/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this file, * You can obtain one at http://mozilla.org/MPL/2.0/. */ #include #include #include #include #include #include #include #include #include "ElfLoader.h" #include "CustomElf.h" #include "Mappable.h" #include "Logging.h" #include #if defined(ANDROID) #include #include #if __ANDROID_API__ < 8 /* Android API < 8 doesn't provide sigaltstack */ extern "C" { inline int sigaltstack(const stack_t *ss, stack_t *oss) { return syscall(__NR_sigaltstack, ss, oss); } } /* extern "C" */ #endif /* __ANDROID_API__ */ #endif /* ANDROID */ #ifdef __ARM_EABI__ extern "C" const void * __gnu_Unwind_Find_exidx(void *pc, int *pcount) __attribute__((weak)); #endif using namespace mozilla; /** * dlfcn.h replacements functions */ void * __wrap_dlopen(const char *path, int flags) { RefPtr handle = ElfLoader::Singleton.Load(path, flags); if (handle) handle->AddDirectRef(); return handle; } const char * __wrap_dlerror(void) { const char *error = ElfLoader::Singleton.lastError; ElfLoader::Singleton.lastError = nullptr; return error; } void * __wrap_dlsym(void *handle, const char *symbol) { if (!handle) { ElfLoader::Singleton.lastError = "dlsym(NULL, sym) unsupported"; return nullptr; } if (handle != RTLD_DEFAULT && handle != RTLD_NEXT) { LibHandle *h = reinterpret_cast(handle); return h->GetSymbolPtr(symbol); } return dlsym(handle, symbol); } int __wrap_dlclose(void *handle) { if (!handle) { ElfLoader::Singleton.lastError = "No handle given to dlclose()"; return -1; } reinterpret_cast(handle)->ReleaseDirectRef(); return 0; } int __wrap_dladdr(void *addr, Dl_info *info) { RefPtr handle = ElfLoader::Singleton.GetHandleByPtr(addr); if (!handle) return 0; info->dli_fname = handle->GetPath(); return 1; } int __wrap_dl_iterate_phdr(dl_phdr_cb callback, void *data) { if (!ElfLoader::Singleton.dbg) return -1; for (ElfLoader::DebuggerHelper::iterator it = ElfLoader::Singleton.dbg.begin(); it < ElfLoader::Singleton.dbg.end(); ++it) { dl_phdr_info info; info.dlpi_addr = reinterpret_cast(it->l_addr); info.dlpi_name = it->l_name; info.dlpi_phdr = nullptr; info.dlpi_phnum = 0; // Assuming l_addr points to Elf headers (in most cases, this is true), // get the Phdr location from there. uint8_t mapped; // If the page is not mapped, mincore returns an error. if (!mincore(const_cast(it->l_addr), PageSize(), &mapped)) { const Elf::Ehdr *ehdr = Elf::Ehdr::validate(it->l_addr); if (ehdr) { info.dlpi_phdr = reinterpret_cast( reinterpret_cast(ehdr) + ehdr->e_phoff); info.dlpi_phnum = ehdr->e_phnum; } } int ret = callback(&info, sizeof(dl_phdr_info), data); if (ret) return ret; } return 0; } #ifdef __ARM_EABI__ const void * __wrap___gnu_Unwind_Find_exidx(void *pc, int *pcount) { RefPtr handle = ElfLoader::Singleton.GetHandleByPtr(pc); if (handle) return handle->FindExidx(pcount); if (__gnu_Unwind_Find_exidx) return __gnu_Unwind_Find_exidx(pc, pcount); *pcount = 0; return nullptr; } #endif /** * faulty.lib public API */ MFBT_API size_t __dl_get_mappable_length(void *handle) { if (!handle) return 0; return reinterpret_cast(handle)->GetMappableLength(); } MFBT_API void * __dl_mmap(void *handle, void *addr, size_t length, off_t offset) { if (!handle) return nullptr; return reinterpret_cast(handle)->MappableMMap(addr, length, offset); } MFBT_API void __dl_munmap(void *handle, void *addr, size_t length) { if (!handle) return; return reinterpret_cast(handle)->MappableMUnmap(addr, length); } MFBT_API bool IsSignalHandlingBroken() { return ElfLoader::Singleton.isSignalHandlingBroken(); } namespace { /** * Returns the part after the last '/' for the given path */ const char * LeafName(const char *path) { const char *lastSlash = strrchr(path, '/'); if (lastSlash) return lastSlash + 1; return path; } } /* Anonymous namespace */ /** * LibHandle */ LibHandle::~LibHandle() { free(path); } const char * LibHandle::GetName() const { return path ? LeafName(path) : nullptr; } size_t LibHandle::GetMappableLength() const { if (!mappable) mappable = GetMappable(); if (!mappable) return 0; return mappable->GetLength(); } void * LibHandle::MappableMMap(void *addr, size_t length, off_t offset) const { if (!mappable) mappable = GetMappable(); if (!mappable) return MAP_FAILED; void* mapped = mappable->mmap(addr, length, PROT_READ, MAP_PRIVATE, offset); if (mapped != MAP_FAILED) { /* Ensure the availability of all pages within the mapping */ for (size_t off = 0; off < length; off += PageSize()) { mappable->ensure(reinterpret_cast(mapped) + off); } } return mapped; } void LibHandle::MappableMUnmap(void *addr, size_t length) const { if (mappable) mappable->munmap(addr, length); } /** * SystemElf */ TemporaryRef SystemElf::Load(const char *path, int flags) { /* The Android linker returns a handle when the file name matches an * already loaded library, even when the full path doesn't exist */ if (path && path[0] == '/' && (access(path, F_OK) == -1)){ DEBUG_LOG("dlopen(\"%s\", 0x%x) = %p", path, flags, (void *)nullptr); return nullptr; } void *handle = dlopen(path, flags); DEBUG_LOG("dlopen(\"%s\", 0x%x) = %p", path, flags, handle); ElfLoader::Singleton.lastError = dlerror(); if (handle) { SystemElf *elf = new SystemElf(path, handle); ElfLoader::Singleton.Register(elf); return elf; } return nullptr; } SystemElf::~SystemElf() { if (!dlhandle) return; DEBUG_LOG("dlclose(%p [\"%s\"])", dlhandle, GetPath()); dlclose(dlhandle); ElfLoader::Singleton.lastError = dlerror(); ElfLoader::Singleton.Forget(this); } void * SystemElf::GetSymbolPtr(const char *symbol) const { void *sym = dlsym(dlhandle, symbol); DEBUG_LOG("dlsym(%p [\"%s\"], \"%s\") = %p", dlhandle, GetPath(), symbol, sym); ElfLoader::Singleton.lastError = dlerror(); return sym; } Mappable * SystemElf::GetMappable() const { const char *path = GetPath(); if (!path) return nullptr; #ifdef ANDROID /* On Android, if we don't have the full path, try in /system/lib */ const char *name = LeafName(path); std::string systemPath; if (name == path) { systemPath = "/system/lib/"; systemPath += path; path = systemPath.c_str(); } #endif return MappableFile::Create(path); } #ifdef __ARM_EABI__ const void * SystemElf::FindExidx(int *pcount) const { /* TODO: properly implement when ElfLoader::GetHandleByPtr does return SystemElf handles */ *pcount = 0; return nullptr; } #endif /** * ElfLoader */ /* Unique ElfLoader instance */ ElfLoader ElfLoader::Singleton; TemporaryRef ElfLoader::Load(const char *path, int flags, LibHandle *parent) { /* Ensure logging is initialized or refresh if environment changed. */ Logging::Init(); RefPtr handle; /* Handle dlopen(nullptr) directly. */ if (!path) { handle = SystemElf::Load(nullptr, flags); return handle; } /* TODO: Handle relative paths correctly */ const char *name = LeafName(path); /* Search the list of handles we already have for a match. When the given * path is not absolute, compare file names, otherwise compare full paths. */ if (name == path) { for (LibHandleList::iterator it = handles.begin(); it < handles.end(); ++it) if ((*it)->GetName() && (strcmp((*it)->GetName(), name) == 0)) return *it; } else { for (LibHandleList::iterator it = handles.begin(); it < handles.end(); ++it) if ((*it)->GetPath() && (strcmp((*it)->GetPath(), path) == 0)) return *it; } char *abs_path = nullptr; const char *requested_path = path; /* When the path is not absolute and the library is being loaded for * another, first try to load the library from the directory containing * that parent library. */ if ((name == path) && parent) { const char *parentPath = parent->GetPath(); abs_path = new char[strlen(parentPath) + strlen(path)]; strcpy(abs_path, parentPath); char *slash = strrchr(abs_path, '/'); strcpy(slash + 1, path); path = abs_path; } Mappable *mappable = GetMappableFromPath(path); /* Try loading with the custom linker if we have a Mappable */ if (mappable) handle = CustomElf::Load(mappable, path, flags); /* Try loading with the system linker if everything above failed */ if (!handle) handle = SystemElf::Load(path, flags); /* If we didn't have an absolute path and haven't been able to load * a library yet, try in the system search path */ if (!handle && abs_path) handle = SystemElf::Load(name, flags); delete [] abs_path; DEBUG_LOG("ElfLoader::Load(\"%s\", 0x%x, %p [\"%s\"]) = %p", requested_path, flags, reinterpret_cast(parent), parent ? parent->GetPath() : "", static_cast(handle)); return handle; } mozilla::TemporaryRef ElfLoader::GetHandleByPtr(void *addr) { /* Scan the list of handles we already have for a match */ for (LibHandleList::iterator it = handles.begin(); it < handles.end(); ++it) { if ((*it)->Contains(addr)) return *it; } return nullptr; } Mappable * ElfLoader::GetMappableFromPath(const char *path) { const char *name = LeafName(path); Mappable *mappable = nullptr; RefPtr zip; const char *subpath; if ((subpath = strchr(path, '!'))) { char *zip_path = strndup(path, subpath - path); while (*(++subpath) == '/') { } zip = ZipCollection::GetZip(zip_path); Zip::Stream s; if (zip && zip->GetStream(subpath, &s)) { /* When the MOZ_LINKER_EXTRACT environment variable is set to "1", * compressed libraries are going to be (temporarily) extracted as * files, in the directory pointed by the MOZ_LINKER_CACHE * environment variable. */ const char *extract = getenv("MOZ_LINKER_EXTRACT"); if (extract && !strncmp(extract, "1", 2 /* Including '\0' */)) mappable = MappableExtractFile::Create(name, zip, &s); if (!mappable) { if (s.GetType() == Zip::Stream::DEFLATE) { mappable = MappableDeflate::Create(name, zip, &s); } else if (s.GetType() == Zip::Stream::STORE) { mappable = MappableSeekableZStream::Create(name, zip, &s); } } } } /* If we couldn't load above, try with a MappableFile */ if (!mappable && !zip) mappable = MappableFile::Create(path); return mappable; } void ElfLoader::Register(LibHandle *handle) { handles.push_back(handle); if (dbg && !handle->IsSystemElf()) dbg.Add(static_cast(handle)); } void ElfLoader::Forget(LibHandle *handle) { /* Ensure logging is initialized or refresh if environment changed. */ Logging::Init(); LibHandleList::iterator it = std::find(handles.begin(), handles.end(), handle); if (it != handles.end()) { DEBUG_LOG("ElfLoader::Forget(%p [\"%s\"])", reinterpret_cast(handle), handle->GetPath()); if (dbg && !handle->IsSystemElf()) dbg.Remove(static_cast(handle)); handles.erase(it); } else { DEBUG_LOG("ElfLoader::Forget(%p [\"%s\"]): Handle not found", reinterpret_cast(handle), handle->GetPath()); } } ElfLoader::~ElfLoader() { LibHandleList list; /* Build up a list of all library handles with direct (external) references. * We actually skip system library handles because we want to keep at least * some of these open. Most notably, Mozilla codebase keeps a few libgnome * libraries deliberately open because of the mess that libORBit destruction * is. dlclose()ing these libraries actually leads to problems. */ for (LibHandleList::reverse_iterator it = handles.rbegin(); it < handles.rend(); ++it) { if ((*it)->DirectRefCount()) { if ((*it)->IsSystemElf()) { static_cast(*it)->Forget(); } else { list.push_back(*it); } } } /* Force release all external references to the handles collected above */ for (LibHandleList::iterator it = list.begin(); it < list.end(); ++it) { while ((*it)->ReleaseDirectRef()) { } } /* Remove the remaining system handles. */ if (handles.size()) { list = handles; for (LibHandleList::reverse_iterator it = list.rbegin(); it < list.rend(); ++it) { if ((*it)->IsSystemElf()) { DEBUG_LOG("ElfLoader::~ElfLoader(): Remaining handle for \"%s\" " "[%d direct refs, %d refs total]", (*it)->GetPath(), (*it)->DirectRefCount(), (*it)->refCount()); } else { DEBUG_LOG("ElfLoader::~ElfLoader(): Unexpected remaining handle for \"%s\" " "[%d direct refs, %d refs total]", (*it)->GetPath(), (*it)->DirectRefCount(), (*it)->refCount()); /* Not removing, since it could have references to other libraries, * destroying them as a side effect, and possibly leaving dangling * pointers in the handle list we're scanning */ } } } } void ElfLoader::stats(const char *when) { for (LibHandleList::iterator it = Singleton.handles.begin(); it < Singleton.handles.end(); ++it) if (!(*it)->IsSystemElf()) static_cast(*it)->stats(when); } #ifdef __ARM_EABI__ int ElfLoader::__wrap_aeabi_atexit(void *that, ElfLoader::Destructor destructor, void *dso_handle) { Singleton.destructors.push_back( DestructorCaller(destructor, that, dso_handle)); return 0; } #else int ElfLoader::__wrap_cxa_atexit(ElfLoader::Destructor destructor, void *that, void *dso_handle) { Singleton.destructors.push_back( DestructorCaller(destructor, that, dso_handle)); return 0; } #endif void ElfLoader::__wrap_cxa_finalize(void *dso_handle) { /* Call all destructors for the given DSO handle in reverse order they were * registered. */ std::vector::reverse_iterator it; for (it = Singleton.destructors.rbegin(); it < Singleton.destructors.rend(); ++it) { if (it->IsForHandle(dso_handle)) { it->Call(); } } } void ElfLoader::DestructorCaller::Call() { if (destructor) { DEBUG_LOG("ElfLoader::DestructorCaller::Call(%p, %p, %p)", FunctionPtr(destructor), object, dso_handle); destructor(object); destructor = nullptr; } } ElfLoader::DebuggerHelper::DebuggerHelper(): dbg(nullptr) { /* Find ELF auxiliary vectors. * * The kernel stores the following data on the stack when starting a * program: * argc * argv[0] (pointer into argv strings defined below) * argv[1] (likewise) * ... * argv[argc - 1] (likewise) * nullptr * envp[0] (pointer into environment strings defined below) * envp[1] (likewise) * ... * envp[n] (likewise) * nullptr * ... (more NULLs on some platforms such as Android 4.3) * auxv[0] (first ELF auxiliary vector) * auxv[1] (second ELF auxiliary vector) * ... * auxv[p] (last ELF auxiliary vector) * (AT_NULL, nullptr) * padding * argv strings, separated with '\0' * environment strings, separated with '\0' * nullptr * * What we are after are the auxv values defined by the following struct. */ struct AuxVector { Elf::Addr type; Elf::Addr value; }; /* Pointer to the environment variables list */ extern char **environ; /* The environment may have changed since the program started, in which * case the environ variables list isn't the list the kernel put on stack * anymore. But in this new list, variables that didn't change still point * to the strings the kernel put on stack. It is quite unlikely that two * modified environment variables point to two consecutive strings in memory, * so we assume that if two consecutive environment variables point to two * consecutive strings, we found strings the kernel put on stack. */ char **env; for (env = environ; *env; env++) if (*env + strlen(*env) + 1 == env[1]) break; if (!*env) return; /* Next, we scan the stack backwards to find a pointer to one of those * strings we found above, which will give us the location of the original * envp list. As we are looking for pointers, we need to look at 32-bits or * 64-bits aligned values, depening on the architecture. */ char **scan = reinterpret_cast( reinterpret_cast(*env) & ~(sizeof(void *) - 1)); while (*env != *scan) scan--; /* Finally, scan forward to find the last environment variable pointer and * thus the first auxiliary vector. */ while (*scan++); /* Some platforms have more NULLs here, so skip them if we encounter them */ while (!*scan) scan++; AuxVector *auxv = reinterpret_cast(scan); /* The two values of interest in the auxiliary vectors are AT_PHDR and * AT_PHNUM, which gives us the the location and size of the ELF program * headers. */ Array phdrs; char *base = nullptr; while (auxv->type) { if (auxv->type == AT_PHDR) { phdrs.Init(reinterpret_cast(auxv->value)); /* Assume the base address is the first byte of the same page */ base = reinterpret_cast(PageAlignedPtr(auxv->value)); } if (auxv->type == AT_PHNUM) phdrs.Init(auxv->value); auxv++; } if (!phdrs) { DEBUG_LOG("Couldn't find program headers"); return; } /* In some cases, the address for the program headers we get from the * auxiliary vectors is not mapped, because of the PT_LOAD segments * definitions in the program executable. Trying to map anonymous memory * with a hint giving the base address will return a different address * if something is mapped there, and the base address otherwise. */ MappedPtr mem(MemoryRange::mmap(base, PageSize(), PROT_NONE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0)); if (mem == base) { /* If program headers aren't mapped, try to map them */ int fd = open("/proc/self/exe", O_RDONLY); if (fd == -1) { DEBUG_LOG("Failed to open /proc/self/exe"); return; } mem.Assign(MemoryRange::mmap(base, PageSize(), PROT_READ, MAP_PRIVATE, fd, 0)); /* If we don't manage to map at the right address, just give up. */ if (mem != base) { DEBUG_LOG("Couldn't read program headers"); return; } } /* Sanity check: the first bytes at the base address should be an ELF * header. */ if (!Elf::Ehdr::validate(base)) { DEBUG_LOG("Couldn't find program base"); return; } /* Search for the program PT_DYNAMIC segment */ Array dyns; for (Array::iterator phdr = phdrs.begin(); phdr < phdrs.end(); ++phdr) { /* While the program headers are expected within the first mapped page of * the program executable, the executable PT_LOADs may actually make them * loaded at an address that is not the wanted base address of the * library. We thus need to adjust the base address, compensating for the * virtual address of the PT_LOAD segment corresponding to offset 0. */ if (phdr->p_type == PT_LOAD && phdr->p_offset == 0) base -= phdr->p_vaddr; if (phdr->p_type == PT_DYNAMIC) dyns.Init(base + phdr->p_vaddr, phdr->p_filesz); } if (!dyns) { DEBUG_LOG("Failed to find PT_DYNAMIC section in program"); return; } /* Search for the DT_DEBUG information */ for (Array::iterator dyn = dyns.begin(); dyn < dyns.end(); ++dyn) { if (dyn->d_tag == DT_DEBUG) { dbg = reinterpret_cast(dyn->d_un.d_ptr); break; } } DEBUG_LOG("DT_DEBUG points at %p", static_cast(dbg)); } /** * Helper class to ensure the given pointer is writable within the scope of * an instance. Permissions to the memory page where the pointer lies are * restored to their original value when the instance is destroyed. */ class EnsureWritable { public: template EnsureWritable(T *ptr, size_t length_ = sizeof(T)) { MOZ_ASSERT(length_ < PageSize()); prot = -1; page = MAP_FAILED; char *firstPage = PageAlignedPtr(reinterpret_cast(ptr)); char *lastPageEnd = PageAlignedEndPtr(reinterpret_cast(ptr) + length_); length = lastPageEnd - firstPage; uintptr_t start = reinterpret_cast(firstPage); uintptr_t end; prot = getProt(start, &end); if (prot == -1 || (start + length) > end) MOZ_CRASH(); if (prot & PROT_WRITE) return; page = firstPage; mprotect(page, length, prot | PROT_WRITE); } ~EnsureWritable() { if (page != MAP_FAILED) { mprotect(page, length, prot); } } private: int getProt(uintptr_t addr, uintptr_t *end) { /* The interesting part of the /proc/self/maps format looks like: * startAddr-endAddr rwxp */ int result = 0; AutoCloseFILE f(fopen("/proc/self/maps", "r")); while (f) { unsigned long long startAddr, endAddr; char perms[5]; if (fscanf(f, "%llx-%llx %4s %*1024[^\n] ", &startAddr, &endAddr, perms) != 3) return -1; if (addr < startAddr || addr >= endAddr) continue; if (perms[0] == 'r') result |= PROT_READ; else if (perms[0] != '-') return -1; if (perms[1] == 'w') result |= PROT_WRITE; else if (perms[1] != '-') return -1; if (perms[2] == 'x') result |= PROT_EXEC; else if (perms[2] != '-') return -1; *end = endAddr; return result; } return -1; } int prot; void *page; size_t length; }; /** * The system linker maintains a doubly linked list of library it loads * for use by the debugger. Unfortunately, it also uses the list pointers * in a lot of operations and adding our data in the list is likely to * trigger crashes when the linker tries to use data we don't provide or * that fall off the amount data we allocated. Fortunately, the linker only * traverses the list forward and accesses the head of the list from a * private pointer instead of using the value in the r_debug structure. * This means we can safely add members at the beginning of the list. * Unfortunately, gdb checks the coherency of l_prev values, so we have * to adjust the l_prev value for the first element the system linker * knows about. Fortunately, it doesn't use l_prev, and the first element * is not ever going to be released before our elements, since it is the * program executable, so the system linker should not be changing * r_debug::r_map. */ void ElfLoader::DebuggerHelper::Add(ElfLoader::link_map *map) { if (!dbg->r_brk) return; dbg->r_state = r_debug::RT_ADD; dbg->r_brk(); map->l_prev = nullptr; map->l_next = dbg->r_map; if (!firstAdded) { firstAdded = map; /* When adding a library for the first time, r_map points to data * handled by the system linker, and that data may be read-only */ EnsureWritable w(&dbg->r_map->l_prev); dbg->r_map->l_prev = map; } else dbg->r_map->l_prev = map; dbg->r_map = map; dbg->r_state = r_debug::RT_CONSISTENT; dbg->r_brk(); } void ElfLoader::DebuggerHelper::Remove(ElfLoader::link_map *map) { if (!dbg->r_brk) return; dbg->r_state = r_debug::RT_DELETE; dbg->r_brk(); if (dbg->r_map == map) dbg->r_map = map->l_next; else map->l_prev->l_next = map->l_next; if (map == firstAdded) { firstAdded = map->l_prev; /* When removing the first added library, its l_next is going to be * data handled by the system linker, and that data may be read-only */ EnsureWritable w(&map->l_next->l_prev); map->l_next->l_prev = map->l_prev; } else map->l_next->l_prev = map->l_prev; dbg->r_state = r_debug::RT_CONSISTENT; dbg->r_brk(); } #if defined(ANDROID) /* As some system libraries may be calling signal() or sigaction() to * set a SIGSEGV handler, effectively breaking MappableSeekableZStream, * or worse, restore our SIGSEGV handler with wrong flags (which using * signal() will do), we want to hook into the system's sigaction() to * replace it with our own wrapper instead, so that our handler is never * replaced. We used to only do that with libraries this linker loads, * but it turns out at least one system library does call signal() and * breaks us (libsc-a3xx.so on the Samsung Galaxy S4). * As libc's signal (bsd_signal/sysv_signal, really) calls sigaction * under the hood, instead of calling the signal system call directly, * we only need to hook sigaction. This is true for both bionic and * glibc. */ /* libc's sigaction */ extern "C" int sigaction(int signum, const struct sigaction *act, struct sigaction *oldact); /* Simple reimplementation of sigaction. This is roughly equivalent * to the assembly that comes in bionic, but not quite equivalent to * glibc's implementation, so we only use this on Android. */ int sys_sigaction(int signum, const struct sigaction *act, struct sigaction *oldact) { return syscall(__NR_sigaction, signum, act, oldact); } /* Replace the first instructions of the given function with a jump * to the given new function. */ template static bool Divert(T func, T new_func) { void *ptr = FunctionPtr(func); uintptr_t addr = reinterpret_cast(ptr); #if defined(__i386__) // A 32-bit jump is a 5 bytes instruction. EnsureWritable w(ptr, 5); *reinterpret_cast(addr) = 0xe9; // jmp *reinterpret_cast(addr + 1) = reinterpret_cast(new_func) - addr - 5; // target displacement return true; #elif defined(__arm__) const unsigned char trampoline[] = { // .thumb 0x46, 0x04, // nop 0x78, 0x47, // bx pc 0x46, 0x04, // nop // .arm 0x04, 0xf0, 0x1f, 0xe5, // ldr pc, [pc, #-4] // .word }; const unsigned char *start; if (addr & 0x01) { /* Function is thumb, the actual address of the code is without the * least significant bit. */ addr--; /* The arm part of the trampoline needs to be 32-bit aligned */ if (addr & 0x02) start = trampoline; else start = trampoline + 2; } else { /* Function is arm, we only need the arm part of the trampoline */ start = trampoline + 6; } size_t len = sizeof(trampoline) - (start - trampoline); EnsureWritable w(reinterpret_cast(addr), len + sizeof(void *)); memcpy(reinterpret_cast(addr), start, len); *reinterpret_cast(addr + len) = FunctionPtr(new_func); cacheflush(addr, addr + len + sizeof(void *), 0); return true; #else return false; #endif } #else #define sys_sigaction sigaction template static bool Divert(T func, T new_func) { return false; } #endif namespace { /* Clock that only accounts for time spent in the current process. */ static uint64_t ProcessTimeStamp_Now() { struct timespec ts; int rv = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts); if (rv != 0) { return 0; } uint64_t baseNs = (uint64_t)ts.tv_sec * 1000000000; return baseNs + (uint64_t)ts.tv_nsec; } } /* Data structure used to pass data to the temporary signal handler, * as well as triggering a test crash. */ struct TmpData { volatile int crash_int; volatile uint64_t crash_timestamp; }; SEGVHandler::SEGVHandler() : registeredHandler(false), signalHandlingBroken(false) , signalHandlingSlow(false) { /* Initialize oldStack.ss_flags to an invalid value when used to set * an alternative stack, meaning we haven't got information about the * original alternative stack and thus don't mean to restore it */ oldStack.ss_flags = SS_ONSTACK; if (!Divert(sigaction, __wrap_sigaction)) return; /* Get the current segfault signal handler. */ sys_sigaction(SIGSEGV, nullptr, &this->action); /* Some devices don't provide useful information to their SIGSEGV handlers, * making it impossible for on-demand decompression to work. To check if * we're on such a device, setup a temporary handler and deliberately * trigger a segfault. The handler will set signalHandlingBroken if the * provided information is bogus. * Some other devices have a kernel option enabled that makes SIGSEGV handler * have an overhead so high that it affects how on-demand decompression * performs. The handler will also set signalHandlingSlow if the triggered * SIGSEGV took too much time. */ struct sigaction action; action.sa_sigaction = &SEGVHandler::test_handler; sigemptyset(&action.sa_mask); action.sa_flags = SA_SIGINFO | SA_NODEFER; action.sa_restorer = nullptr; if (sys_sigaction(SIGSEGV, &action, nullptr)) return; stackPtr.Assign(MemoryRange::mmap(nullptr, PageSize(), PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0)); if (stackPtr.get() == MAP_FAILED) return; TmpData *data = reinterpret_cast(stackPtr.get()); data->crash_timestamp = ProcessTimeStamp_Now(); mprotect(stackPtr, stackPtr.GetLength(), PROT_NONE); data->crash_int = 123; stackPtr.Assign(MAP_FAILED, 0); if (signalHandlingBroken || signalHandlingSlow) { /* Restore the original segfault signal handler. */ sys_sigaction(SIGSEGV, &this->action, nullptr); return; } /* Setup an alternative stack if the already existing one is not big * enough, or if there is none. */ if (sigaltstack(nullptr, &oldStack) == 0) { if (oldStack.ss_flags == SS_ONSTACK) oldStack.ss_flags = 0; if (!oldStack.ss_sp || oldStack.ss_size < stackSize) { stackPtr.Assign(MemoryRange::mmap(nullptr, stackSize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0)); if (stackPtr.get() == MAP_FAILED) return; stack_t stack; stack.ss_sp = stackPtr; stack.ss_size = stackSize; stack.ss_flags = 0; if (sigaltstack(&stack, nullptr) != 0) return; } } /* Register our own handler, and store the already registered one in * SEGVHandler's struct sigaction member */ action.sa_sigaction = &SEGVHandler::handler; action.sa_flags = SA_SIGINFO | SA_NODEFER | SA_ONSTACK; registeredHandler = !sys_sigaction(SIGSEGV, &action, nullptr); } SEGVHandler::~SEGVHandler() { /* Restore alternative stack for signals */ if (oldStack.ss_flags != SS_ONSTACK) sigaltstack(&oldStack, nullptr); /* Restore original signal handler */ if (registeredHandler) sys_sigaction(SIGSEGV, &this->action, nullptr); } /* Test handler for a deliberately triggered SIGSEGV that determines whether * useful information is provided to signal handlers, particularly whether * si_addr is filled in properly, and whether the segfault handler is called * quickly enough. */ void SEGVHandler::test_handler(int signum, siginfo_t *info, void *context) { SEGVHandler &that = ElfLoader::Singleton; if (signum != SIGSEGV || info == nullptr || info->si_addr != that.stackPtr.get()) that.signalHandlingBroken = true; mprotect(that.stackPtr, that.stackPtr.GetLength(), PROT_READ | PROT_WRITE); TmpData *data = reinterpret_cast(that.stackPtr.get()); uint64_t latency = ProcessTimeStamp_Now() - data->crash_timestamp; DEBUG_LOG("SEGVHandler latency: %" PRIu64, latency); /* See bug 886736 for timings on different devices, 150 µs is reasonably above * the latency on "working" devices and seems to be reasonably fast to incur * a huge overhead to on-demand decompression. */ if (latency > 150000) that.signalHandlingSlow = true; } /* TODO: "properly" handle signal masks and flags */ void SEGVHandler::handler(int signum, siginfo_t *info, void *context) { //ASSERT(signum == SIGSEGV); DEBUG_LOG("Caught segmentation fault @%p", info->si_addr); /* Check whether we segfaulted in the address space of a CustomElf. We're * only expecting that to happen as an access error. */ if (info->si_code == SEGV_ACCERR) { mozilla::RefPtr handle = ElfLoader::Singleton.GetHandleByPtr(info->si_addr); if (handle && !handle->IsSystemElf()) { DEBUG_LOG("Within the address space of a CustomElf"); CustomElf *elf = static_cast(static_cast(handle)); if (elf->mappable->ensure(info->si_addr)) return; } } /* Redispatch to the registered handler */ SEGVHandler &that = ElfLoader::Singleton; if (that.action.sa_flags & SA_SIGINFO) { DEBUG_LOG("Redispatching to registered handler @%p", FunctionPtr(that.action.sa_sigaction)); that.action.sa_sigaction(signum, info, context); } else if (that.action.sa_handler == SIG_DFL) { DEBUG_LOG("Redispatching to default handler"); /* Reset the handler to the default one, and trigger it. */ sys_sigaction(signum, &that.action, nullptr); raise(signum); } else if (that.action.sa_handler != SIG_IGN) { DEBUG_LOG("Redispatching to registered handler @%p", FunctionPtr(that.action.sa_handler)); that.action.sa_handler(signum); } else { DEBUG_LOG("Ignoring"); } } int SEGVHandler::__wrap_sigaction(int signum, const struct sigaction *act, struct sigaction *oldact) { /* Use system sigaction() function for all but SIGSEGV signals. */ if (signum != SIGSEGV) return sys_sigaction(signum, act, oldact); SEGVHandler &that = ElfLoader::Singleton; if (oldact) *oldact = that.action; if (act) that.action = *act; return 0; } Logging Logging::Singleton;