/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- * vim: sw=4 ts=4 et : */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "mozilla/ipc/MessageLink.h" #include "mozilla/ipc/MessageChannel.h" #include "mozilla/ipc/BrowserProcessSubThread.h" #include "mozilla/ipc/ProtocolUtils.h" #include "nsDebug.h" #include "nsTraceRefcnt.h" #include "nsXULAppAPI.h" using namespace mozilla; using namespace std; template<> struct RunnableMethodTraits { static void RetainCallee(mozilla::ipc::ProcessLink* obj) { } static void ReleaseCallee(mozilla::ipc::ProcessLink* obj) { } }; // We rely on invariants about the lifetime of the transport: // // - outlives this MessageChannel // - deleted on the IO thread // // These invariants allow us to send messages directly through the // transport without having to worry about orphaned Send() tasks on // the IO thread touching MessageChannel memory after it's been deleted // on the worker thread. We also don't need to refcount the // Transport, because whatever task triggers its deletion only runs on // the IO thread, and only runs after this MessageChannel is done with // the Transport. template<> struct RunnableMethodTraits { static void RetainCallee(mozilla::ipc::MessageChannel::Transport* obj) { } static void ReleaseCallee(mozilla::ipc::MessageChannel::Transport* obj) { } }; namespace mozilla { namespace ipc { MessageLink::MessageLink(MessageChannel *aChan) : mChan(aChan) { } MessageLink::~MessageLink() { mChan = nullptr; } ProcessLink::ProcessLink(MessageChannel *aChan) : MessageLink(aChan), mExistingListener(nullptr) { } ProcessLink::~ProcessLink() { mIOLoop = 0; if (mTransport) { mTransport->set_listener(0); // we only hold a weak ref to the transport, which is "owned" // by GeckoChildProcess/GeckoThread mTransport = 0; } } void ProcessLink::Open(mozilla::ipc::Transport* aTransport, MessageLoop *aIOLoop, Side aSide) { NS_PRECONDITION(aTransport, "need transport layer"); // FIXME need to check for valid channel mTransport = aTransport; // FIXME figure out whether we're in parent or child, grab IO loop // appropriately bool needOpen = true; if(aIOLoop) { // We're a child or using the new arguments. Either way, we // need an open. needOpen = true; mChan->mSide = (aSide == UnknownSide) ? ChildSide : aSide; } else { NS_PRECONDITION(aSide == UnknownSide, "expected default side arg"); // parent mChan->mSide = ParentSide; needOpen = false; aIOLoop = XRE_GetIOMessageLoop(); } mIOLoop = aIOLoop; NS_ASSERTION(mIOLoop, "need an IO loop"); NS_ASSERTION(mChan->mWorkerLoop, "need a worker loop"); { MonitorAutoLock lock(*mChan->mMonitor); if (needOpen) { // Transport::Connect() has not been called. Call it so // we start polling our pipe and processing outgoing // messages. mIOLoop->PostTask( FROM_HERE, NewRunnableMethod(this, &ProcessLink::OnChannelOpened)); } else { // Transport::Connect() has already been called. Take // over the channel from the previous listener and process // any queued messages. mIOLoop->PostTask( FROM_HERE, NewRunnableMethod(this, &ProcessLink::OnTakeConnectedChannel)); } // Should not wait here if something goes wrong with the channel. while (!mChan->Connected() && mChan->mChannelState != ChannelError) { mChan->mMonitor->Wait(); } } } void ProcessLink::EchoMessage(Message *msg) { mChan->AssertWorkerThread(); mChan->mMonitor->AssertCurrentThreadOwns(); mIOLoop->PostTask( FROM_HERE, NewRunnableMethod(this, &ProcessLink::OnEchoMessage, msg)); // OnEchoMessage takes ownership of |msg| } void ProcessLink::SendMessage(Message *msg) { mChan->AssertWorkerThread(); mChan->mMonitor->AssertCurrentThreadOwns(); mIOLoop->PostTask( FROM_HERE, NewRunnableMethod(mTransport, &Transport::Send, msg)); } void ProcessLink::SendClose() { mChan->AssertWorkerThread(); mChan->mMonitor->AssertCurrentThreadOwns(); mIOLoop->PostTask( FROM_HERE, NewRunnableMethod(this, &ProcessLink::OnCloseChannel)); } ThreadLink::ThreadLink(MessageChannel *aChan, MessageChannel *aTargetChan) : MessageLink(aChan), mTargetChan(aTargetChan) { } ThreadLink::~ThreadLink() { // :TODO: MonitorAutoLock lock(*mChan->mMonitor); // Bug 848949: We need to prevent the other side // from sending us any more messages to avoid Use-After-Free. // The setup here is as shown: // // (Us) (Them) // MessageChannel MessageChannel // | ^ \ / ^ | // | | X | | // v | / \ | v // ThreadLink ThreadLink // // We want to null out the diagonal link from their ThreadLink // to our MessageChannel. Note that we must hold the monitor so // that we do this atomically with respect to them trying to send // us a message. if (mTargetChan) { static_cast(mTargetChan->mLink)->mTargetChan = 0; } mTargetChan = 0; } void ThreadLink::EchoMessage(Message *msg) { mChan->AssertWorkerThread(); mChan->mMonitor->AssertCurrentThreadOwns(); mChan->OnMessageReceivedFromLink(*msg); delete msg; } void ThreadLink::SendMessage(Message *msg) { mChan->AssertWorkerThread(); mChan->mMonitor->AssertCurrentThreadOwns(); if (mTargetChan) mTargetChan->OnMessageReceivedFromLink(*msg); delete msg; } void ThreadLink::SendClose() { mChan->AssertWorkerThread(); mChan->mMonitor->AssertCurrentThreadOwns(); mChan->mChannelState = ChannelClosed; // In a ProcessLink, we would close our half the channel. This // would show up on the other side as an error on the I/O thread. // The I/O thread would then invoke OnChannelErrorFromLink(). // As usual, we skip that process and just invoke the // OnChannelErrorFromLink() method directly. if (mTargetChan) mTargetChan->OnChannelErrorFromLink(); } bool ThreadLink::Unsound_IsClosed() const { MonitorAutoLock lock(*mChan->mMonitor); return mChan->mChannelState == ChannelClosed; } uint32_t ThreadLink::Unsound_NumQueuedMessages() const { // ThreadLinks don't have a message queue. return 0; } // // The methods below run in the context of the IO thread // void ProcessLink::OnMessageReceived(const Message& msg) { AssertIOThread(); NS_ASSERTION(mChan->mChannelState != ChannelError, "Shouldn't get here!"); MonitorAutoLock lock(*mChan->mMonitor); mChan->OnMessageReceivedFromLink(msg); } void ProcessLink::OnEchoMessage(Message* msg) { AssertIOThread(); OnMessageReceived(*msg); delete msg; } void ProcessLink::OnChannelOpened() { mChan->AssertLinkThread(); { MonitorAutoLock lock(*mChan->mMonitor); mExistingListener = mTransport->set_listener(this); #ifdef DEBUG if (mExistingListener) { queue pending; mExistingListener->GetQueuedMessages(pending); MOZ_ASSERT(pending.empty()); } #endif // DEBUG mChan->mChannelState = ChannelOpening; lock.Notify(); } /*assert*/mTransport->Connect(); } void ProcessLink::OnTakeConnectedChannel() { AssertIOThread(); queue pending; { MonitorAutoLock lock(*mChan->mMonitor); mChan->mChannelState = ChannelConnected; mExistingListener = mTransport->set_listener(this); if (mExistingListener) { mExistingListener->GetQueuedMessages(pending); } lock.Notify(); } // Dispatch whatever messages the previous listener had queued up. while (!pending.empty()) { OnMessageReceived(pending.front()); pending.pop(); } } void ProcessLink::OnChannelConnected(int32_t peer_pid) { AssertIOThread(); { MonitorAutoLock lock(*mChan->mMonitor); mChan->mChannelState = ChannelConnected; mChan->mMonitor->Notify(); } if (mExistingListener) mExistingListener->OnChannelConnected(peer_pid); mChan->OnChannelConnected(peer_pid); } void ProcessLink::OnChannelError() { AssertIOThread(); MonitorAutoLock lock(*mChan->mMonitor); mChan->OnChannelErrorFromLink(); } void ProcessLink::OnCloseChannel() { AssertIOThread(); mTransport->Close(); MonitorAutoLock lock(*mChan->mMonitor); mChan->mChannelState = ChannelClosed; mChan->mMonitor->Notify(); } bool ProcessLink::Unsound_IsClosed() const { return mTransport->Unsound_IsClosed(); } uint32_t ProcessLink::Unsound_NumQueuedMessages() const { return mTransport->Unsound_NumQueuedMessages(); } } // namespace ipc } // namespace mozilla