#include #include #include "qcmsint.h" template static void qcms_transform_data_template_lut_avx(const qcms_transform *transform, const unsigned char *src, unsigned char *dest, size_t length) { const float (*mat)[4] = transform->matrix; char input_back[64]; /* Ensure we have a buffer that's 32 byte aligned regardless of the original * stack alignment. We can't use __attribute__((aligned(32))) or __declspec(align(32)) * because they don't work on stack variables. gcc 4.4 does do the right thing * on x86 but that's too new for us right now. For more info: gcc bug #16660 */ float const * input = (float*)(((uintptr_t)&input_back[32]) & ~0x1f); /* share input and output locations to save having to keep the * locations in separate registers */ uint32_t const * output = (uint32_t*)input; /* deref *transform now to avoid it in loop */ const float *igtbl_r = transform->input_gamma_table_r; const float *igtbl_g = transform->input_gamma_table_g; const float *igtbl_b = transform->input_gamma_table_b; /* deref *transform now to avoid it in loop */ const uint8_t *otdata_r = &transform->output_table_r->data[0]; const uint8_t *otdata_g = &transform->output_table_g->data[0]; const uint8_t *otdata_b = &transform->output_table_b->data[0]; /* input matrix values never change */ const __m256 mat0 = _mm256_broadcast_ps(reinterpret_cast(mat[0])); const __m256 mat1 = _mm256_broadcast_ps(reinterpret_cast(mat[1])); const __m256 mat2 = _mm256_broadcast_ps(reinterpret_cast(mat[2])); /* these values don't change, either */ const __m256 max = _mm256_set1_ps(CLAMPMAXVAL); const __m256 min = _mm256_setzero_ps(); const __m256 scale = _mm256_set1_ps(FLOATSCALE); const unsigned int components = A_INDEX_COMPONENTS(kAIndex); /* working variables */ __m256 vec_r, vec_g, vec_b, result; __m128 vec_r0, vec_g0, vec_b0, vec_r1, vec_g1, vec_b1; unsigned char alpha1, alpha2; /* CYA */ if (!length) return; /* If there are at least 2 pixels, then we can load their components into a single 256-bit register for processing. */ if (length > 1) { vec_r0 = _mm_broadcast_ss(&igtbl_r[src[kRIndex]]); vec_g0 = _mm_broadcast_ss(&igtbl_g[src[kGIndex]]); vec_b0 = _mm_broadcast_ss(&igtbl_b[src[kBIndex]]); vec_r1 = _mm_broadcast_ss(&igtbl_r[src[kRIndex + components]]); vec_g1 = _mm_broadcast_ss(&igtbl_g[src[kGIndex + components]]); vec_b1 = _mm_broadcast_ss(&igtbl_b[src[kBIndex + components]]); vec_r = _mm256_insertf128_ps(_mm256_castps128_ps256(vec_r0), vec_r1, 1); vec_g = _mm256_insertf128_ps(_mm256_castps128_ps256(vec_g0), vec_g1, 1); vec_b = _mm256_insertf128_ps(_mm256_castps128_ps256(vec_b0), vec_b1, 1); if (kAIndex != NO_A_INDEX) { alpha1 = src[kAIndex]; alpha2 = src[kAIndex + components]; } } /* If there are at least 4 pixels, then we can iterate and preload the next 2 while we store the result of the current 2. */ while (length > 3) { /* Ensure we are pointing at the next 2 pixels for the next load. */ src += 2 * components; /* gamma * matrix */ vec_r = _mm256_mul_ps(vec_r, mat0); vec_g = _mm256_mul_ps(vec_g, mat1); vec_b = _mm256_mul_ps(vec_b, mat2); /* store alpha for these pixels; load alpha for next two */ if (kAIndex != NO_A_INDEX) { dest[kAIndex] = alpha1; dest[kAIndex + components] = alpha2; alpha1 = src[kAIndex]; alpha2 = src[kAIndex + components]; } /* crunch, crunch, crunch */ vec_r = _mm256_add_ps(vec_r, _mm256_add_ps(vec_g, vec_b)); vec_r = _mm256_max_ps(min, vec_r); vec_r = _mm256_min_ps(max, vec_r); result = _mm256_mul_ps(vec_r, scale); /* store calc'd output tables indices */ _mm256_store_si256((__m256i*)output, _mm256_cvtps_epi32(result)); /* load gamma values for next loop while store completes */ vec_r0 = _mm_broadcast_ss(&igtbl_r[src[kRIndex]]); vec_g0 = _mm_broadcast_ss(&igtbl_g[src[kGIndex]]); vec_b0 = _mm_broadcast_ss(&igtbl_b[src[kBIndex]]); vec_r1 = _mm_broadcast_ss(&igtbl_r[src[kRIndex + components]]); vec_g1 = _mm_broadcast_ss(&igtbl_g[src[kGIndex + components]]); vec_b1 = _mm_broadcast_ss(&igtbl_b[src[kBIndex + components]]); vec_r = _mm256_insertf128_ps(_mm256_castps128_ps256(vec_r0), vec_r1, 1); vec_g = _mm256_insertf128_ps(_mm256_castps128_ps256(vec_g0), vec_g1, 1); vec_b = _mm256_insertf128_ps(_mm256_castps128_ps256(vec_b0), vec_b1, 1); /* use calc'd indices to output RGB values */ dest[kRIndex] = otdata_r[output[0]]; dest[kGIndex] = otdata_g[output[1]]; dest[kBIndex] = otdata_b[output[2]]; dest[kRIndex + components] = otdata_r[output[4]]; dest[kGIndex + components] = otdata_g[output[5]]; dest[kBIndex + components] = otdata_b[output[6]]; dest += 2 * components; length -= 2; } /* There are 0-3 pixels remaining. If there are 2-3 remaining, then we know we have already populated the necessary registers to start the transform. */ if (length > 1) { vec_r = _mm256_mul_ps(vec_r, mat0); vec_g = _mm256_mul_ps(vec_g, mat1); vec_b = _mm256_mul_ps(vec_b, mat2); if (kAIndex != NO_A_INDEX) { dest[kAIndex] = alpha1; dest[kAIndex + components] = alpha2; } vec_r = _mm256_add_ps(vec_r, _mm256_add_ps(vec_g, vec_b)); vec_r = _mm256_max_ps(min, vec_r); vec_r = _mm256_min_ps(max, vec_r); result = _mm256_mul_ps(vec_r, scale); _mm256_store_si256((__m256i*)output, _mm256_cvtps_epi32(result)); dest[kRIndex] = otdata_r[output[0]]; dest[kGIndex] = otdata_g[output[1]]; dest[kBIndex] = otdata_b[output[2]]; dest[kRIndex + components] = otdata_r[output[4]]; dest[kGIndex + components] = otdata_g[output[5]]; dest[kBIndex + components] = otdata_b[output[6]]; src += 2 * components; dest += 2 * components; length -= 2; } /* There may be 0-1 pixels remaining. */ if (length == 1) { vec_r0 = _mm_broadcast_ss(&igtbl_r[src[kRIndex]]); vec_g0 = _mm_broadcast_ss(&igtbl_g[src[kGIndex]]); vec_b0 = _mm_broadcast_ss(&igtbl_b[src[kBIndex]]); vec_r0 = _mm_mul_ps(vec_r0, _mm256_castps256_ps128(mat0)); vec_g0 = _mm_mul_ps(vec_g0, _mm256_castps256_ps128(mat1)); vec_b0 = _mm_mul_ps(vec_b0, _mm256_castps256_ps128(mat2)); if (kAIndex != NO_A_INDEX) { dest[kAIndex] = src[kAIndex]; } vec_r0 = _mm_add_ps(vec_r0, _mm_add_ps(vec_g0, vec_b0)); vec_r0 = _mm_max_ps(_mm256_castps256_ps128(min), vec_r0); vec_r0 = _mm_min_ps(_mm256_castps256_ps128(max), vec_r0); vec_r0 = _mm_mul_ps(vec_r0, _mm256_castps256_ps128(scale)); _mm_store_si128((__m128i*)output, _mm_cvtps_epi32(vec_r0)); dest[kRIndex] = otdata_r[output[0]]; dest[kGIndex] = otdata_g[output[1]]; dest[kBIndex] = otdata_b[output[2]]; } } void qcms_transform_data_rgb_out_lut_avx(const qcms_transform *transform, const unsigned char *src, unsigned char *dest, size_t length) { qcms_transform_data_template_lut_avx(transform, src, dest, length); } void qcms_transform_data_rgba_out_lut_avx(const qcms_transform *transform, const unsigned char *src, unsigned char *dest, size_t length) { qcms_transform_data_template_lut_avx(transform, src, dest, length); } void qcms_transform_data_bgra_out_lut_avx(const qcms_transform *transform, const unsigned char *src, unsigned char *dest, size_t length) { qcms_transform_data_template_lut_avx(transform, src, dest, length); }