = nsPoint(aGap->x, lowerLeft.y); leftRect[3] = lowerLeft; aContext.FillPolygon(leftRect, 4); } if ((gapUpperRight.x > upperLeft.x) && (gapUpperRight.x < upperRight.x)) { nsPoint rightRect[4]; rightRect[0] = nsPoint(gapUpperRight.x, upperRight.y); rightRect[1] = upperRight; rightRect[2] = lowerRight; rightRect[3] = nsPoint(gapLowerRight.x, lowerRight.y); aContext.FillPolygon(rightRect, 4); } } else { aContext.FillPolygon(aPoints, aNumPoints); } } } /** * Make a bevel color */ nscolor nsCSSRendering::MakeBevelColor(PRIntn whichSide, PRUint8 style, nscolor aBackgroundColor, nscolor aBorderColor, PRBool aSpecialCase) { nscolor colors[2]; nscolor theColor; // Given a background color and a border color // calculate the color used for the shading if(aSpecialCase) NS_GetSpecial3DColors(colors, aBackgroundColor, aBorderColor); else NS_Get3DColors(colors, aBackgroundColor); if ((style == NS_STYLE_BORDER_STYLE_BG_OUTSET) || (style == NS_STYLE_BORDER_STYLE_OUTSET) || (style == NS_STYLE_BORDER_STYLE_RIDGE)) { // Flip colors for these two border style switch (whichSide) { case NS_SIDE_BOTTOM: whichSide = NS_SIDE_TOP; break; case NS_SIDE_RIGHT: whichSide = NS_SIDE_LEFT; break; case NS_SIDE_TOP: whichSide = NS_SIDE_BOTTOM; break; case NS_SIDE_LEFT: whichSide = NS_SIDE_RIGHT; break; } } switch (whichSide) { case NS_SIDE_BOTTOM: theColor = colors[1]; break; case NS_SIDE_RIGHT: theColor = colors[1]; break; case NS_SIDE_TOP: theColor = colors[0]; break; case NS_SIDE_LEFT: default: theColor = colors[0]; break; } return theColor; } // Maximum poly points in any of the polygons we generate below #define MAX_POLY_POINTS 4 // a nifty helper function to create a polygon representing a // particular side of a border. This helps localize code for figuring // mitered edges. It is mainly used by the solid, inset, and outset // styles. // // If the side can be represented as a line segment (because the thickness // is one pixel), then a line with two endpoints is returned PRIntn nsCSSRendering::MakeSide(nsPoint aPoints[], nsIRenderingContext& aContext, PRIntn whichSide, const nsRect& outside, const nsRect& inside, PRIntn borderPart, float borderFrac, nscoord twipsPerPixel) { float borderRest = 1.0f - borderFrac; // XXX QQQ We really should decide to do a bevel based on whether there // is a side adjacent or not. This could let you join borders across // block elements (paragraphs). PRIntn np = 0; nscoord thickness; // Base our thickness check on the segment being less than a pixel and 1/2 twipsPerPixel += twipsPerPixel >> 2; switch (whichSide) { case NS_SIDE_TOP: if (borderPart == BORDER_FULL) { thickness = inside.y - outside.y; aPoints[np++].MoveTo(outside.x, outside.y); aPoints[np++].MoveTo(outside.XMost(), outside.y); if (thickness >= twipsPerPixel) { aPoints[np++].MoveTo(inside.XMost(), inside.y); aPoints[np++].MoveTo(inside.x, inside.y); } } else if (borderPart == BORDER_INSIDE) { aPoints[np++].MoveTo(nscoord(outside.x * borderFrac + inside.x * borderRest), nscoord(outside.y * borderFrac + inside.y * borderRest)); aPoints[np++].MoveTo(nscoord(outside.XMost() * borderFrac + inside.XMost() * borderRest), nscoord(outside.y * borderFrac + inside.y * borderRest)); aPoints[np++].MoveTo(inside.XMost(), inside.y); aPoints[np++].MoveTo(inside.x, inside.y); } else { aPoints[np++].MoveTo(outside.x, outside.y); aPoints[np++].MoveTo(outside.XMost(), outside.y); aPoints[np++].MoveTo(nscoord(inside.XMost() * borderFrac + outside.XMost() * borderRest), nscoord(inside.y * borderFrac + outside.y * borderRest)); aPoints[np++].MoveTo(nscoord(inside.x * borderFrac + outside.x * borderRest), nscoord(inside.y * borderFrac + outside.y * borderRest)); } break; case NS_SIDE_LEFT: if (borderPart == BORDER_FULL) { thickness = inside.x - outside.x; aPoints[np++].MoveTo(outside.x, outside.y); if (thickness >= twipsPerPixel) { aPoints[np++].MoveTo(inside.x, inside.y); aPoints[np++].MoveTo(inside.x, inside.YMost()); } aPoints[np++].MoveTo(outside.x, outside.YMost()); } else if (borderPart == BORDER_INSIDE) { aPoints[np++].MoveTo(nscoord(outside.x * borderFrac + inside.x * borderRest), nscoord(outside.y * borderFrac + inside.y * borderRest)); aPoints[np++].MoveTo(inside.x, inside.y); aPoints[np++].MoveTo(inside.x, inside.YMost()); aPoints[np++].MoveTo(nscoord(outside.x * borderFrac + inside.x * borderRest), nscoord(outside.YMost() * borderFrac + inside.YMost() * borderRest)); } else { aPoints[np++].MoveTo(outside.x, outside.y); aPoints[np++].MoveTo(nscoord(inside.x * borderFrac + outside.x * borderRest), nscoord(inside.y * borderFrac + outside.y * borderRest)); aPoints[np++].MoveTo(nscoord(inside.x * borderFrac + outside.x * borderRest), nscoord(inside.YMost() * borderFrac + outside.YMost() * borderRest)); aPoints[np++].MoveTo(outside.x, outside.YMost()); } break; case NS_SIDE_BOTTOM: if (borderPart == BORDER_FULL) { thickness = outside.YMost() - inside.YMost(); if (thickness >= twipsPerPixel) { aPoints[np++].MoveTo(outside.x, outside.YMost()); aPoints[np++].MoveTo(inside.x, inside.YMost()); aPoints[np++].MoveTo(inside.XMost(), inside.YMost()); aPoints[np++].MoveTo(outside.XMost(), outside.YMost()); } else { aPoints[np++].MoveTo(outside.x, inside.YMost()); aPoints[np++].MoveTo(outside.XMost(), inside.YMost()); } } else if (borderPart == BORDER_INSIDE) { aPoints[np++].MoveTo(nscoord(outside.x * borderFrac + inside.x * borderRest), nscoord(outside.YMost() * borderFrac + inside.YMost() * borderRest)); aPoints[np++].MoveTo(inside.x, inside.YMost()); aPoints[np++].MoveTo(inside.XMost(), inside.YMost()); aPoints[np++].MoveTo(nscoord(outside.XMost() * borderFrac + inside.XMost() * borderRest), nscoord(outside.YMost() * borderFrac + inside.YMost() * borderRest)); } else { aPoints[np++].MoveTo(outside.x, outside.YMost()); aPoints[np++].MoveTo(nscoord(inside.x * borderFrac + outside.x * borderRest), nscoord(inside.YMost() * borderFrac + outside.YMost() * borderRest)); aPoints[np++].MoveTo(nscoord(inside.XMost() * borderFrac + outside.XMost() * borderRest), nscoord(inside.YMost() * borderFrac + outside.YMost() * borderRest)); aPoints[np++].MoveTo(outside.XMost(), outside.YMost()); } break; case NS_SIDE_RIGHT: if (borderPart == BORDER_FULL) { thickness = outside.XMost() - inside.XMost(); if (thickness >= twipsPerPixel) { aPoints[np++].MoveTo(outside.XMost(), outside.YMost()); aPoints[np++].MoveTo(outside.XMost(), outside.y); } aPoints[np++].MoveTo(inside.XMost(), inside.y); aPoints[np++].MoveTo(inside.XMost(), inside.YMost()); } else if (borderPart == BORDER_INSIDE) { aPoints[np++].MoveTo(inside.XMost(), inside.y); aPoints[np++].MoveTo(nscoord(outside.XMost() * borderFrac + inside.XMost() * borderRest), nscoord(outside.y * borderFrac + inside.y * borderRest)); aPoints[np++].MoveTo(nscoord(outside.XMost() * borderFrac + inside.XMost() * borderRest), nscoord(outside.YMost() * borderFrac + inside.YMost() * borderRest)); aPoints[np++].MoveTo(inside.XMost(), inside.YMost()); } else { aPoints[np++].MoveTo(nscoord(inside.XMost() * borderFrac + outside.XMost() * borderRest), nscoord(inside.y * borderFrac + outside.y * borderRest)); aPoints[np++].MoveTo(outside.XMost(), outside.y); aPoints[np++].MoveTo(outside.XMost(), outside.YMost()); aPoints[np++].MoveTo(nscoord(inside.XMost() * borderFrac + outside.XMost() * borderRest), nscoord(inside.YMost() * borderFrac + outside.YMost() * borderRest)); } break; } return np; } void nsCSSRendering::DrawSide(nsIRenderingContext& aContext, PRIntn whichSide, const PRUint8 borderStyle, const nscolor borderColor, const nscolor aBackgroundColor, const nsRect& borderOutside, const nsRect& borderInside, nscoord twipsPerPixel, nsRect* aGap) { nsPoint theSide[MAX_POLY_POINTS]; nscolor theColor = borderColor; PRUint8 theStyle = borderStyle; PRInt32 np; switch (theStyle) { case NS_STYLE_BORDER_STYLE_NONE: case NS_STYLE_BORDER_STYLE_BLANK: return; case NS_STYLE_BORDER_STYLE_DOTTED: //handled a special case elsewhere case NS_STYLE_BORDER_STYLE_DASHED: //handled a special case elsewhere break; // That was easy... case NS_STYLE_BORDER_STYLE_GROOVE: case NS_STYLE_BORDER_STYLE_RIDGE: np = MakeSide (theSide, aContext, whichSide, borderOutside, borderInside, BORDER_INSIDE, 0.5f, twipsPerPixel); aContext.SetColor ( MakeBevelColor (whichSide, ((theStyle == NS_STYLE_BORDER_STYLE_RIDGE) ? NS_STYLE_BORDER_STYLE_GROOVE : NS_STYLE_BORDER_STYLE_RIDGE), aBackgroundColor, theColor, PR_TRUE)); if (2 == np) { //aContext.DrawLine (theSide[0].x, theSide[0].y, theSide[1].x, theSide[1].y); DrawLine (aContext, theSide[0].x, theSide[0].y, theSide[1].x, theSide[1].y, aGap); } else { //aContext.FillPolygon (theSide, np); FillPolygon (aContext, theSide, np, aGap); } np = MakeSide (theSide, aContext, whichSide, borderOutside, borderInside, BORDER_OUTSIDE, 0.5f, twipsPerPixel); aContext.SetColor ( MakeBevelColor (whichSide, theStyle, aBackgroundColor, theColor, PR_TRUE)); if (2 == np) { //aContext.DrawLine (theSide[0].x, theSide[0].y, theSide[1].x, theSide[1].y); DrawLine (aContext, theSide[0].x, theSide[0].y, theSide[1].x, theSide[1].y, aGap); } else { //aContext.FillPolygon (theSide, np); FillPolygon (aContext, theSide, np, aGap); } break; case NS_STYLE_BORDER_STYLE_SOLID: np = MakeSide (theSide, aContext, whichSide, borderOutside, borderInside, BORDER_FULL, 1.0f, twipsPerPixel); aContext.SetColor (borderColor); if (2 == np) { //aContext.DrawLine (theSide[0].x, theSide[0].y, theSide[1].x, theSide[1].y); DrawLine (aContext, theSide[0].x, theSide[0].y, theSide[1].x, theSide[1].y, aGap); } else { //aContext.FillPolygon (theSide, np); FillPolygon (aContext, theSide, np, aGap); } break; case NS_STYLE_BORDER_STYLE_DOUBLE: np = MakeSide (theSide, aContext, whichSide, borderOutside, borderInside, BORDER_INSIDE, 0.333333f, twipsPerPixel); aContext.SetColor (borderColor); if (2 == np) { //aContext.DrawLine (theSide[0].x, theSide[0].y, theSide[1].x, theSide[1].y); DrawLine (aContext, theSide[0].x, theSide[0].y, theSide[1].x, theSide[1].y, aGap); } else { //aContext.FillPolygon (theSide, np); FillPolygon (aContext, theSide, np, aGap); } np = MakeSide (theSide, aContext, whichSide, borderOutside, borderInside, BORDER_OUTSIDE, 0.333333f, twipsPerPixel); if (2 == np) { //aContext.DrawLine (theSide[0].x, theSide[0].y, theSide[1].x, theSide[1].y); DrawLine (aContext, theSide[0].x, theSide[0].y, theSide[1].x, theSide[1].y, aGap); } else { //aContext.FillPolygon (theSide, np); FillPolygon (aContext, theSide, np, aGap); } break; case NS_STYLE_BORDER_STYLE_BG_OUTSET: case NS_STYLE_BORDER_STYLE_BG_INSET: np = MakeSide (theSide, aContext, whichSide, borderOutside, borderInside, BORDER_FULL, 1.0f, twipsPerPixel); aContext.SetColor ( MakeBevelColor (whichSide, theStyle, aBackgroundColor, theColor, PR_FALSE)); if (2 == np) { //aContext.DrawLine (theSide[0].x, theSide[0].y, theSide[1].x, theSide[1].y); DrawLine (aContext, theSide[0].x, theSide[0].y, theSide[1].x, theSide[1].y, aGap); } else { //aContext.FillPolygon (theSide, np); FillPolygon (aContext, theSide, np, aGap); } break; case NS_STYLE_BORDER_STYLE_OUTSET: case NS_STYLE_BORDER_STYLE_INSET: np = MakeSide (theSide, aContext, whichSide, borderOutside, borderInside, BORDER_FULL, 1.0f, twipsPerPixel); aContext.SetColor ( MakeBevelColor (whichSide, theStyle, aBackgroundColor, theColor, PR_TRUE)); if (2 == np) { //aContext.DrawLine (theSide[0].x, theSide[0].y, theSide[1].x, theSide[1].y); DrawLine (aContext, theSide[0].x, theSide[0].y, theSide[1].x, theSide[1].y, aGap); } else { //aContext.FillPolygon (theSide, np); FillPolygon (aContext, theSide, np, aGap); } break; } } /** * Draw a dotted/dashed sides of a box */ //XXX dashes which span more than two edges are not handled properly MMP void nsCSSRendering::DrawDashedSides(PRIntn startSide, nsIRenderingContext& aContext, const PRUint8 borderStyles[], const nscolor borderColors[], const nsRect& borderOutside, const nsRect& borderInside, PRIntn aSkipSides, nsRect* aGap) { PRIntn dashLength; nsRect dashRect, firstRect, currRect; PRBool bSolid = PR_TRUE; float over = 0.0f; PRUint8 style = borderStyles[startSide]; PRBool skippedSide = PR_FALSE; for (PRIntn whichSide = startSide; whichSide < 4; whichSide++) { PRUint8 prevStyle = style; style = borderStyles[whichSide]; if ((1< 0.0f) { firstRect.x = dashRect.x; firstRect.width = dashRect.width; firstRect.height = nscoord(dashRect.height * over); firstRect.y = dashRect.y + (dashRect.height - firstRect.height); over = 0.0f; currRect = firstRect; } else { currRect = dashRect; } while (currRect.YMost() > borderInside.y) { //clip if necessary if (currRect.y < borderInside.y) { over = float(borderInside.y - dashRect.y) / float(dashRect.height); currRect.height = currRect.height - (borderInside.y - currRect.y); currRect.y = borderInside.y; } //draw if necessary if (bSolid) { aContext.FillRect(currRect); } //setup for next iteration if (over == 0.0f) { bSolid = PRBool(!bSolid); } dashRect.y = dashRect.y - currRect.height; currRect = dashRect; } break; case NS_SIDE_TOP: //if we are continuing a solid rect, fill in the corner first if (bSolid) { aContext.FillRect(borderOutside.x, borderOutside.y, borderInside.x - borderOutside.x, borderInside.y - borderOutside.y); } dashRect.height = borderInside.y - borderOutside.y; dashRect.width = dashRect.height * dashLength; dashRect.x = borderInside.x; dashRect.y = borderOutside.y; if (over > 0.0f) { firstRect.x = dashRect.x; firstRect.y = dashRect.y; firstRect.width = nscoord(dashRect.width * over); firstRect.height = dashRect.height; over = 0.0f; currRect = firstRect; } else { currRect = dashRect; } while (currRect.x < borderInside.XMost()) { //clip if necessary if (currRect.XMost() > borderInside.XMost()) { over = float(dashRect.XMost() - borderInside.XMost()) / float(dashRect.width); currRect.width = currRect.width - (currRect.XMost() - borderInside.XMost()); } //draw if necessary if (bSolid) { aContext.FillRect(currRect); } //setup for next iteration if (over == 0.0f) { bSolid = PRBool(!bSolid); } dashRect.x = dashRect.x + currRect.width; currRect = dashRect; } break; case NS_SIDE_RIGHT: //if we are continuing a solid rect, fill in the corner first if (bSolid) { aContext.FillRect(borderInside.XMost(), borderOutside.y, borderOutside.XMost() - borderInside.XMost(), borderInside.y - borderOutside.y); } dashRect.width = borderOutside.XMost() - borderInside.XMost(); dashRect.height = nscoord(dashRect.width * dashLength); dashRect.x = borderInside.XMost(); dashRect.y = borderInside.y; if (over > 0.0f) { firstRect.x = dashRect.x; firstRect.y = dashRect.y; firstRect.width = dashRect.width; firstRect.height = nscoord(dashRect.height * over); over = 0.0f; currRect = firstRect; } else { currRect = dashRect; } while (currRect.y < borderInside.YMost()) { //clip if necessary if (currRect.YMost() > borderInside.YMost()) { over = float(dashRect.YMost() - borderInside.YMost()) / float(dashRect.height); currRect.height = currRect.height - (currRect.YMost() - borderInside.YMost()); } //draw if necessary if (bSolid) { aContext.FillRect(currRect); } //setup for next iteration if (over == 0.0f) { bSolid = PRBool(!bSolid); } dashRect.y = dashRect.y + currRect.height; currRect = dashRect; } break; case NS_SIDE_BOTTOM: //if we are continuing a solid rect, fill in the corner first if (bSolid) { aContext.FillRect(borderInside.XMost(), borderInside.YMost(), borderOutside.XMost() - borderInside.XMost(), borderOutside.YMost() - borderInside.YMost()); } dashRect.height = borderOutside.YMost() - borderInside.YMost(); dashRect.width = nscoord(dashRect.height * dashLength); dashRect.x = borderInside.XMost() - dashRect.width; dashRect.y = borderInside.YMost(); if (over > 0.0f) { firstRect.y = dashRect.y; firstRect.width = nscoord(dashRect.width * over); firstRect.height = dashRect.height; firstRect.x = dashRect.x + (dashRect.width - firstRect.width); over = 0.0f; currRect = firstRect; } else { currRect = dashRect; } while (currRect.XMost() > borderInside.x) { //clip if necessary if (currRect.x < borderInside.x) { over = float(borderInside.x - dashRect.x) / float(dashRect.width); currRect.width = currRect.width - (borderInside.x - currRect.x); currRect.x = borderInside.x; } //draw if necessary if (bSolid) { aContext.FillRect(currRect); } //setup for next iteration if (over == 0.0f) { bSolid = PRBool(!bSolid); } dashRect.x = dashRect.x - currRect.width; currRect = dashRect; } break; } } skippedSide = PR_FALSE; } } void nsCSSRendering::DrawDashedSides(PRIntn startSide, nsIRenderingContext& aContext, const nsStyleSpacing& aSpacing, const nsRect& borderOutside, const nsRect& borderInside, PRIntn aSkipSides, nsRect* aGap) { PRIntn dashLength; nsRect dashRect, firstRect, currRect; PRBool bSolid = PR_TRUE; float over = 0.0f; PRUint8 style = aSpacing.GetBorderStyle(startSide); PRBool skippedSide = PR_FALSE; for (PRIntn whichSide = startSide; whichSide < 4; whichSide++) { PRUint8 prevStyle = style; style = aSpacing.GetBorderStyle(whichSide); if ((1< 0.0f) { firstRect.x = dashRect.x; firstRect.width = dashRect.width; firstRect.height = nscoord(dashRect.height * over); firstRect.y = dashRect.y + (dashRect.height - firstRect.height); over = 0.0f; currRect = firstRect; } else { currRect = dashRect; } while (currRect.YMost() > borderInside.y) { //clip if necessary if (currRect.y < borderInside.y) { over = float(borderInside.y - dashRect.y) / float(dashRect.height); currRect.height = currRect.height - (borderInside.y - currRect.y); currRect.y = borderInside.y; } //draw if necessary if (bSolid) { aContext.FillRect(currRect); } //setup for next iteration if (over == 0.0f) { bSolid = PRBool(!bSolid); } dashRect.y = dashRect.y - currRect.height; currRect = dashRect; } break; case NS_SIDE_TOP: //if we are continuing a solid rect, fill in the corner first if (bSolid) { aContext.FillRect(borderOutside.x, borderOutside.y, borderInside.x - borderOutside.x, borderInside.y - borderOutside.y); } dashRect.height = borderInside.y - borderOutside.y; dashRect.width = dashRect.height * dashLength; dashRect.x = borderInside.x; dashRect.y = borderOutside.y; if (over > 0.0f) { firstRect.x = dashRect.x; firstRect.y = dashRect.y; firstRect.width = nscoord(dashRect.width * over); firstRect.height = dashRect.height; over = 0.0f; currRect = firstRect; } else { currRect = dashRect; } while (currRect.x < borderInside.XMost()) { //clip if necessary if (currRect.XMost() > borderInside.XMost()) { over = float(dashRect.XMost() - borderInside.XMost()) / float(dashRect.width); currRect.width = currRect.width - (currRect.XMost() - borderInside.XMost()); } //draw if necessary if (bSolid) { aContext.FillRect(currRect); } //setup for next iteration if (over == 0.0f) { bSolid = PRBool(!bSolid); } dashRect.x = dashRect.x + currRect.width; currRect = dashRect; } break; case NS_SIDE_RIGHT: //if we are continuing a solid rect, fill in the corner first if (bSolid) { aContext.FillRect(borderInside.XMost(), borderOutside.y, borderOutside.XMost() - borderInside.XMost(), borderInside.y - borderOutside.y); } dashRect.width = borderOutside.XMost() - borderInside.XMost(); dashRect.height = nscoord(dashRect.width * dashLength); dashRect.x = borderInside.XMost(); dashRect.y = borderInside.y; if (over > 0.0f) { firstRect.x = dashRect.x; firstRect.y = dashRect.y; firstRect.width = dashRect.width; firstRect.height = nscoord(dashRect.height * over); over = 0.0f; currRect = firstRect; } else { currRect = dashRect; } while (currRect.y < borderInside.YMost()) { //clip if necessary if (currRect.YMost() > borderInside.YMost()) { over = float(dashRect.YMost() - borderInside.YMost()) / float(dashRect.height); currRect.height = currRect.height - (currRect.YMost() - borderInside.YMost()); } //draw if necessary if (bSolid) { aContext.FillRect(currRect); } //setup for next iteration if (over == 0.0f) { bSolid = PRBool(!bSolid); } dashRect.y = dashRect.y + currRect.height; currRect = dashRect; } break; case NS_SIDE_BOTTOM: //if we are continuing a solid rect, fill in the corner first if (bSolid) { aContext.FillRect(borderInside.XMost(), borderInside.YMost(), borderOutside.XMost() - borderInside.XMost(), borderOutside.YMost() - borderInside.YMost()); } dashRect.height = borderOutside.YMost() - borderInside.YMost(); dashRect.width = nscoord(dashRect.height * dashLength); dashRect.x = borderInside.XMost() - dashRect.width; dashRect.y = borderInside.YMost(); if (over > 0.0f) { firstRect.y = dashRect.y; firstRect.width = nscoord(dashRect.width * over); firstRect.height = dashRect.height; firstRect.x = dashRect.x + (dashRect.width - firstRect.width); over = 0.0f; currRect = firstRect; } else { currRect = dashRect; } while (currRect.XMost() > borderInside.x) { //clip if necessary if (currRect.x < borderInside.x) { over = float(borderInside.x - dashRect.x) / float(dashRect.width); currRect.width = currRect.width - (borderInside.x - currRect.x); currRect.x = borderInside.x; } //draw if necessary if (bSolid) { aContext.FillRect(currRect); } //setup for next iteration if (over == 0.0f) { bSolid = PRBool(!bSolid); } dashRect.x = dashRect.x - currRect.width; currRect = dashRect; } break; } } skippedSide = PR_FALSE; } } /* draw the portions of the border described in aBorderEdges that are dashed. * a border has 4 edges. Each edge has 1 or more segments. * "inside edges" are drawn differently than "outside edges" so the shared edges will match up. * in the case of table collapsing borders, the table edge is the "outside" edge and * cell edges are always "inside" edges (so adjacent cells have 2 shared "inside" edges.) * There is a case for each of the four sides. Only the left side is well documented. The others * are very similar. */ // XXX: doesn't do corners or junctions well at all. Just uses logic stolen // from DrawDashedSides which is insufficient void nsCSSRendering::DrawDashedSegments(nsIRenderingContext& aContext, const nsRect& aBounds, nsBorderEdges * aBorderEdges, PRIntn aSkipSides, nsRect* aGap) { PRIntn dashLength; nsRect dashRect, currRect; PRBool bSolid = PR_TRUE; float over = 0.0f; PRBool skippedSide = PR_FALSE; PRIntn whichSide=0; // do this just to set up initial condition for loop // "segment" is the current portion of the edge we are computing nsBorderEdge * segment = (nsBorderEdge *)(aBorderEdges->mEdges[whichSide].ElementAt(0)); PRUint8 style = segment->mStyle; for ( ; whichSide < 4; whichSide++) { if ((1<mEdges[whichSide].Count(); nsBorderEdges * neighborBorderEdges=nsnull; PRIntn neighborEdgeCount=0; // keeps track of which inside neighbor is shared with an outside segment for (i=0; imEdges[whichSide].ElementAt(i)); style = segment->mStyle; // XXX units for dash & dot? if (style == NS_STYLE_BORDER_STYLE_DASHED) { dashLength = DASH_LENGTH; } else { dashLength = DOT_LENGTH; } aContext.SetColor(segment->mColor); switch (whichSide) { case NS_SIDE_LEFT: { // draw left segment i nsBorderEdge * topEdge = (nsBorderEdge *)(aBorderEdges->mEdges[NS_SIDE_TOP].ElementAt(0)); if (0==y) { // y is the offset to the top of this segment. 0 means its the topmost left segment y = aBorderEdges->mMaxBorderWidth.top - topEdge->mWidth; if (PR_TRUE==aBorderEdges->mOutsideEdge) y += topEdge->mWidth; } // the x offset is the x position offset by the max width of the left edge minus this segment's width x = aBounds.x + (aBorderEdges->mMaxBorderWidth.left - segment->mWidth); nscoord height = segment->mLength; // the space between borderOutside and borderInside inclusive is the segment. nsRect borderOutside(x, y, aBounds.width, height); y += segment->mLength; // keep track of the y offset for the next segment if ((style == NS_STYLE_BORDER_STYLE_DASHED) || (style == NS_STYLE_BORDER_STYLE_DOTTED)) { nsRect borderInside(borderOutside); nsMargin outsideMargin(segment->mWidth, 0, 0, 0); borderInside.Deflate(outsideMargin); nscoord totalLength = segment->mLength; // the computed length of this segment // outside edges need info from their inside neighbor. The following code keeps track // of which segment of the inside neighbor's shared edge we should use for this outside segment if (PR_TRUE==aBorderEdges->mOutsideEdge) { if (segment->mInsideNeighbor == neighborBorderEdges) { neighborEdgeCount++; } else { neighborBorderEdges = segment->mInsideNeighbor; neighborEdgeCount=0; } nsBorderEdge * neighborLeft = (nsBorderEdge *)(segment->mInsideNeighbor->mEdges[NS_SIDE_LEFT].ElementAt(neighborEdgeCount)); totalLength = neighborLeft->mLength; } dashRect.width = borderInside.x - borderOutside.x; dashRect.height = nscoord(dashRect.width * dashLength); dashRect.x = borderOutside.x; dashRect.y = borderOutside.y + (totalLength/2) - dashRect.height; if ((PR_TRUE==aBorderEdges->mOutsideEdge) && (0!=i)) dashRect.y -= topEdge->mWidth; // account for the topmost left edge corner with the leftmost top edge if (0) { printf(" L: totalLength = %d, borderOutside.y = %d, midpoint %d, dashRect.y = %d\n", totalLength, borderOutside.y, borderOutside.y +(totalLength/2), dashRect.y); } currRect = dashRect; // we draw the segment in 2 halves to get the inside and outside edges to line up on the // centerline of the shared edge. // draw the top half while (currRect.YMost() > borderInside.y) { //clip if necessary if (currRect.y < borderInside.y) { over = float(borderInside.y - dashRect.y) / float(dashRect.height); currRect.height = currRect.height - (borderInside.y - currRect.y); currRect.y = borderInside.y; } //draw if necessary if (0) { printf("DASHED LEFT: xywh in loop currRect = %d %d %d %d %s\n", currRect.x, currRect.y, currRect.width, currRect.height, bSolid?"TRUE":"FALSE"); } if (bSolid) { aContext.FillRect(currRect); } //setup for next iteration if (over == 0.0f) { bSolid = PRBool(!bSolid); } dashRect.y = dashRect.y - currRect.height; currRect = dashRect; } // draw the bottom half dashRect.y = borderOutside.y + (totalLength/2) + dashRect.height; if ((PR_TRUE==aBorderEdges->mOutsideEdge) && (0!=i)) dashRect.y -= topEdge->mWidth; currRect = dashRect; bSolid=PR_TRUE; over = 0.0f; while (currRect.YMost() < borderInside.YMost()) { //clip if necessary if (currRect.y < borderInside.y) { over = float(borderInside.y - dashRect.y) / float(dashRect.height); currRect.height = currRect.height - (borderInside.y - currRect.y); currRect.y = borderInside.y; } //draw if necessary if (0) { printf("DASHED LEFT: xywh in loop currRect = %d %d %d %d %s\n", currRect.x, currRect.y, currRect.width, currRect.height, bSolid?"TRUE":"FALSE"); } if (bSolid) { aContext.FillRect(currRect); } //setup for next iteration if (over == 0.0f) { bSolid = PRBool(!bSolid); } dashRect.y = dashRect.y + currRect.height; currRect = dashRect; } } } break; case NS_SIDE_TOP: { // draw top segment i if (0==x) { nsBorderEdge * leftEdge = (nsBorderEdge *)(aBorderEdges->mEdges[NS_SIDE_LEFT].ElementAt(0)); x = aBorderEdges->mMaxBorderWidth.left - leftEdge->mWidth; } y = aBounds.y; if (PR_TRUE==aBorderEdges->mOutsideEdge) // segments of the outside edge are bottom-aligned y += aBorderEdges->mMaxBorderWidth.top - segment->mWidth; nsRect borderOutside(x, y, segment->mLength, aBounds.height); x += segment->mLength; if ((style == NS_STYLE_BORDER_STYLE_DASHED) || (style == NS_STYLE_BORDER_STYLE_DOTTED)) { nsRect borderInside(borderOutside); nsBorderEdge * neighbor; if (PR_TRUE==aBorderEdges->mOutsideEdge) neighbor = (nsBorderEdge *)(segment->mInsideNeighbor->mEdges[NS_SIDE_LEFT].ElementAt(0)); else neighbor = (nsBorderEdge *)(aBorderEdges->mEdges[NS_SIDE_LEFT].ElementAt(0)); nsMargin outsideMargin(neighbor->mWidth, segment->mWidth, 0, segment->mWidth); borderInside.Deflate(outsideMargin); nscoord firstRectWidth = 0; if (PR_TRUE==aBorderEdges->mOutsideEdge && 0==i) { firstRectWidth = borderInside.x - borderOutside.x; aContext.FillRect(borderOutside.x, borderOutside.y, firstRectWidth, borderInside.y - borderOutside.y); } dashRect.height = borderInside.y - borderOutside.y; dashRect.width = dashRect.height * dashLength; dashRect.x = borderOutside.x + firstRectWidth; dashRect.y = borderOutside.y; currRect = dashRect; while (currRect.x < borderInside.XMost()) { //clip if necessary if (currRect.XMost() > borderInside.XMost()) { over = float(dashRect.XMost() - borderInside.XMost()) / float(dashRect.width); currRect.width = currRect.width - (currRect.XMost() - borderInside.XMost()); } //draw if necessary if (bSolid) { aContext.FillRect(currRect); } //setup for next iteration if (over == 0.0f) { bSolid = PRBool(!bSolid); } dashRect.x = dashRect.x + currRect.width; currRect = dashRect; } } } break; case NS_SIDE_RIGHT: { // draw right segment i nsBorderEdge * topEdge = (nsBorderEdge *) (aBorderEdges->mEdges[NS_SIDE_TOP].ElementAt(aBorderEdges->mEdges[NS_SIDE_TOP].Count()-1)); if (0==y) { y = aBorderEdges->mMaxBorderWidth.top - topEdge->mWidth; if (PR_TRUE==aBorderEdges->mOutsideEdge) y += topEdge->mWidth; } nscoord width; if (PR_TRUE==aBorderEdges->mOutsideEdge) { width = aBounds.width - aBorderEdges->mMaxBorderWidth.right; width += segment->mWidth; } else { width = aBounds.width; } nscoord height = segment->mLength; nsRect borderOutside(aBounds.x, y, width, height); y += segment->mLength; if ((style == NS_STYLE_BORDER_STYLE_DASHED) || (style == NS_STYLE_BORDER_STYLE_DOTTED)) { nsRect borderInside(borderOutside); nsMargin outsideMargin(segment->mWidth, 0, (segment->mWidth), 0); borderInside.Deflate(outsideMargin); nscoord totalLength = segment->mLength; if (PR_TRUE==aBorderEdges->mOutsideEdge) { if (segment->mInsideNeighbor == neighborBorderEdges) { neighborEdgeCount++; } else { neighborBorderEdges = segment->mInsideNeighbor; neighborEdgeCount=0; } nsBorderEdge * neighborRight = (nsBorderEdge *)(segment->mInsideNeighbor->mEdges[NS_SIDE_RIGHT].ElementAt(neighborEdgeCount)); totalLength = neighborRight->mLength; } dashRect.width = borderOutside.XMost() - borderInside.XMost(); dashRect.height = nscoord(dashRect.width * dashLength); dashRect.x = borderInside.XMost(); dashRect.y = borderOutside.y + (totalLength/2) - dashRect.height; if ((PR_TRUE==aBorderEdges->mOutsideEdge) && (0!=i)) dashRect.y -= topEdge->mWidth; currRect = dashRect; // draw the top half while (currRect.YMost() > borderInside.y) { //clip if necessary if (currRect.y < borderInside.y) { over = float(borderInside.y - dashRect.y) / float(dashRect.height); currRect.height = currRect.height - (borderInside.y - currRect.y); currRect.y = borderInside.y; } //draw if necessary if (bSolid) { aContext.FillRect(currRect); } //setup for next iteration if (over == 0.0f) { bSolid = PRBool(!bSolid); } dashRect.y = dashRect.y - currRect.height; currRect = dashRect; } // draw the bottom half dashRect.y = borderOutside.y + (totalLength/2) + dashRect.height; if ((PR_TRUE==aBorderEdges->mOutsideEdge) && (0!=i)) dashRect.y -= topEdge->mWidth; currRect = dashRect; bSolid=PR_TRUE; over = 0.0f; while (currRect.YMost() < borderInside.YMost()) { //clip if necessary if (currRect.y < borderInside.y) { over = float(borderInside.y - dashRect.y) / float(dashRect.height); currRect.height = currRect.height - (borderInside.y - currRect.y); currRect.y = borderInside.y; } //draw if necessary if (bSolid) { aContext.FillRect(currRect); } //setup for next iteration if (over == 0.0f) { bSolid = PRBool(!bSolid); } dashRect.y = dashRect.y + currRect.height; currRect = dashRect; } } } break; case NS_SIDE_BOTTOM: { // draw bottom segment i if (0==x) { nsBorderEdge * leftEdge = (nsBorderEdge *) (aBorderEdges->mEdges[NS_SIDE_LEFT].ElementAt(aBorderEdges->mEdges[NS_SIDE_LEFT].Count()-1)); x = aBorderEdges->mMaxBorderWidth.left - leftEdge->mWidth; } y = aBounds.y; if (PR_TRUE==aBorderEdges->mOutsideEdge) // segments of the outside edge are top-aligned y -= aBorderEdges->mMaxBorderWidth.bottom - segment->mWidth; nsRect borderOutside(x, y, segment->mLength, aBounds.height); x += segment->mLength; if ((style == NS_STYLE_BORDER_STYLE_DASHED) || (style == NS_STYLE_BORDER_STYLE_DOTTED)) { nsRect borderInside(borderOutside); nsBorderEdge * neighbor; if (PR_TRUE==aBorderEdges->mOutsideEdge) neighbor = (nsBorderEdge *)(segment->mInsideNeighbor->mEdges[NS_SIDE_LEFT].ElementAt(0)); else neighbor = (nsBorderEdge *)(aBorderEdges->mEdges[NS_SIDE_LEFT].ElementAt(0)); nsMargin outsideMargin(neighbor->mWidth, segment->mWidth, 0, segment->mWidth); borderInside.Deflate(outsideMargin); nscoord firstRectWidth = 0; if (PR_TRUE==aBorderEdges->mOutsideEdge && 0==i) { firstRectWidth = borderInside.x - borderOutside.x; aContext.FillRect(borderOutside.x, borderInside.YMost(), firstRectWidth, borderOutside.YMost() - borderInside.YMost()); } dashRect.height = borderOutside.YMost() - borderInside.YMost(); dashRect.width = nscoord(dashRect.height * dashLength); dashRect.x = borderOutside.x + firstRectWidth; dashRect.y = borderInside.YMost(); currRect = dashRect; while (currRect.x < borderInside.XMost()) { //clip if necessary if (currRect.XMost() > borderInside.XMost()) { over = float(dashRect.XMost() - borderInside.XMost()) / float(dashRect.width); currRect.width = currRect.width - (currRect.XMost() - borderInside.XMost()); } //draw if necessary if (bSolid) { aContext.FillRect(currRect); } //setup for next iteration if (over == 0.0f) { bSolid = PRBool(!bSolid); } dashRect.x = dashRect.x + currRect.width; currRect = dashRect; } } } break; } } skippedSide = PR_FALSE; } } // XXX improve this to constrain rendering to the damaged area void nsCSSRendering::PaintBorder(nsIPresContext& aPresContext, nsIRenderingContext& aRenderingContext, nsIFrame* aForFrame, const nsRect& aDirtyRect, const nsRect& aBorderArea, const nsStyleSpacing& aBorderStyle, nsIStyleContext* aStyleContext, PRIntn aSkipSides, nsRect* aGap) { PRIntn cnt; nsMargin border; const nsStyleColor* bgColor = nsStyleUtil::FindNonTransparentBackground(aStyleContext); PRInt16 theRadius; nsStyleCoord borderRadius; aBorderStyle.CalcBorderFor(aForFrame, border); if ((0 == border.left) && (0 == border.right) && (0 == border.top) && (0 == border.bottom)) { // Empty border area return; } // get the radius for our border borderRadius = aBorderStyle.mBorderRadius; theRadius = 0; switch (borderRadius.GetUnit() ) { case eStyleUnit_Inherit: break; case eStyleUnit_Percent: break; case eStyleUnit_Coord: theRadius = borderRadius.GetCoordValue(); break; } // rounded version of the border if (theRadius > 0){ PaintRoundedBorder(aPresContext,aRenderingContext,aForFrame,aDirtyRect,aBorderArea,aBorderStyle,aStyleContext,aSkipSides,theRadius,aGap); return; } // Turn off rendering for all of the zero sized sides if (0 == border.top) aSkipSides |= (1 << NS_SIDE_TOP); if (0 == border.right) aSkipSides |= (1 << NS_SIDE_RIGHT); if (0 == border.bottom) aSkipSides |= (1 << NS_SIDE_BOTTOM); if (0 == border.left) aSkipSides |= (1 << NS_SIDE_LEFT); nsRect inside(aBorderArea); nsRect outside(inside); outside.Deflate(border); //see if any sides are dotted or dashed for (cnt = 0; cnt < 4; cnt++) { if ((aBorderStyle.GetBorderStyle(cnt) == NS_STYLE_BORDER_STYLE_DOTTED) || (aBorderStyle.GetBorderStyle(cnt) == NS_STYLE_BORDER_STYLE_DASHED)) { break; } } if (cnt < 4) { DrawDashedSides(cnt, aRenderingContext,aBorderStyle, inside, outside, aSkipSides, aGap); } // Draw all the other sides /* XXX something is misnamed here!!!! */ nscoord twipsPerPixel;/* XXX */ float p2t;/* XXX */ aPresContext.GetPixelsToTwips(&p2t);/* XXX */ twipsPerPixel = (nscoord) p2t;/* XXX */ nscolor sideColor; if (0 == (aSkipSides & (1<mBackgroundColor, inside,outside, twipsPerPixel, aGap); } } if (0 == (aSkipSides & (1<mBackgroundColor,inside, outside, twipsPerPixel, aGap); } } if (0 == (aSkipSides & (1<mBackgroundColor,inside, outside, twipsPerPixel, aGap); } } if (0 == (aSkipSides & (1<mBackgroundColor,inside, outside, twipsPerPixel, aGap); } } } /* draw the edges of the border described in aBorderEdges one segment at a time. * a border has 4 edges. Each edge has 1 or more segments. * "inside edges" are drawn differently than "outside edges" so the shared edges will match up. * in the case of table collapsing borders, the table edge is the "outside" edge and * cell edges are always "inside" edges (so adjacent cells have 2 shared "inside" edges.) * dashed segments are drawn by DrawDashedSegments(). */ // XXX: doesn't do corners or junctions well at all. Just uses logic stolen // from PaintBorder which is insufficient void nsCSSRendering::PaintBorderEdges(nsIPresContext& aPresContext, nsIRenderingContext& aRenderingContext, nsIFrame* aForFrame, const nsRect& aDirtyRect, const nsRect& aBorderArea, nsBorderEdges * aBorderEdges, nsIStyleContext* aStyleContext, PRIntn aSkipSides, nsRect* aGap) { const nsStyleColor* bgColor = nsStyleUtil::FindNonTransparentBackground(aStyleContext); if (nsnull==aBorderEdges) { // Empty border segments return; } // Turn off rendering for all of the zero sized sides if (0 == aBorderEdges->mMaxBorderWidth.top) aSkipSides |= (1 << NS_SIDE_TOP); if (0 == aBorderEdges->mMaxBorderWidth.right) aSkipSides |= (1 << NS_SIDE_RIGHT); if (0 == aBorderEdges->mMaxBorderWidth.bottom) aSkipSides |= (1 << NS_SIDE_BOTTOM); if (0 == aBorderEdges->mMaxBorderWidth.left) aSkipSides |= (1 << NS_SIDE_LEFT); // Draw any dashed or dotted segments separately DrawDashedSegments(aRenderingContext, aBorderArea, aBorderEdges, aSkipSides, aGap); // Draw all the other sides nscoord twipsPerPixel; float p2t; aPresContext.GetPixelsToTwips(&p2t); twipsPerPixel = (nscoord) p2t;/* XXX huh!*/ if (0 == (aSkipSides & (1<mEdges[NS_SIDE_TOP].Count(); PRInt32 i; nsBorderEdge * leftEdge = (nsBorderEdge *)(aBorderEdges->mEdges[NS_SIDE_LEFT].ElementAt(0)); nscoord x = aBorderEdges->mMaxBorderWidth.left - leftEdge->mWidth; for (i=0; imEdges[NS_SIDE_TOP].ElementAt(i)); nscoord y = aBorderArea.y; if (PR_TRUE==aBorderEdges->mOutsideEdge) // segments of the outside edge are bottom-aligned y += aBorderEdges->mMaxBorderWidth.top - borderEdge->mWidth; nsRect inside(x, y, borderEdge->mLength, aBorderArea.height); x += borderEdge->mLength; nsRect outside(inside); nsMargin outsideMargin(0, borderEdge->mWidth, 0, 0); outside.Deflate(outsideMargin); DrawSide(aRenderingContext, NS_SIDE_TOP, borderEdge->mStyle, borderEdge->mColor, bgColor->mBackgroundColor, inside, outside, twipsPerPixel, aGap); } } if (0 == (aSkipSides & (1<mEdges[NS_SIDE_LEFT].Count(); PRInt32 i; nsBorderEdge * topEdge = (nsBorderEdge *)(aBorderEdges->mEdges[NS_SIDE_TOP].ElementAt(0)); nscoord y = aBorderEdges->mMaxBorderWidth.top - topEdge->mWidth; for (i=0; imEdges[NS_SIDE_LEFT].ElementAt(i)); nscoord x = aBorderArea.x + (aBorderEdges->mMaxBorderWidth.left - borderEdge->mWidth); nsRect inside(x, y, aBorderArea.width, borderEdge->mLength); y += borderEdge->mLength; nsRect outside(inside); nsMargin outsideMargin(borderEdge->mWidth, 0, 0, 0); outside.Deflate(outsideMargin); DrawSide(aRenderingContext, NS_SIDE_LEFT, borderEdge->mStyle, borderEdge->mColor, bgColor->mBackgroundColor, inside, outside, twipsPerPixel, aGap); } } if (0 == (aSkipSides & (1<mEdges[NS_SIDE_BOTTOM].Count(); PRInt32 i; nsBorderEdge * leftEdge = (nsBorderEdge *) (aBorderEdges->mEdges[NS_SIDE_LEFT].ElementAt(aBorderEdges->mEdges[NS_SIDE_LEFT].Count()-1)); nscoord x = aBorderEdges->mMaxBorderWidth.left - leftEdge->mWidth; for (i=0; imEdges[NS_SIDE_BOTTOM].ElementAt(i)); nscoord y = aBorderArea.y; if (PR_TRUE==aBorderEdges->mOutsideEdge) // segments of the outside edge are top-aligned y -= (aBorderEdges->mMaxBorderWidth.bottom - borderEdge->mWidth); nsRect inside(x, y, borderEdge->mLength, aBorderArea.height); x += borderEdge->mLength; nsRect outside(inside); nsMargin outsideMargin(0, 0, 0, borderEdge->mWidth); outside.Deflate(outsideMargin); DrawSide(aRenderingContext, NS_SIDE_BOTTOM, borderEdge->mStyle, borderEdge->mColor, bgColor->mBackgroundColor, inside, outside, twipsPerPixel, aGap); } } if (0 == (aSkipSides & (1<mEdges[NS_SIDE_RIGHT].Count(); PRInt32 i; nsBorderEdge * topEdge = (nsBorderEdge *) (aBorderEdges->mEdges[NS_SIDE_TOP].ElementAt(aBorderEdges->mEdges[NS_SIDE_TOP].Count()-1)); nscoord y = aBorderEdges->mMaxBorderWidth.top - topEdge->mWidth; for (i=0; imEdges[NS_SIDE_RIGHT].ElementAt(i)); nscoord width; if (PR_TRUE==aBorderEdges->mOutsideEdge) { width = aBorderArea.width - aBorderEdges->mMaxBorderWidth.right; width += borderEdge->mWidth; } else { width = aBorderArea.width; } nsRect inside(aBorderArea.x, y, width, borderEdge->mLength); y += borderEdge->mLength; nsRect outside(inside); nsMargin outsideMargin(0, 0, (borderEdge->mWidth), 0); outside.Deflate(outsideMargin); DrawSide(aRenderingContext, NS_SIDE_RIGHT, borderEdge->mStyle, borderEdge->mColor, bgColor->mBackgroundColor, inside, outside, twipsPerPixel, aGap); } } } //---------------------------------------------------------------------- // Returns the anchor point to use for the background image. The // anchor point is the (x, y) location where the first tile should // be placed // // For repeated tiling, the anchor values are normalized wrt to the upper-left // edge of the bounds, and are always in the range: // -(aTileWidth - 1) <= anchor.x <= 0 // -(aTileHeight - 1) <= anchor.y <= 0 // // i.e., they are either 0 or a negative number whose absolute value is // less than the tile size in that dimension static void ComputeBackgroundAnchorPoint(const nsStyleColor& aColor, const nsRect& aBounds, nscoord aTileWidth, nscoord aTileHeight, nsPoint& aResult) { nscoord x; if (NS_STYLE_BG_X_POSITION_LENGTH & aColor.mBackgroundFlags) { x = aColor.mBackgroundXPosition; } else { nscoord t = aColor.mBackgroundXPosition; float pct = float(t) / 100.0f; nscoord tilePos = nscoord(pct * aTileWidth); nscoord boxPos = nscoord(pct * aBounds.width); x = boxPos - tilePos; } if (NS_STYLE_BG_REPEAT_X & aColor.mBackgroundRepeat) { // When we are tiling in the x direction the loop will run from // the left edge of the box to the right edge of the box. We need // to adjust the starting coordinate to lie within the band being // rendered. if (x < 0) { x = -x; if (x < 0) { // Some joker gave us max-negative-integer. x = 0; } x %= aTileWidth; x = -x; } else if (x != 0) { x %= aTileWidth; x = x - aTileWidth; } NS_POSTCONDITION((x >= -(aTileWidth - 1)) && (x <= 0), "bad computed anchor value"); } aResult.x = x; nscoord y; if (NS_STYLE_BG_Y_POSITION_LENGTH & aColor.mBackgroundFlags) { y = aColor.mBackgroundYPosition; } else { nscoord t = aColor.mBackgroundYPosition; float pct = float(t) / 100.0f; nscoord tilePos = nscoord(pct * aTileHeight); nscoord boxPos = nscoord(pct * aBounds.height); y = boxPos - tilePos; } if (NS_STYLE_BG_REPEAT_Y & aColor.mBackgroundRepeat) { // When we are tiling in the y direction the loop will run from // the top edge of the box to the bottom edge of the box. We need // to adjust the starting coordinate to lie within the band being // rendered. if (y < 0) { y = -y; if (y < 0) { // Some joker gave us max-negative-integer. y = 0; } y %= aTileHeight; y = -y; } else if (y != 0) { y %= aTileHeight; y = y - aTileHeight; } NS_POSTCONDITION((y >= -(aTileHeight - 1)) && (y <= 0), "bad computed anchor value"); } aResult.y = y; } // Returns the clip view associated with the scroll frame's scrolling // view static const nsIView* GetClipView(nsIFrame* aScrollFrame) { nsIView* view; nsIScrollableView* scrollingView; const nsIView* clipView; // Get the scrolling view aScrollFrame->GetView(&view); view->QueryInterface(kScrollViewIID, (void**)&scrollingView); // Get the clip view scrollingView->GetClipView(&clipView); return clipView; } // Returns the nearest scroll frame ancestor static nsIFrame* GetNearestScrollFrame(nsIFrame* aFrame) { for (nsIFrame* f = aFrame; f; f->GetParent(&f)) { nsIAtom* frameType; // Is it a scroll frame? f->GetFrameType(&frameType); if (nsLayoutAtoms::scrollFrame == frameType) { NS_RELEASE(frameType); return f; } NS_IF_RELEASE(frameType); } return nsnull; } void nsCSSRendering::PaintBackground(nsIPresContext& aPresContext, nsIRenderingContext& aRenderingContext, nsIFrame* aForFrame, const nsRect& aDirtyRect, const nsRect& aBorderArea, const nsStyleColor& aColor, const nsStyleSpacing& aSpacing, nscoord aDX, nscoord aDY) { nsMargin border; PRInt16 theRadius; nsStyleCoord borderRadius; if (0 < aColor.mBackgroundImage.Length()) { // Lookup the image nsSize imageSize; nsIImage* image = nsnull; nsIFrameImageLoader* loader = nsnull; PRBool transparentBG = NS_STYLE_BG_COLOR_TRANSPARENT == (aColor.mBackgroundFlags & NS_STYLE_BG_COLOR_TRANSPARENT); nsresult rv = aPresContext.StartLoadImage(aColor.mBackgroundImage, transparentBG ? nsnull : &aColor.mBackgroundColor, nsnull, aForFrame, nsnull, nsnull, &loader); if ((NS_OK != rv) || (nsnull == loader) || (loader->GetImage(&image), (nsnull == image))) { NS_IF_RELEASE(loader); // Redraw will happen later if (!transparentBG) { aRenderingContext.SetColor(aColor.mBackgroundColor); aRenderingContext.FillRect(aBorderArea); } return; } loader->GetSize(imageSize); NS_RELEASE(loader); PRBool needBackgroundColor = PR_FALSE; #if XXX // XXX enable this code as soon as nsIImage can support it if (image->NeedsBlend()) { needBackgroundColor = PR_TRUE; } #endif nscoord tileWidth = imageSize.width; nscoord tileHeight = imageSize.height; if ((tileWidth == 0) || (tileHeight == 0)) { return; } // Background images are tiled over the 'content' and 'padding' areas // only (not the 'border' area) nsRect paddingArea(aBorderArea); nsMargin border; aSpacing.GetBorder(border); paddingArea.Deflate(border); // The actual dirty rect is the intersection of the padding area and the // dirty rect we were given nsRect dirtyRect; if (!dirtyRect.IntersectRect(paddingArea, aDirtyRect)) { // Nothing to paint return; } // Based on the repeat setting, compute how many tiles we should // lay down for each axis. The value computed is the maximum based // on the dirty rect before accounting for the background-position. PRIntn repeat = aColor.mBackgroundRepeat; nscoord xDistance, yDistance; switch (repeat) { case NS_STYLE_BG_REPEAT_OFF: default: xDistance = tileWidth; yDistance = tileHeight; needBackgroundColor = PR_TRUE; break; case NS_STYLE_BG_REPEAT_X: xDistance = dirtyRect.width; yDistance = tileHeight; needBackgroundColor = PR_TRUE; break; case NS_STYLE_BG_REPEAT_Y: xDistance = tileWidth; yDistance = dirtyRect.height; needBackgroundColor = PR_TRUE; break; case NS_STYLE_BG_REPEAT_XY: xDistance = dirtyRect.width; yDistance = dirtyRect.height; break; } // The background color is rendered over the 'border' 'padding' and // 'content' areas if (needBackgroundColor) { aRenderingContext.SetColor(aColor.mBackgroundColor); aRenderingContext.FillRect(aBorderArea); } // If it's a fixed background attachment, then get the nearest scrolling // ancestor nsIFrame* scrollFrame = nsnull; const nsIView* clipView = nsnull; nsRect viewportArea(0, 0, 0, 0); if (NS_STYLE_BG_ATTACHMENT_FIXED == aColor.mBackgroundAttachment) { scrollFrame = GetNearestScrollFrame(aForFrame); // Get the viewport size nsSize clipSize; clipView = GetClipView(scrollFrame); clipView->GetDimensions(&viewportArea.width, &viewportArea.height); } // Compute the anchor point. If it's a fixed background attachment, then // the image is placed relative to the viewport; otherwise, it's placed // relative to the element's padding area. // // When tiling, the anchor coordinate values will be negative offsets // from the padding area nsPoint anchor; ComputeBackgroundAnchorPoint(aColor, scrollFrame ? viewportArea : paddingArea, tileWidth, tileHeight, anchor); // If it's a fixed background attachment, then convert the anchor point // to aForFrame's coordinate space if (NS_STYLE_BG_ATTACHMENT_FIXED == aColor.mBackgroundAttachment) { nsIView* view; aForFrame->GetView(&view); if (!view) { nsPoint offset; aForFrame->GetOffsetFromView(offset, &view); anchor -= offset; } NS_ASSERTION(view, "expected a view"); while (view && (view != clipView)) { nscoord x, y; view->GetPosition(&x, &y); anchor.x -= x; anchor.y -= y; // Get the parent view view->GetParent(view); } } // Setup clipping so that rendering doesn't leak out of the computed // dirty rect PRBool clipState; aRenderingContext.PushState(); aRenderingContext.SetClipRect(dirtyRect, nsClipCombine_kIntersect, clipState); // Compute the x and y starting points and limits for tiling nscoord x0, x1; if (NS_STYLE_BG_ATTACHMENT_FIXED == aColor.mBackgroundAttachment) { if (NS_STYLE_BG_REPEAT_X & repeat) { x0 = ((dirtyRect.x - anchor.x) / tileWidth) * tileWidth + anchor.x; x1 = x0 + xDistance + tileWidth; if (0 != anchor.x) { x1 += tileWidth; } } else { // For fixed attachment, the anchor is relative to the nearest scrolling // ancestor (or the viewport) x0 = anchor.x; x1 = x0 + tileWidth; } } else { if (NS_STYLE_BG_REPEAT_X & repeat) { // When tiling in the x direction, adjust the starting position of the // tile to account for dirtyRect.x. When tiling in x, the anchor.x value // will be a negative value used to adjust the starting coordinate. x0 = (dirtyRect.x / tileWidth) * tileWidth + anchor.x; x1 = x0 + xDistance + tileWidth; if (0 != anchor.x) { x1 += tileWidth; } } else { // For scrolling attachment, the anchor is relative to the padding area x0 = paddingArea.x + anchor.x; x1 = x0 + tileWidth; } } nscoord y0, y1; if (NS_STYLE_BG_ATTACHMENT_FIXED == aColor.mBackgroundAttachment) { if (NS_STYLE_BG_REPEAT_Y & repeat) { y0 = ((dirtyRect.y - anchor.y) / tileHeight) * tileHeight + anchor.y; y1 = y0 + yDistance + tileHeight; if (0 != anchor.y) { y1 += tileHeight; } } else { // For fixed attachment, the anchor is relative to the nearest scrolling // ancestor (or the viewport) y0 = anchor.y; y1 = y0 + tileHeight; } } else { if (NS_STYLE_BG_REPEAT_Y & repeat) { // When tiling in the y direction, adjust the starting position of the // tile to account for dirtyRect.y. When tiling in y, the anchor.y value // will be a negative value used to adjust the starting coordinate. y0 = (dirtyRect.y / tileHeight) * tileHeight + anchor.y; y1 = y0 + yDistance + tileHeight; if (0 != anchor.y) { y1 += tileHeight; } } else { // For scrolling attachment, the anchor is relative to the padding area y0 = paddingArea.y + anchor.y; y1 = y0 + tileHeight; } } // Tile the image in x and y nscoord x, y; for (y = y0; y < y1; y += tileHeight) { for (x = x0; x < x1; x += tileWidth) { aRenderingContext.DrawImage(image, x, y, tileWidth, tileHeight); } } // Restore clipping aRenderingContext.PopState(clipState); } else { // See if there's a background color specified. The background color // is rendered over the 'border' 'padding' and 'content' areas if (0 == (aColor.mBackgroundFlags & NS_STYLE_BG_COLOR_TRANSPARENT)) { // XXX This step can be avoided if we have an image and it doesn't // have any transparent pixels, and the image is tiled in both // the x and the y // check to see if we have a radius borderRadius = aSpacing.mBorderRadius; theRadius = 0; switch (borderRadius.GetUnit() ) { case eStyleUnit_Inherit: break; case eStyleUnit_Percent: break; case eStyleUnit_Coord: theRadius = borderRadius.GetCoordValue(); break; } // rounded version of the border if (theRadius > 0){ PaintRoundedBackground(aPresContext,aRenderingContext,aForFrame,aDirtyRect,aBorderArea,aColor,aSpacing,aDX,aDY,theRadius); return; } aRenderingContext.SetColor(aColor.mBackgroundColor); aRenderingContext.FillRect(aBorderArea); } } } static void AntiAliasPoly(nsIRenderingContext& aRenderingContext,nsPoint aPoints[],PRInt32 aStartIndex,PRInt32 curIndex,PRInt8 aSide,PRInt8 aCorner); /** --------------------------------------------------- * See documentation in nsCSSRendering.h * @update 3/26/99 dwc */ void nsCSSRendering::PaintRoundedBackground(nsIPresContext& aPresContext, nsIRenderingContext& aRenderingContext, nsIFrame* aForFrame, const nsRect& aDirtyRect, const nsRect& aBorderArea, const nsStyleColor& aColor, const nsStyleSpacing& aSpacing, nscoord aDX, nscoord aDY, PRInt16 aTheRadius) { RoundedRect outerPath; QBCurve cr1,cr2,cr3,cr4; QBCurve UL,UR,LL,LR; PRInt32 curIndex,c1Index; nsPoint anc1,con,anc2; nsPoint thePath[MAXPATHSIZE]; nsPoint polyPath[MAXPOLYPATHSIZE]; PRInt16 np; nsMargin border; nsStyleCoord borderRadius; aRenderingContext.SetColor(aColor.mBackgroundColor); // set the rounded rect up, and let'er rip outerPath.Set(aBorderArea.x,aBorderArea.y,aBorderArea.width,aBorderArea.height,aTheRadius); outerPath.GetRoundedBorders(UL,UR,LL,LR); // BUILD THE ENTIRE OUTSIDE PATH // TOP LINE ---------------------------------------------------------------- UL.MidPointDivide(&cr1,&cr2); UR.MidPointDivide(&cr3,&cr4); np=0; thePath[np++].MoveTo(cr2.mAnc1.x,cr2.mAnc1.y); thePath[np++].MoveTo(cr2.mCon.x, cr2.mCon.y); thePath[np++].MoveTo(cr2.mAnc2.x, cr2.mAnc2.y); thePath[np++].MoveTo(cr3.mAnc1.x, cr3.mAnc1.y); thePath[np++].MoveTo(cr3.mCon.x, cr3.mCon.y); thePath[np++].MoveTo(cr3.mAnc2.x, cr3.mAnc2.y); polyPath[0].x = thePath[0].x; polyPath[0].y = thePath[0].y; curIndex = 1; GetPath(thePath,polyPath,&curIndex,eOutside,c1Index); // RIGHT LINE ---------------------------------------------------------------- LR.MidPointDivide(&cr2,&cr3); np=0; thePath[np++].MoveTo(cr4.mAnc1.x,cr4.mAnc1.y); thePath[np++].MoveTo(cr4.mCon.x, cr4.mCon.y); thePath[np++].MoveTo(cr4.mAnc2.x, cr4.mAnc2.y); thePath[np++].MoveTo(cr2.mAnc1.x, cr2.mAnc1.y); thePath[np++].MoveTo(cr2.mCon.x, cr2.mCon.y); thePath[np++].MoveTo(cr2.mAnc2.x, cr2.mAnc2.y); GetPath(thePath,polyPath,&curIndex,eOutside,c1Index); // BOTTOM LINE ---------------------------------------------------------------- LL.MidPointDivide(&cr2,&cr4); np=0; thePath[np++].MoveTo(cr3.mAnc1.x,cr3.mAnc1.y); thePath[np++].MoveTo(cr3.mCon.x, cr3.mCon.y); thePath[np++].MoveTo(cr3.mAnc2.x, cr3.mAnc2.y); thePath[np++].MoveTo(cr2.mAnc1.x, cr2.mAnc1.y); thePath[np++].MoveTo(cr2.mCon.x, cr2.mCon.y); thePath[np++].MoveTo(cr2.mAnc2.x, cr2.mAnc2.y); GetPath(thePath,polyPath,&curIndex,eOutside,c1Index); // LEFT LINE ---------------------------------------------------------------- np=0; thePath[np++].MoveTo(cr4.mAnc1.x,cr4.mAnc1.y); thePath[np++].MoveTo(cr4.mCon.x, cr4.mCon.y); thePath[np++].MoveTo(cr4.mAnc2.x, cr4.mAnc2.y); thePath[np++].MoveTo(cr1.mAnc1.x, cr1.mAnc1.y); thePath[np++].MoveTo(cr1.mCon.x, cr1.mCon.y); thePath[np++].MoveTo(cr1.mAnc2.x, cr1.mAnc2.y); GetPath(thePath,polyPath,&curIndex,eOutside,c1Index); aRenderingContext.FillPolygon(polyPath,curIndex); } /** --------------------------------------------------- * See documentation in nsCSSRendering.h * @update 3/26/99 dwc */ void nsCSSRendering::PaintRoundedBorder(nsIPresContext& aPresContext, nsIRenderingContext& aRenderingContext, nsIFrame* aForFrame, const nsRect& aDirtyRect, const nsRect& aBorderArea, const nsStyleSpacing& aBorderStyle, nsIStyleContext* aStyleContext, PRIntn aSkipSides, PRInt16 aBorderRadius, nsRect* aGap) { RoundedRect outerPath; QBCurve UL,LL,UR,LR; QBCurve IUL,ILL,IUR,ILR; QBCurve cr1,cr2,cr3,cr4; QBCurve Icr1,Icr2,Icr3,Icr4; nsPoint anc1,con,anc2; nsPoint thePath[MAXPATHSIZE]; PRInt16 np; nsMargin border; nscoord twipsPerPixel; float p2t; aBorderStyle.CalcBorderFor(aForFrame, border); if ((0 == border.left) && (0 == border.right) && (0 == border.top) && (0 == border.bottom)) { return; } // needed for our border thickness aPresContext.GetPixelsToTwips(&p2t); twipsPerPixel = (nscoord) p2t; // Base our thickness check on the segment being less than a pixel and 1/2 twipsPerPixel += twipsPerPixel >> 2; // set the rounded rect up, and let'er rip outerPath.Set(aBorderArea.x,aBorderArea.y,aBorderArea.width,aBorderArea.height,aBorderRadius); outerPath.GetRoundedBorders(UL,UR,LL,LR); outerPath.CalcInsetCurves(IUL,IUR,ILL,ILR,border); // TOP LINE -- construct and divide the curves first, then put together our top and bottom paths if(0==border.top) return; // construct and divide the curves needed UL.MidPointDivide(&cr1,&cr2); UR.MidPointDivide(&cr3,&cr4); IUL.MidPointDivide(&Icr1,&Icr2); IUR.MidPointDivide(&Icr3,&Icr4); // the outer part of the path np=0; thePath[np++].MoveTo(cr2.mAnc1.x,cr2.mAnc1.y); thePath[np++].MoveTo(cr2.mCon.x, cr2.mCon.y); thePath[np++].MoveTo(cr2.mAnc2.x, cr2.mAnc2.y); thePath[np++].MoveTo(cr3.mAnc1.x, cr3.mAnc1.y); thePath[np++].MoveTo(cr3.mCon.x, cr3.mCon.y); thePath[np++].MoveTo(cr3.mAnc2.x, cr3.mAnc2.y); thePath[np++].MoveTo(Icr3.mAnc2.x,Icr3.mAnc2.y); thePath[np++].MoveTo(Icr3.mCon.x, Icr3.mCon.y); thePath[np++].MoveTo(Icr3.mAnc1.x, Icr3.mAnc1.y); thePath[np++].MoveTo(Icr2.mAnc2.x, Icr2.mAnc2.y); thePath[np++].MoveTo(Icr2.mCon.x, Icr2.mCon.y); thePath[np++].MoveTo(Icr2.mAnc1.x, Icr2.mAnc1.y); RenderSide(thePath,aRenderingContext,aBorderStyle,aStyleContext,NS_SIDE_TOP,border,twipsPerPixel); // RIGHT LINE ---------------------------------------------------------------- if(0==border.right) return; LR.MidPointDivide(&cr2,&cr3); ILR.MidPointDivide(&Icr2,&Icr3); np=0; thePath[np++].MoveTo(cr4.mAnc1.x,cr4.mAnc1.y); thePath[np++].MoveTo(cr4.mCon.x, cr4.mCon.y); thePath[np++].MoveTo(cr4.mAnc2.x,cr4.mAnc2.y); thePath[np++].MoveTo(cr2.mAnc1.x,cr2.mAnc1.y); thePath[np++].MoveTo(cr2.mCon.x, cr2.mCon.y); thePath[np++].MoveTo(cr2.mAnc2.x,cr2.mAnc2.y); thePath[np++].MoveTo(Icr2.mAnc2.x,Icr2.mAnc2.y); thePath[np++].MoveTo(Icr2.mCon.x, Icr2.mCon.y); thePath[np++].MoveTo(Icr2.mAnc1.x,Icr2.mAnc1.y); thePath[np++].MoveTo(Icr4.mAnc2.x,Icr4.mAnc2.y); thePath[np++].MoveTo(Icr4.mCon.x, Icr4.mCon.y); thePath[np++].MoveTo(Icr4.mAnc1.x,Icr4.mAnc1.y); RenderSide(thePath,aRenderingContext,aBorderStyle,aStyleContext,NS_SIDE_RIGHT,border,twipsPerPixel); // bottom line ---------------------------------------------------------------- if(0==border.bottom) return; LL.MidPointDivide(&cr2,&cr4); ILL.MidPointDivide(&Icr2,&Icr4); np=0; thePath[np++].MoveTo(cr3.mAnc1.x,cr3.mAnc1.y); thePath[np++].MoveTo(cr3.mCon.x, cr3.mCon.y); thePath[np++].MoveTo(cr3.mAnc2.x, cr3.mAnc2.y); thePath[np++].MoveTo(cr2.mAnc1.x, cr2.mAnc1.y); thePath[np++].MoveTo(cr2.mCon.x, cr2.mCon.y); thePath[np++].MoveTo(cr2.mAnc2.x, cr2.mAnc2.y); thePath[np++].MoveTo(Icr2.mAnc2.x,Icr2.mAnc2.y); thePath[np++].MoveTo(Icr2.mCon.x, Icr2.mCon.y); thePath[np++].MoveTo(Icr2.mAnc1.x, Icr2.mAnc1.y); thePath[np++].MoveTo(Icr3.mAnc2.x, Icr3.mAnc2.y); thePath[np++].MoveTo(Icr3.mCon.x, Icr3.mCon.y); thePath[np++].MoveTo(Icr3.mAnc1.x, Icr3.mAnc1.y); RenderSide(thePath,aRenderingContext,aBorderStyle,aStyleContext,NS_SIDE_BOTTOM,border,twipsPerPixel); // left line ---------------------------------------------------------------- if(0==border.left) return; np=0; thePath[np++].MoveTo(cr4.mAnc1.x,cr4.mAnc1.y); thePath[np++].MoveTo(cr4.mCon.x, cr4.mCon.y); thePath[np++].MoveTo(cr4.mAnc2.x, cr4.mAnc2.y); thePath[np++].MoveTo(cr1.mAnc1.x, cr1.mAnc1.y); thePath[np++].MoveTo(cr1.mCon.x, cr1.mCon.y); thePath[np++].MoveTo(cr1.mAnc2.x, cr1.mAnc2.y); thePath[np++].MoveTo(Icr1.mAnc2.x,Icr1.mAnc2.y); thePath[np++].MoveTo(Icr1.mCon.x, Icr1.mCon.y); thePath[np++].MoveTo(Icr1.mAnc1.x, Icr1.mAnc1.y); thePath[np++].MoveTo(Icr4.mAnc2.x, Icr4.mAnc2.y); thePath[np++].MoveTo(Icr4.mCon.x, Icr4.mCon.y); thePath[np++].MoveTo(Icr4.mAnc1.x, Icr4.mAnc1.y); RenderSide(thePath,aRenderingContext,aBorderStyle,aStyleContext,NS_SIDE_LEFT,border,twipsPerPixel); } /** --------------------------------------------------- * See documentation in nsCSSRendering.h * @update 3/26/99 dwc */ void nsCSSRendering::RenderSide(nsPoint aPoints[],nsIRenderingContext& aRenderingContext, const nsStyleSpacing& aBorderStyle,nsIStyleContext* aStyleContext, PRUint8 aSide,nsMargin &aBorThick,nscoord aTwipsPerPixel) { QBCurve thecurve,cr1,cr2,cr3,cr4; nscolor sideColor; nsPoint thePath[MAXPATHSIZE]; nsPoint polypath[MAXPOLYPATHSIZE]; PRInt32 curIndex,c1Index,c2Index,junk; PRInt8 border_Style; PRInt16 r,g,b; // set the style information aBorderStyle.GetBorderColor(aSide,sideColor); aRenderingContext.SetColor ( sideColor ); // if the border is thin, just draw it if (aBorThick.topmBackgroundColor,sideColor, PR_TRUE)); } case NS_STYLE_BORDER_STYLE_SOLID: polypath[0].x = aPoints[0].x; polypath[0].y = aPoints[0].y; curIndex = 1; GetPath(aPoints,polypath,&curIndex,eOutside,c1Index); c2Index = curIndex; polypath[curIndex].x = aPoints[6].x; polypath[curIndex].y = aPoints[6].y; curIndex++; GetPath(aPoints,polypath,&curIndex,eInside,junk); polypath[curIndex].x = aPoints[0].x; polypath[curIndex].y = aPoints[0].y; curIndex++; aRenderingContext.FillPolygon(polypath,curIndex); // anti-alias this r = NS_GET_R(sideColor); g = NS_GET_G(sideColor); b = NS_GET_B(sideColor); r += (255-r)>>1; g += (255-g)>>1; b += (255-b)>>1; sideColor = NS_RGB(r,g,b); aRenderingContext.SetColor(sideColor); AntiAliasPoly(aRenderingContext,polypath,0,c1Index,aSide,1); AntiAliasPoly(aRenderingContext,polypath,c1Index+1,c2Index,aSide,2); break; case NS_STYLE_BORDER_STYLE_DOUBLE: polypath[0].x = aPoints[0].x; polypath[0].y = aPoints[0].y; curIndex = 1; GetPath(aPoints,polypath,&curIndex,eOutside,c1Index); aRenderingContext.DrawPolyline(polypath,curIndex); polypath[0].x = aPoints[6].x; polypath[0].y = aPoints[6].y; curIndex = 1; GetPath(aPoints,polypath,&curIndex,eInside,c1Index); aRenderingContext.DrawPolyline(polypath,curIndex); break; case NS_STYLE_BORDER_STYLE_NONE: case NS_STYLE_BORDER_STYLE_BLANK: break; case NS_STYLE_BORDER_STYLE_DOTTED: case NS_STYLE_BORDER_STYLE_DASHED: break; case NS_STYLE_BORDER_STYLE_RIDGE: case NS_STYLE_BORDER_STYLE_GROOVE: { const nsStyleColor* bgColor = nsStyleUtil::FindNonTransparentBackground(aStyleContext); aBorderStyle.GetBorderColor(aSide,sideColor); aRenderingContext.SetColor ( MakeBevelColor (aSide, border_Style, bgColor->mBackgroundColor,sideColor, PR_TRUE)); polypath[0].x = aPoints[0].x; polypath[0].y = aPoints[0].y; curIndex = 1; GetPath(aPoints,polypath,&curIndex,eOutside,c1Index); polypath[curIndex].x = (aPoints[5].x + aPoints[6].x)>>1; polypath[curIndex].y = (aPoints[5].y + aPoints[6].y)>>1; curIndex++; GetPath(aPoints,polypath,&curIndex,eCalcRev,c1Index,.5); polypath[curIndex].x = aPoints[0].x; polypath[curIndex].y = aPoints[0].y; curIndex++; aRenderingContext.FillPolygon(polypath,curIndex); aRenderingContext.SetColor ( MakeBevelColor (aSide, ((border_Style == NS_STYLE_BORDER_STYLE_RIDGE) ? NS_STYLE_BORDER_STYLE_GROOVE : NS_STYLE_BORDER_STYLE_RIDGE), bgColor->mBackgroundColor,sideColor, PR_TRUE)); polypath[0].x = (aPoints[0].x + aPoints[11].x)>>1; polypath[0].y = (aPoints[0].y + aPoints[11].y)>>1; curIndex = 1; GetPath(aPoints,polypath,&curIndex,eCalc,c1Index,.5); polypath[curIndex].x = aPoints[6].x ; polypath[curIndex].y = aPoints[6].y; curIndex++; GetPath(aPoints,polypath,&curIndex,eInside,c1Index); polypath[curIndex].x = aPoints[0].x; polypath[curIndex].y = aPoints[0].y; curIndex++; aRenderingContext.FillPolygon(polypath,curIndex); } break; default: break; } } } /** --------------------------------------------------- * AntiAlias the polygon * @update 4/13/99 dwc */ static void AntiAliasPoly(nsIRenderingContext& aRenderingContext,nsPoint aPoints[],PRInt32 aStartIndex,PRInt32 aCurIndex,PRInt8 aSide,PRInt8 aCorner) { PRInt32 i; PRInt32 x0,y0,x1,y1,offsetx,offsety; offsetx = offsety = 0; switch (aSide) { case NS_SIDE_TOP: if( aCorner == 1) { offsetx = 0; }else{ offsetx = -10; } break; case NS_SIDE_LEFT: if( aCorner == 1) { offsetx = 0; }else{ offsetx = 0; } break; case NS_SIDE_RIGHT: if( aCorner == 1) { offsetx = -10; }else{ offsetx = -10; } break; case NS_SIDE_BOTTOM: if( aCorner == 1) { offsety = -10; }else{ offsety = -10; } break; } for(i=aStartIndex+1;i nRight){ nLeft = nRight; } if(nTop > nBottom){ nTop = nBottom; } // set the passed in curves to the rounded borders of the rectangle aULCurve.SetPoints(nLeft,mInnerTop,nLeft,nTop,mInnerLeft,nTop); aURCurve.SetPoints(mInnerRight,nTop,nRight,nTop,nRight,mInnerTop); aLRCurve.SetPoints(nRight,mInnerBottom,nRight,nBottom,mInnerRight,nBottom); aLLCurve.SetPoints(mInnerLeft,nBottom,nLeft,nBottom,nLeft,mInnerBottom); } /** --------------------------------------------------- * See documentation in nsCSSRendering.h * @update 4/13/99 dwc */ void RoundedRect::Set(nscoord aLeft,nscoord aTop,PRInt32 aWidth,PRInt32 aHeight,PRInt16 aRadius) { PRInt32 width; width = aLeft+aWidth; if( aRadius > (aWidth>>1) ) mRoundness = aWidth>>1; else mRoundness = aRadius; if( mRoundness > (aHeight>>1) ) mRoundness = aHeight>>1; // important coordinates that the path hits mOuterLeft = aLeft; mOuterRight = aLeft + aWidth; mOuterTop = aTop; mOuterBottom = aTop+aHeight; mInnerLeft = mOuterLeft + mRoundness; mInnerRight = mOuterRight - mRoundness; mInnerTop = mOuterTop + mRoundness; mInnerBottom = mOuterBottom - mRoundness; } /** --------------------------------------------------- * See documentation in nsCSSRendering.h * @update 4/13/99 dwc */ void RoundedRect::GetRoundedBorders(QBCurve &aULCurve,QBCurve &aURCurve,QBCurve &aLLCurve,QBCurve &aLRCurve) { // set the passed in curves to the rounded borders of the rectangle aULCurve.SetPoints(mOuterLeft,mInnerTop,mOuterLeft,mOuterTop,mInnerLeft,mOuterTop); aURCurve.SetPoints(mInnerRight,mOuterTop,mOuterRight,mOuterTop,mOuterRight,mInnerTop); aLRCurve.SetPoints(mOuterRight,mInnerBottom,mOuterRight,mOuterBottom,mInnerRight,mOuterBottom); aLLCurve.SetPoints(mInnerLeft,mOuterBottom,mOuterLeft,mOuterBottom,mOuterLeft,mInnerBottom); } /** --------------------------------------------------- * Given a qbezier path, convert it into a polygon path * @update 3/26/99 dwc * @param aPoints -- an array of points to use for the path * @param aPolyPath -- an array of points containing the flattened polygon to use * @param aCurIndex -- the index that points to the last element of the array * @param aPathType -- what kind of path that should be returned * @param aFrac -- the inset amount for a eCalc type path */ static void GetPath(nsPoint aPoints[],nsPoint aPolyPath[],PRInt32 *aCurIndex,ePathTypes aPathType,PRInt32 &aC1Index,float aFrac) { QBCurve thecurve; switch (aPathType) { case eOutside: thecurve.SetPoints(aPoints[0].x,aPoints[0].y,aPoints[1].x,aPoints[1].y,aPoints[2].x,aPoints[2].y); thecurve.SubDivide(nsnull,aPolyPath,aCurIndex); aC1Index = *aCurIndex; aPolyPath[*aCurIndex].x = aPoints[3].x; aPolyPath[*aCurIndex].y = aPoints[3].y; (*aCurIndex)++; thecurve.SetPoints(aPoints[3].x,aPoints[3].y,aPoints[4].x,aPoints[4].y,aPoints[5].x,aPoints[5].y); thecurve.SubDivide(nsnull,aPolyPath,aCurIndex); break; case eInside: thecurve.SetPoints(aPoints[6].x,aPoints[6].y,aPoints[7].x,aPoints[7].y,aPoints[8].x,aPoints[8].y); thecurve.SubDivide(nsnull,aPolyPath,aCurIndex); aPolyPath[*aCurIndex].x = aPoints[9].x; aPolyPath[*aCurIndex].y = aPoints[9].y; (*aCurIndex)++; thecurve.SetPoints(aPoints[9].x,aPoints[9].y,aPoints[10].x,aPoints[10].y,aPoints[11].x,aPoints[11].y); thecurve.SubDivide(nsnull,aPolyPath,aCurIndex); break; case eCalc: thecurve.SetPoints( (aPoints[0].x+aPoints[11].x)>>1,(aPoints[0].y+aPoints[11].y)>>1, (aPoints[1].x+aPoints[10].x)>>1,(aPoints[1].y+aPoints[10].y)>>1, (aPoints[2].x+aPoints[9].x)>>1,(aPoints[2].y+aPoints[9].y)>>1); thecurve.SubDivide(nsnull,aPolyPath,aCurIndex); aPolyPath[*aCurIndex].x = (aPoints[3].x+aPoints[8].x)>>1; aPolyPath[*aCurIndex].y = (aPoints[3].y+aPoints[8].y)>>1; (*aCurIndex)++; thecurve.SetPoints( (aPoints[3].x+aPoints[8].x)>>1,(aPoints[3].y+aPoints[8].y)>>1, (aPoints[4].x+aPoints[7].x)>>1,(aPoints[4].y+aPoints[7].y)>>1, (aPoints[5].x+aPoints[6].x)>>1,(aPoints[5].y+aPoints[6].y)>>1); thecurve.SubDivide(nsnull,aPolyPath,aCurIndex); break; case eCalcRev: thecurve.SetPoints( (aPoints[5].x+aPoints[6].x)>>1,(aPoints[5].y+aPoints[6].y)>>1, (aPoints[4].x+aPoints[7].x)>>1,(aPoints[4].y+aPoints[7].y)>>1, (aPoints[3].x+aPoints[8].x)>>1,(aPoints[3].y+aPoints[8].y)>>1); thecurve.SubDivide(nsnull,aPolyPath,aCurIndex); aPolyPath[*aCurIndex].x = (aPoints[2].x+aPoints[9].x)>>1; aPolyPath[*aCurIndex].y = (aPoints[2].y+aPoints[9].y)>>1; (*aCurIndex)++; thecurve.SetPoints( (aPoints[2].x+aPoints[9].x)>>1,(aPoints[2].y+aPoints[9].y)>>1, (aPoints[1].x+aPoints[10].x)>>1,(aPoints[1].y+aPoints[10].y)>>1, (aPoints[0].x+aPoints[11].x)>>1,(aPoints[0].y+aPoints[11].y)>>1); thecurve.SubDivide(nsnull,aPolyPath,aCurIndex); break; } } /** --------------------------------------------------- * See documentation in nsCSSRendering.h * @update 4/13/99 dwc */ void QBCurve::SubDivide(nsIRenderingContext *aRenderingContext,nsPoint aPointArray[],PRInt32 *aCurIndex) { QBCurve curve1,curve2; PRInt16 fx,fy,smag; // divide the curve into 2 pieces MidPointDivide(&curve1,&curve2); fx = (PRInt16)abs(curve1.mAnc2.x - this->mCon.x); fy = (PRInt16)abs(curve1.mAnc2.y - this->mCon.y); smag = fx+fy-(PR_MIN(fx,fy)>>1); //smag = fx*fx + fy*fy; if (smag>2){ // split the curve again curve1.SubDivide(aRenderingContext,aPointArray,aCurIndex); curve2.SubDivide(aRenderingContext,aPointArray,aCurIndex); }else{ if(aPointArray ) { // save the points for further processing aPointArray[*aCurIndex].x = curve1.mAnc2.x; aPointArray[*aCurIndex].y = curve1.mAnc2.y; (*aCurIndex)++; aPointArray[*aCurIndex].x = curve2.mAnc2.x; aPointArray[*aCurIndex].y = curve2.mAnc2.y; (*aCurIndex)++; }else{ // draw the curve aRenderingContext->DrawLine(curve1.mAnc1.x,curve1.mAnc1.y,curve1.mAnc2.x,curve1.mAnc2.y); aRenderingContext->DrawLine(curve1.mAnc2.x,curve1.mAnc2.y,curve2.mAnc2.x,curve2.mAnc2.y); } } } /** --------------------------------------------------- * See documentation in nsCSSRendering.h * @update 4/13/99 dwc */ void QBCurve::MidPointDivide(QBCurve *A,QBCurve *B) { nsPoint a1,control1,control2; // do the math (averages inline) control1.x = (PRInt32)((mAnc1.x + mCon.x)>>1); control1.y = (PRInt32)((mAnc1.y + mCon.y)>>1); control2.x = (PRInt32)((mAnc2.x + mCon.x)>>1); control2.y = (PRInt32)((mAnc2.y + mCon.y)>>1); a1.x = (PRInt32)((control1.x + control2.x)>>1); a1.y = (PRInt32)((control1.y + control2.y)>>1); // put the math into our 2 new curves A->mAnc1 = this->mAnc1; A->mCon = control1; A->mAnc2 = a1; B->mAnc1 = a1; B->mCon = control2; B->mAnc2 = this->mAnc2; }