/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ /* class that manages rules for positioning floats */ #include "nsFloatManager.h" #include #include #include "mozilla/ReflowInput.h" #include "mozilla/ShapeUtils.h" #include "nsBlockFrame.h" #include "nsError.h" #include "nsIPresShell.h" #include "nsMemory.h" using namespace mozilla; int32_t nsFloatManager::sCachedFloatManagerCount = 0; void* nsFloatManager::sCachedFloatManagers[NS_FLOAT_MANAGER_CACHE_SIZE]; ///////////////////////////////////////////////////////////////////////////// // nsFloatManager nsFloatManager::nsFloatManager(nsIPresShell* aPresShell, mozilla::WritingMode aWM) : #ifdef DEBUG mWritingMode(aWM), #endif mLineLeft(0), mBlockStart(0), mFloatDamage(aPresShell), mPushedLeftFloatPastBreak(false), mPushedRightFloatPastBreak(false), mSplitLeftFloatAcrossBreak(false), mSplitRightFloatAcrossBreak(false) { MOZ_COUNT_CTOR(nsFloatManager); } nsFloatManager::~nsFloatManager() { MOZ_COUNT_DTOR(nsFloatManager); } // static void* nsFloatManager::operator new(size_t aSize) CPP_THROW_NEW { if (sCachedFloatManagerCount > 0) { // We have cached unused instances of this class, return a cached // instance in stead of always creating a new one. return sCachedFloatManagers[--sCachedFloatManagerCount]; } // The cache is empty, this means we have to create a new instance using // the global |operator new|. return moz_xmalloc(aSize); } void nsFloatManager::operator delete(void* aPtr, size_t aSize) { if (!aPtr) return; // This float manager is no longer used, if there's still room in // the cache we'll cache this float manager, unless the layout // module was already shut down. if (sCachedFloatManagerCount < NS_FLOAT_MANAGER_CACHE_SIZE && sCachedFloatManagerCount >= 0) { // There's still space in the cache for more instances, put this // instance in the cache in stead of deleting it. sCachedFloatManagers[sCachedFloatManagerCount++] = aPtr; return; } // The cache is full, or the layout module has been shut down, // delete this float manager. free(aPtr); } /* static */ void nsFloatManager::Shutdown() { // The layout module is being shut down, clean up the cache and // disable further caching. int32_t i; for (i = 0; i < sCachedFloatManagerCount; i++) { void* floatManager = sCachedFloatManagers[i]; if (floatManager) free(floatManager); } // Disable further caching. sCachedFloatManagerCount = -1; } #define CHECK_BLOCK_AND_LINE_DIR(aWM) \ NS_ASSERTION((aWM).GetBlockDir() == mWritingMode.GetBlockDir() && \ (aWM).IsLineInverted() == mWritingMode.IsLineInverted(), \ "incompatible writing modes") nsFlowAreaRect nsFloatManager::GetFlowArea(WritingMode aWM, nscoord aBCoord, nscoord aBSize, BandInfoType aBandInfoType, ShapeType aShapeType, LogicalRect aContentArea, SavedState* aState, const nsSize& aContainerSize) const { CHECK_BLOCK_AND_LINE_DIR(aWM); NS_ASSERTION(aBSize >= 0, "unexpected max block size"); NS_ASSERTION(aContentArea.ISize(aWM) >= 0, "unexpected content area inline size"); nscoord blockStart = aBCoord + mBlockStart; if (blockStart < nscoord_MIN) { NS_WARNING("bad value"); blockStart = nscoord_MIN; } // Determine the last float that we should consider. uint32_t floatCount; if (aState) { // Use the provided state. floatCount = aState->mFloatInfoCount; MOZ_ASSERT(floatCount <= mFloats.Length(), "bad state"); } else { // Use our current state. floatCount = mFloats.Length(); } // If there are no floats at all, or we're below the last one, return // quickly. if (floatCount == 0 || (mFloats[floatCount-1].mLeftBEnd <= blockStart && mFloats[floatCount-1].mRightBEnd <= blockStart)) { return nsFlowAreaRect(aWM, aContentArea.IStart(aWM), aBCoord, aContentArea.ISize(aWM), aBSize, false); } nscoord blockEnd; if (aBSize == nscoord_MAX) { // This warning (and the two below) are possible to hit on pages // with really large objects. NS_WARNING_ASSERTION(aBandInfoType == BandInfoType::BandFromPoint, "bad height"); blockEnd = nscoord_MAX; } else { blockEnd = blockStart + aBSize; if (blockEnd < blockStart || blockEnd > nscoord_MAX) { NS_WARNING("bad value"); blockEnd = nscoord_MAX; } } nscoord lineLeft = mLineLeft + aContentArea.LineLeft(aWM, aContainerSize); nscoord lineRight = mLineLeft + aContentArea.LineRight(aWM, aContainerSize); if (lineRight < lineLeft) { NS_WARNING("bad value"); lineRight = lineLeft; } // Walk backwards through the floats until we either hit the front of // the list or we're above |blockStart|. bool haveFloats = false; for (uint32_t i = floatCount; i > 0; --i) { const FloatInfo &fi = mFloats[i-1]; if (fi.mLeftBEnd <= blockStart && fi.mRightBEnd <= blockStart) { // There aren't any more floats that could intersect this band. break; } if (fi.IsEmpty(aShapeType)) { // For compatibility, ignore floats with empty rects, even though it // disagrees with the spec. (We might want to fix this in the // future, though.) continue; } nscoord floatBStart = fi.BStart(aShapeType); nscoord floatBEnd = fi.BEnd(aShapeType); if (blockStart < floatBStart && aBandInfoType == BandInfoType::BandFromPoint) { // This float is below our band. Shrink our band's height if needed. if (floatBStart < blockEnd) { blockEnd = floatBStart; } } // If blockStart == blockEnd (which happens only with WidthWithinHeight), // we include floats that begin at our 0-height vertical area. We // need to do this to satisfy the invariant that a // WidthWithinHeight call is at least as narrow on both sides as a // BandFromPoint call beginning at its blockStart. else if (blockStart < floatBEnd && (floatBStart < blockEnd || (floatBStart == blockEnd && blockStart == blockEnd))) { // This float is in our band. // Shrink our band's width if needed. StyleFloat floatStyle = fi.mFrame->StyleDisplay()->PhysicalFloats(aWM); // When aBandInfoType is BandFromPoint, we're only intended to // consider a point along the y axis rather than a band. const nscoord bandBlockEnd = aBandInfoType == BandInfoType::BandFromPoint ? blockStart : blockEnd; if (floatStyle == StyleFloat::Left) { // A left float nscoord lineRightEdge = fi.LineRight(aShapeType, blockStart, bandBlockEnd); if (lineRightEdge > lineLeft) { lineLeft = lineRightEdge; // Only set haveFloats to true if the float is inside our // containing block. This matches the spec for what some // callers want and disagrees for other callers, so we should // probably provide better information at some point. haveFloats = true; } } else { // A right float nscoord lineLeftEdge = fi.LineLeft(aShapeType, blockStart, bandBlockEnd); if (lineLeftEdge < lineRight) { lineRight = lineLeftEdge; // See above. haveFloats = true; } } // Shrink our band's height if needed. if (floatBEnd < blockEnd && aBandInfoType == BandInfoType::BandFromPoint) { blockEnd = floatBEnd; } } } nscoord blockSize = (blockEnd == nscoord_MAX) ? nscoord_MAX : (blockEnd - blockStart); // convert back from LineLeft/Right to IStart nscoord inlineStart = aWM.IsBidiLTR() ? lineLeft - mLineLeft : mLineLeft - lineRight + LogicalSize(aWM, aContainerSize).ISize(aWM); return nsFlowAreaRect(aWM, inlineStart, blockStart - mBlockStart, lineRight - lineLeft, blockSize, haveFloats); } void nsFloatManager::AddFloat(nsIFrame* aFloatFrame, const LogicalRect& aMarginRect, WritingMode aWM, const nsSize& aContainerSize) { CHECK_BLOCK_AND_LINE_DIR(aWM); NS_ASSERTION(aMarginRect.ISize(aWM) >= 0, "negative inline size!"); NS_ASSERTION(aMarginRect.BSize(aWM) >= 0, "negative block size!"); FloatInfo info(aFloatFrame, mLineLeft, mBlockStart, aMarginRect, aWM, aContainerSize); // Set mLeftBEnd and mRightBEnd. if (HasAnyFloats()) { FloatInfo &tail = mFloats[mFloats.Length() - 1]; info.mLeftBEnd = tail.mLeftBEnd; info.mRightBEnd = tail.mRightBEnd; } else { info.mLeftBEnd = nscoord_MIN; info.mRightBEnd = nscoord_MIN; } StyleFloat floatStyle = aFloatFrame->StyleDisplay()->PhysicalFloats(aWM); MOZ_ASSERT(floatStyle == StyleFloat::Left || floatStyle == StyleFloat::Right, "Unexpected float style!"); nscoord& sideBEnd = floatStyle == StyleFloat::Left ? info.mLeftBEnd : info.mRightBEnd; nscoord thisBEnd = info.BEnd(); if (thisBEnd > sideBEnd) sideBEnd = thisBEnd; mFloats.AppendElement(Move(info)); } // static LogicalRect nsFloatManager::CalculateRegionFor(WritingMode aWM, nsIFrame* aFloat, const LogicalMargin& aMargin, const nsSize& aContainerSize) { // We consider relatively positioned frames at their original position. LogicalRect region(aWM, nsRect(aFloat->GetNormalPosition(), aFloat->GetSize()), aContainerSize); // Float region includes its margin region.Inflate(aWM, aMargin); // Don't store rectangles with negative margin-box width or height in // the float manager; it can't deal with them. if (region.ISize(aWM) < 0) { // Preserve the right margin-edge for left floats and the left // margin-edge for right floats const nsStyleDisplay* display = aFloat->StyleDisplay(); StyleFloat floatStyle = display->PhysicalFloats(aWM); if ((StyleFloat::Left == floatStyle) == aWM.IsBidiLTR()) { region.IStart(aWM) = region.IEnd(aWM); } region.ISize(aWM) = 0; } if (region.BSize(aWM) < 0) { region.BSize(aWM) = 0; } return region; } NS_DECLARE_FRAME_PROPERTY_DELETABLE(FloatRegionProperty, nsMargin) LogicalRect nsFloatManager::GetRegionFor(WritingMode aWM, nsIFrame* aFloat, const nsSize& aContainerSize) { LogicalRect region = aFloat->GetLogicalRect(aWM, aContainerSize); void* storedRegion = aFloat->GetProperty(FloatRegionProperty()); if (storedRegion) { nsMargin margin = *static_cast(storedRegion); region.Inflate(aWM, LogicalMargin(aWM, margin)); } return region; } void nsFloatManager::StoreRegionFor(WritingMode aWM, nsIFrame* aFloat, const LogicalRect& aRegion, const nsSize& aContainerSize) { nsRect region = aRegion.GetPhysicalRect(aWM, aContainerSize); nsRect rect = aFloat->GetRect(); if (region.IsEqualEdges(rect)) { aFloat->DeleteProperty(FloatRegionProperty()); } else { nsMargin* storedMargin = aFloat->GetProperty(FloatRegionProperty()); if (!storedMargin) { storedMargin = new nsMargin(); aFloat->SetProperty(FloatRegionProperty(), storedMargin); } *storedMargin = region - rect; } } nsresult nsFloatManager::RemoveTrailingRegions(nsIFrame* aFrameList) { if (!aFrameList) { return NS_OK; } // This could be a good bit simpler if we could guarantee that the // floats given were at the end of our list, so we could just search // for the head of aFrameList. (But we can't; // layout/reftests/bugs/421710-1.html crashes.) nsTHashtable > frameSet(1); for (nsIFrame* f = aFrameList; f; f = f->GetNextSibling()) { frameSet.PutEntry(f); } uint32_t newLength = mFloats.Length(); while (newLength > 0) { if (!frameSet.Contains(mFloats[newLength - 1].mFrame)) { break; } --newLength; } mFloats.TruncateLength(newLength); #ifdef DEBUG for (uint32_t i = 0; i < mFloats.Length(); ++i) { NS_ASSERTION(!frameSet.Contains(mFloats[i].mFrame), "Frame region deletion was requested but we couldn't delete it"); } #endif return NS_OK; } void nsFloatManager::PushState(SavedState* aState) { NS_PRECONDITION(aState, "Need a place to save state"); // This is a cheap push implementation, which // only saves the (x,y) and last frame in the mFrameInfoMap // which is enough info to get us back to where we should be // when pop is called. // // This push/pop mechanism is used to undo any // floats that were added during the unconstrained reflow // in nsBlockReflowContext::DoReflowBlock(). (See bug 96736) // // It should also be noted that the state for mFloatDamage is // intentionally not saved or restored in PushState() and PopState(), // since that could lead to bugs where damage is missed/dropped when // we move from position A to B (during the intermediate incremental // reflow mentioned above) and then from B to C during the subsequent // reflow. In the typical case A and C will be the same, but not always. // Allowing mFloatDamage to accumulate the damage incurred during both // reflows ensures that nothing gets missed. aState->mLineLeft = mLineLeft; aState->mBlockStart = mBlockStart; aState->mPushedLeftFloatPastBreak = mPushedLeftFloatPastBreak; aState->mPushedRightFloatPastBreak = mPushedRightFloatPastBreak; aState->mSplitLeftFloatAcrossBreak = mSplitLeftFloatAcrossBreak; aState->mSplitRightFloatAcrossBreak = mSplitRightFloatAcrossBreak; aState->mFloatInfoCount = mFloats.Length(); } void nsFloatManager::PopState(SavedState* aState) { NS_PRECONDITION(aState, "No state to restore?"); mLineLeft = aState->mLineLeft; mBlockStart = aState->mBlockStart; mPushedLeftFloatPastBreak = aState->mPushedLeftFloatPastBreak; mPushedRightFloatPastBreak = aState->mPushedRightFloatPastBreak; mSplitLeftFloatAcrossBreak = aState->mSplitLeftFloatAcrossBreak; mSplitRightFloatAcrossBreak = aState->mSplitRightFloatAcrossBreak; NS_ASSERTION(aState->mFloatInfoCount <= mFloats.Length(), "somebody misused PushState/PopState"); mFloats.TruncateLength(aState->mFloatInfoCount); } nscoord nsFloatManager::GetLowestFloatTop() const { if (mPushedLeftFloatPastBreak || mPushedRightFloatPastBreak) { return nscoord_MAX; } if (!HasAnyFloats()) { return nscoord_MIN; } return mFloats[mFloats.Length() -1].BStart() - mBlockStart; } #ifdef DEBUG_FRAME_DUMP void DebugListFloatManager(const nsFloatManager *aFloatManager) { aFloatManager->List(stdout); } nsresult nsFloatManager::List(FILE* out) const { if (!HasAnyFloats()) return NS_OK; for (uint32_t i = 0; i < mFloats.Length(); ++i) { const FloatInfo &fi = mFloats[i]; fprintf_stderr(out, "Float %u: frame=%p rect={%d,%d,%d,%d} BEnd={l:%d, r:%d}\n", i, static_cast(fi.mFrame), fi.LineLeft(), fi.BStart(), fi.ISize(), fi.BSize(), fi.mLeftBEnd, fi.mRightBEnd); } return NS_OK; } #endif nscoord nsFloatManager::ClearFloats(nscoord aBCoord, StyleClear aBreakType, uint32_t aFlags) const { if (!(aFlags & DONT_CLEAR_PUSHED_FLOATS) && ClearContinues(aBreakType)) { return nscoord_MAX; } if (!HasAnyFloats()) { return aBCoord; } nscoord blockEnd = aBCoord + mBlockStart; const FloatInfo &tail = mFloats[mFloats.Length() - 1]; switch (aBreakType) { case StyleClear::Both: blockEnd = std::max(blockEnd, tail.mLeftBEnd); blockEnd = std::max(blockEnd, tail.mRightBEnd); break; case StyleClear::Left: blockEnd = std::max(blockEnd, tail.mLeftBEnd); break; case StyleClear::Right: blockEnd = std::max(blockEnd, tail.mRightBEnd); break; default: // Do nothing break; } blockEnd -= mBlockStart; return blockEnd; } bool nsFloatManager::ClearContinues(StyleClear aBreakType) const { return ((mPushedLeftFloatPastBreak || mSplitLeftFloatAcrossBreak) && (aBreakType == StyleClear::Both || aBreakType == StyleClear::Left)) || ((mPushedRightFloatPastBreak || mSplitRightFloatAcrossBreak) && (aBreakType == StyleClear::Both || aBreakType == StyleClear::Right)); } ///////////////////////////////////////////////////////////////////////////// // RoundedBoxShapeInfo nscoord nsFloatManager::RoundedBoxShapeInfo::LineLeft(const nscoord aBStart, const nscoord aBEnd) const { if (!mRadii) { return mRect.x; } nscoord lineLeftDiff = ComputeEllipseLineInterceptDiff( mRect.y, mRect.YMost(), mRadii[eCornerTopLeftX], mRadii[eCornerTopLeftY], mRadii[eCornerBottomLeftX], mRadii[eCornerBottomLeftY], aBStart, aBEnd); return mRect.x + lineLeftDiff; } nscoord nsFloatManager::RoundedBoxShapeInfo::LineRight(const nscoord aBStart, const nscoord aBEnd) const { if (!mRadii) { return mRect.XMost(); } nscoord lineRightDiff = ComputeEllipseLineInterceptDiff( mRect.y, mRect.YMost(), mRadii[eCornerTopRightX], mRadii[eCornerTopRightY], mRadii[eCornerBottomRightX], mRadii[eCornerBottomRightY], aBStart, aBEnd); return mRect.XMost() - lineRightDiff; } ///////////////////////////////////////////////////////////////////////////// // EllipseShapeInfo nscoord nsFloatManager::EllipseShapeInfo::LineLeft(const nscoord aBStart, const nscoord aBEnd) const { nscoord lineLeftDiff = ComputeEllipseLineInterceptDiff(BStart(), BEnd(), mRadii.width, mRadii.height, mRadii.width, mRadii.height, aBStart, aBEnd); return mCenter.x - mRadii.width + lineLeftDiff; } nscoord nsFloatManager::EllipseShapeInfo::LineRight(const nscoord aBStart, const nscoord aBEnd) const { nscoord lineRightDiff = ComputeEllipseLineInterceptDiff(BStart(), BEnd(), mRadii.width, mRadii.height, mRadii.width, mRadii.height, aBStart, aBEnd); return mCenter.x + mRadii.width - lineRightDiff; } ///////////////////////////////////////////////////////////////////////////// // PolygonShapeInfo nsFloatManager::PolygonShapeInfo::PolygonShapeInfo(nsTArray&& aVertices) : mVertices(aVertices) { // Polygons with fewer than three vertices result in an empty area. // https://drafts.csswg.org/css-shapes/#funcdef-polygon if (mVertices.Length() < 3) { mEmpty = true; return; } auto Determinant = [] (const nsPoint& aP0, const nsPoint& aP1) { // Returns the determinant of the 2x2 matrix [aP0 aP1]. // https://en.wikipedia.org/wiki/Determinant#2_.C3.97_2_matrices return aP0.x * aP1.y - aP0.y * aP1.x; }; // See if we have any vertices that are non-collinear with the first two. // (If a polygon's vertices are all collinear, it encloses no area.) bool isEntirelyCollinear = true; const nsPoint& p0 = mVertices[0]; const nsPoint& p1 = mVertices[1]; for (size_t i = 2; i < mVertices.Length(); ++i) { const nsPoint& p2 = mVertices[i]; // If the determinant of the matrix formed by two points is 0, that // means they're collinear with respect to the origin. Here, if it's // nonzero, then p1 and p2 are non-collinear with respect to p0, i.e. // the three points are non-collinear. if (Determinant(p2 - p0, p1 - p0) != 0) { isEntirelyCollinear = false; break; } } if (isEntirelyCollinear) { mEmpty = true; return; } // mBStart and mBEnd are the lower and the upper bounds of all the // vertex.y, respectively. The vertex.y is actually on the block-axis of // the float manager's writing mode. for (const nsPoint& vertex : mVertices) { mBStart = std::min(mBStart, vertex.y); mBEnd = std::max(mBEnd, vertex.y); } } nscoord nsFloatManager::PolygonShapeInfo::LineLeft(const nscoord aBStart, const nscoord aBEnd) const { MOZ_ASSERT(!mEmpty, "Shouldn't be called if the polygon encloses no area."); // We want the line-left-most inline-axis coordinate where the // (block-axis) aBStart/aBEnd band crosses a line segment of the polygon. // To get that, we start as line-right as possible (at nscoord_MAX). Then // we iterate each line segment to compute its intersection point with the // band (if any) and using std::min() successively to get the smallest // inline-coordinates among those intersection points. // // Note: std::min means the function std::min() with template // parameter nscoord, not the minimum value of nscoord. return ComputeLineIntercept(aBStart, aBEnd, std::min, nscoord_MAX); } nscoord nsFloatManager::PolygonShapeInfo::LineRight(const nscoord aBStart, const nscoord aBEnd) const { MOZ_ASSERT(!mEmpty, "Shouldn't be called if the polygon encloses no area."); // Similar to LineLeft(). Though here, we want the line-right-most // inline-axis coordinate, so we instead start at nscoord_MIN and use // std::max() to get the biggest inline-coordinate among those // intersection points. return ComputeLineIntercept(aBStart, aBEnd, std::max, nscoord_MIN); } nscoord nsFloatManager::PolygonShapeInfo::ComputeLineIntercept( const nscoord aBStart, const nscoord aBEnd, nscoord (*aCompareOp) (std::initializer_list), const nscoord aLineInterceptInitialValue) const { MOZ_ASSERT(aBStart <= aBEnd, "The band's block start is greater than its block end?"); const size_t len = mVertices.Length(); nscoord lineIntercept = aLineInterceptInitialValue; // Iterate each line segment {p0, p1}, {p1, p2}, ..., {pn, p0}. for (size_t i = 0; i < len; ++i) { const nsPoint* smallYVertex = &mVertices[i]; const nsPoint* bigYVertex = &mVertices[(i + 1) % len]; // Swap the two points to satisfy the requirement for calling // XInterceptAtY. if (smallYVertex->y > bigYVertex->y) { std::swap(smallYVertex, bigYVertex); } if (aBStart >= bigYVertex->y || aBEnd <= smallYVertex->y || smallYVertex->y == bigYVertex->y) { // Skip computing the intercept if a) the band doesn't intersect the // line segment (even if it crosses one of two the vertices); or b) // the line segment is horizontal. It's OK because the two end points // forming this horizontal segment will still be considered if each of // them is forming another non-horizontal segment with other points. continue; } nscoord bStartLineIntercept = aBStart <= smallYVertex->y ? smallYVertex->x : XInterceptAtY(aBStart, *smallYVertex, *bigYVertex); nscoord bEndLineIntercept = aBEnd >= bigYVertex->y ? bigYVertex->x : XInterceptAtY(aBEnd, *smallYVertex, *bigYVertex); // If either new intercept is more extreme than lineIntercept (per // aCompareOp), then update lineIntercept to that value. lineIntercept = aCompareOp({lineIntercept, bStartLineIntercept, bEndLineIntercept}); } return lineIntercept; } void nsFloatManager::PolygonShapeInfo::Translate(nscoord aLineLeft, nscoord aBlockStart) { for (nsPoint& vertex : mVertices) { vertex.MoveBy(aLineLeft, aBlockStart); } mBStart += aBlockStart; mBEnd += aBlockStart; } /* static */ nscoord nsFloatManager::PolygonShapeInfo::XInterceptAtY(const nscoord aY, const nsPoint& aP1, const nsPoint& aP2) { // Solve for x in the linear equation: x = x1 + (y-y1) * (x2-x1) / (y2-y1), // where aP1 = (x1, y1) and aP2 = (x2, y2). MOZ_ASSERT(aP1.y <= aY && aY <= aP2.y, "This function won't work if the horizontal line at aY and " "the line segment (aP1, aP2) do not intersect!"); MOZ_ASSERT(aP1.y != aP2.y, "A horizontal line segment results in dividing by zero error!"); return aP1.x + (aY - aP1.y) * (aP2.x - aP1.x) / (aP2.y - aP1.y); } ///////////////////////////////////////////////////////////////////////////// // FloatInfo nsFloatManager::FloatInfo::FloatInfo(nsIFrame* aFrame, nscoord aLineLeft, nscoord aBlockStart, const LogicalRect& aMarginRect, WritingMode aWM, const nsSize& aContainerSize) : mFrame(aFrame) , mRect(ShapeInfo::ConvertToFloatLogical(aMarginRect, aWM, aContainerSize) + nsPoint(aLineLeft, aBlockStart)) { MOZ_COUNT_CTOR(nsFloatManager::FloatInfo); const StyleShapeSource& shapeOutside = mFrame->StyleDisplay()->mShapeOutside; if (shapeOutside.GetType() == StyleShapeSourceType::None) { return; } if (shapeOutside.GetType() == StyleShapeSourceType::URL) { // Bug 1265343: Implement 'shape-image-threshold'. Early return // here because shape-outside with url() value doesn't have a // reference box, and GetReferenceBox() asserts that. return; } // Initialize 's reference rect. LogicalRect shapeBoxRect = ShapeInfo::ComputeShapeBoxRect(shapeOutside, mFrame, aMarginRect, aWM); if (shapeOutside.GetType() == StyleShapeSourceType::Box) { mShapeInfo = ShapeInfo::CreateShapeBox(mFrame, shapeBoxRect, aWM, aContainerSize); } else if (shapeOutside.GetType() == StyleShapeSourceType::Shape) { StyleBasicShape* const basicShape = shapeOutside.GetBasicShape(); switch (basicShape->GetShapeType()) { case StyleBasicShapeType::Polygon: mShapeInfo = ShapeInfo::CreatePolygon(basicShape, shapeBoxRect, aWM, aContainerSize); break; case StyleBasicShapeType::Circle: case StyleBasicShapeType::Ellipse: mShapeInfo = ShapeInfo::CreateCircleOrEllipse(basicShape, shapeBoxRect, aWM, aContainerSize); break; case StyleBasicShapeType::Inset: mShapeInfo = ShapeInfo::CreateInset(basicShape, shapeBoxRect, aWM, aContainerSize); break; } } else { MOZ_ASSERT_UNREACHABLE("Unknown StyleShapeSourceType!"); } MOZ_ASSERT(mShapeInfo, "All shape-outside values except none should have mShapeInfo!"); // Translate the shape to the same origin as nsFloatManager. mShapeInfo->Translate(aLineLeft, aBlockStart); } #ifdef NS_BUILD_REFCNT_LOGGING nsFloatManager::FloatInfo::FloatInfo(FloatInfo&& aOther) : mFrame(Move(aOther.mFrame)) , mLeftBEnd(Move(aOther.mLeftBEnd)) , mRightBEnd(Move(aOther.mRightBEnd)) , mRect(Move(aOther.mRect)) , mShapeInfo(Move(aOther.mShapeInfo)) { MOZ_COUNT_CTOR(nsFloatManager::FloatInfo); } nsFloatManager::FloatInfo::~FloatInfo() { MOZ_COUNT_DTOR(nsFloatManager::FloatInfo); } #endif nscoord nsFloatManager::FloatInfo::LineLeft(ShapeType aShapeType, const nscoord aBStart, const nscoord aBEnd) const { if (aShapeType == ShapeType::Margin) { return LineLeft(); } MOZ_ASSERT(aShapeType == ShapeType::ShapeOutside); if (!mShapeInfo) { return LineLeft(); } // Clip the flow area to the margin-box because // https://drafts.csswg.org/css-shapes-1/#relation-to-box-model-and-float-behavior // says "When a shape is used to define a float area, the shape is clipped // to the float’s margin box." return std::max(LineLeft(), mShapeInfo->LineLeft(aBStart, aBEnd)); } nscoord nsFloatManager::FloatInfo::LineRight(ShapeType aShapeType, const nscoord aBStart, const nscoord aBEnd) const { if (aShapeType == ShapeType::Margin) { return LineRight(); } MOZ_ASSERT(aShapeType == ShapeType::ShapeOutside); if (!mShapeInfo) { return LineRight(); } // Clip the flow area to the margin-box. See LineLeft(). return std::min(LineRight(), mShapeInfo->LineRight(aBStart, aBEnd)); } nscoord nsFloatManager::FloatInfo::BStart(ShapeType aShapeType) const { if (aShapeType == ShapeType::Margin) { return BStart(); } MOZ_ASSERT(aShapeType == ShapeType::ShapeOutside); if (!mShapeInfo) { return BStart(); } // Clip the flow area to the margin-box. See LineLeft(). return std::max(BStart(), mShapeInfo->BStart()); } nscoord nsFloatManager::FloatInfo::BEnd(ShapeType aShapeType) const { if (aShapeType == ShapeType::Margin) { return BEnd(); } MOZ_ASSERT(aShapeType == ShapeType::ShapeOutside); if (!mShapeInfo) { return BEnd(); } // Clip the flow area to the margin-box. See LineLeft(). return std::min(BEnd(), mShapeInfo->BEnd()); } bool nsFloatManager::FloatInfo::IsEmpty(ShapeType aShapeType) const { if (aShapeType == ShapeType::Margin) { return IsEmpty(); } MOZ_ASSERT(aShapeType == ShapeType::ShapeOutside); if (!mShapeInfo) { return IsEmpty(); } return mShapeInfo->IsEmpty(); } ///////////////////////////////////////////////////////////////////////////// // ShapeInfo /* static */ LogicalRect nsFloatManager::ShapeInfo::ComputeShapeBoxRect( const StyleShapeSource& aShapeOutside, nsIFrame* const aFrame, const mozilla::LogicalRect& aMarginRect, mozilla::WritingMode aWM) { LogicalRect rect = aMarginRect; switch (aShapeOutside.GetReferenceBox()) { case StyleGeometryBox::ContentBox: rect.Deflate(aWM, aFrame->GetLogicalUsedPadding(aWM)); MOZ_FALLTHROUGH; case StyleGeometryBox::PaddingBox: rect.Deflate(aWM, aFrame->GetLogicalUsedBorder(aWM)); MOZ_FALLTHROUGH; case StyleGeometryBox::BorderBox: rect.Deflate(aWM, aFrame->GetLogicalUsedMargin(aWM)); break; case StyleGeometryBox::MarginBox: // Do nothing. rect is already a margin rect. break; case StyleGeometryBox::NoBox: default: MOZ_ASSERT(aShapeOutside.GetType() != StyleShapeSourceType::Box, "Box source type must have specified!"); break; } return rect; } /* static */ UniquePtr nsFloatManager::ShapeInfo::CreateShapeBox( nsIFrame* const aFrame, const LogicalRect& aShapeBoxRect, WritingMode aWM, const nsSize& aContainerSize) { nsRect logicalShapeBoxRect = ConvertToFloatLogical(aShapeBoxRect, aWM, aContainerSize); nscoord physicalRadii[8]; bool hasRadii = aFrame->GetShapeBoxBorderRadii(physicalRadii); if (!hasRadii) { return MakeUnique(logicalShapeBoxRect, UniquePtr()); } return MakeUnique(logicalShapeBoxRect, ConvertToFloatLogical(physicalRadii, aWM)); } /* static */ UniquePtr nsFloatManager::ShapeInfo::CreateInset( const StyleBasicShape* aBasicShape, const LogicalRect& aShapeBoxRect, WritingMode aWM, const nsSize& aContainerSize) { // Use physical coordinates to compute inset() because the top, right, // bottom and left offsets are physical. // https://drafts.csswg.org/css-shapes-1/#funcdef-inset nsRect physicalShapeBoxRect = aShapeBoxRect.GetPhysicalRect(aWM, aContainerSize); nsRect insetRect = ShapeUtils::ComputeInsetRect(aBasicShape, physicalShapeBoxRect); nsRect logicalInsetRect = ConvertToFloatLogical(LogicalRect(aWM, insetRect, aContainerSize), aWM, aContainerSize); nscoord physicalRadii[8]; bool hasRadii = ShapeUtils::ComputeInsetRadii(aBasicShape, insetRect, physicalShapeBoxRect, physicalRadii); if (!hasRadii) { return MakeUnique(logicalInsetRect, UniquePtr()); } return MakeUnique(logicalInsetRect, ConvertToFloatLogical(physicalRadii, aWM)); } /* static */ UniquePtr nsFloatManager::ShapeInfo::CreateCircleOrEllipse( const StyleBasicShape* aBasicShape, const LogicalRect& aShapeBoxRect, WritingMode aWM, const nsSize& aContainerSize) { // Use physical coordinates to compute the center of circle() or ellipse() // since the keywords such as 'left', 'top', etc. are physical. // https://drafts.csswg.org/css-shapes-1/#funcdef-ellipse nsRect physicalShapeBoxRect = aShapeBoxRect.GetPhysicalRect(aWM, aContainerSize); nsPoint physicalCenter = ShapeUtils::ComputeCircleOrEllipseCenter(aBasicShape, physicalShapeBoxRect); nsPoint logicalCenter = ConvertToFloatLogical(physicalCenter, aWM, aContainerSize); // Compute the circle or ellipse radii. nsSize radii; StyleBasicShapeType type = aBasicShape->GetShapeType(); if (type == StyleBasicShapeType::Circle) { nscoord radius = ShapeUtils::ComputeCircleRadius(aBasicShape, physicalCenter, physicalShapeBoxRect); radii = nsSize(radius, radius); } else { MOZ_ASSERT(type == StyleBasicShapeType::Ellipse); nsSize physicalRadii = ShapeUtils::ComputeEllipseRadii(aBasicShape, physicalCenter, physicalShapeBoxRect); LogicalSize logicalRadii(aWM, physicalRadii); radii = nsSize(logicalRadii.ISize(aWM), logicalRadii.BSize(aWM)); } return MakeUnique(logicalCenter, radii); } /* static */ UniquePtr nsFloatManager::ShapeInfo::CreatePolygon( const StyleBasicShape* aBasicShape, const LogicalRect& aShapeBoxRect, WritingMode aWM, const nsSize& aContainerSize) { // Use physical coordinates to compute each (xi, yi) vertex because CSS // represents them using physical coordinates. // https://drafts.csswg.org/css-shapes-1/#funcdef-polygon nsRect physicalShapeBoxRect = aShapeBoxRect.GetPhysicalRect(aWM, aContainerSize); // Get physical vertices. nsTArray vertices = ShapeUtils::ComputePolygonVertices(aBasicShape, physicalShapeBoxRect); // Convert all the physical vertices to logical. for (nsPoint& vertex : vertices) { vertex = ConvertToFloatLogical(vertex, aWM, aContainerSize); } return MakeUnique(Move(vertices)); } /* static */ nscoord nsFloatManager::ShapeInfo::ComputeEllipseLineInterceptDiff( const nscoord aShapeBoxBStart, const nscoord aShapeBoxBEnd, const nscoord aBStartCornerRadiusL, const nscoord aBStartCornerRadiusB, const nscoord aBEndCornerRadiusL, const nscoord aBEndCornerRadiusB, const nscoord aBandBStart, const nscoord aBandBEnd) { // An example for the band intersecting with the top right corner of an // ellipse with writing-mode horizontal-tb. // // lineIntercept lineDiff // | | // +---------------------------------|-------|-+---- aShapeBoxBStart // | ##########^ | | | // | ##############|#### | | | // +---------#################|######|-------|-+---- aBandBStart // | ###################|######|## | | // | aBStartCornerRadiusB |######|### | | // | ######################|######|##### | | // +---#######################|<-----------><->^---- aBandBEnd // | ########################|############## | // | ########################|############## |---- b // | #########################|############### | // | ######################## v<-------------->v // |###################### aBStartCornerRadiusL| // |###########################################| // |###########################################| // |###########################################| // |###########################################| // | ######################################### | // | ######################################### | // | ####################################### | // | ####################################### | // | ##################################### | // | ################################### | // | ############################### | // | ############################# | // | ######################### | // | ################### | // | ########### | // +-------------------------------------------+----- aShapeBoxBEnd NS_ASSERTION(aShapeBoxBStart <= aShapeBoxBEnd, "Bad shape box coordinates!"); NS_ASSERTION(aBandBStart <= aBandBEnd, "Bad band coordinates!"); nscoord lineDiff = 0; // If the band intersects both the block-start and block-end corners, we // don't need to enter either branch because the correct lineDiff is 0. if (aBStartCornerRadiusB > 0 && aBandBEnd >= aShapeBoxBStart && aBandBEnd <= aShapeBoxBStart + aBStartCornerRadiusB) { // The band intersects only the block-start corner. nscoord b = aBStartCornerRadiusB - (aBandBEnd - aShapeBoxBStart); nscoord lineIntercept = XInterceptAtY(b, aBStartCornerRadiusL, aBStartCornerRadiusB); lineDiff = aBStartCornerRadiusL - lineIntercept; } else if (aBEndCornerRadiusB > 0 && aBandBStart >= aShapeBoxBEnd - aBEndCornerRadiusB && aBandBStart <= aShapeBoxBEnd) { // The band intersects only the block-end corner. nscoord b = aBEndCornerRadiusB - (aShapeBoxBEnd - aBandBStart); nscoord lineIntercept = XInterceptAtY(b, aBEndCornerRadiusL, aBEndCornerRadiusB); lineDiff = aBEndCornerRadiusL - lineIntercept; } return lineDiff; } /* static */ nscoord nsFloatManager::ShapeInfo::XInterceptAtY(const nscoord aY, const nscoord aRadiusX, const nscoord aRadiusY) { // Solve for x in the ellipse equation (x/radiusX)^2 + (y/radiusY)^2 = 1. MOZ_ASSERT(aRadiusY > 0); return aRadiusX * std::sqrt(1 - (aY * aY) / double(aRadiusY * aRadiusY)); } /* static */ nsPoint nsFloatManager::ShapeInfo::ConvertToFloatLogical( const nsPoint& aPoint, WritingMode aWM, const nsSize& aContainerSize) { LogicalPoint logicalPoint(aWM, aPoint, aContainerSize); return nsPoint(logicalPoint.LineRelative(aWM, aContainerSize), logicalPoint.B(aWM)); } /* static */ UniquePtr nsFloatManager::ShapeInfo::ConvertToFloatLogical(const nscoord aRadii[8], WritingMode aWM) { UniquePtr logicalRadii(new nscoord[8]); // Get the physical side for line-left and line-right since border radii // are on the physical axis. Side lineLeftSide = aWM.PhysicalSide(aWM.LogicalSideForLineRelativeDir(eLineRelativeDirLeft)); logicalRadii[eCornerTopLeftX] = aRadii[SideToHalfCorner(lineLeftSide, true, false)]; logicalRadii[eCornerTopLeftY] = aRadii[SideToHalfCorner(lineLeftSide, true, true)]; logicalRadii[eCornerBottomLeftX] = aRadii[SideToHalfCorner(lineLeftSide, false, false)]; logicalRadii[eCornerBottomLeftY] = aRadii[SideToHalfCorner(lineLeftSide, false, true)]; Side lineRightSide = aWM.PhysicalSide(aWM.LogicalSideForLineRelativeDir(eLineRelativeDirRight)); logicalRadii[eCornerTopRightX] = aRadii[SideToHalfCorner(lineRightSide, false, false)]; logicalRadii[eCornerTopRightY] = aRadii[SideToHalfCorner(lineRightSide, false, true)]; logicalRadii[eCornerBottomRightX] = aRadii[SideToHalfCorner(lineRightSide, true, false)]; logicalRadii[eCornerBottomRightY] = aRadii[SideToHalfCorner(lineRightSide, true, true)]; if (aWM.IsLineInverted()) { // When IsLineInverted() is true, i.e. aWM is vertical-lr, // line-over/line-under are inverted from block-start/block-end. So the // relationship reverses between which corner comes first going // clockwise, and which corner is block-start versus block-end. We need // to swap the values stored in top and bottom corners. std::swap(logicalRadii[eCornerTopLeftX], logicalRadii[eCornerBottomLeftX]); std::swap(logicalRadii[eCornerTopLeftY], logicalRadii[eCornerBottomLeftY]); std::swap(logicalRadii[eCornerTopRightX], logicalRadii[eCornerBottomRightX]); std::swap(logicalRadii[eCornerTopRightY], logicalRadii[eCornerBottomRightY]); } return logicalRadii; } //---------------------------------------------------------------------- nsAutoFloatManager::~nsAutoFloatManager() { // Restore the old float manager in the reflow input if necessary. if (mNew) { #ifdef DEBUG if (nsBlockFrame::gNoisyFloatManager) { printf("restoring old float manager %p\n", mOld); } #endif mReflowInput.mFloatManager = mOld; #ifdef DEBUG if (nsBlockFrame::gNoisyFloatManager) { if (mOld) { mReflowInput.mFrame->ListTag(stdout); printf(": float manager %p after reflow\n", mOld); mOld->List(stdout); } } #endif } } void nsAutoFloatManager::CreateFloatManager(nsPresContext *aPresContext) { MOZ_ASSERT(!mNew, "Redundant call to CreateFloatManager!"); // Create a new float manager and install it in the reflow // input. `Remember' the old float manager so we can restore it // later. mNew = MakeUnique(aPresContext->PresShell(), mReflowInput.GetWritingMode()); #ifdef DEBUG if (nsBlockFrame::gNoisyFloatManager) { printf("constructed new float manager %p (replacing %p)\n", mNew.get(), mReflowInput.mFloatManager); } #endif // Set the float manager in the existing reflow input. mOld = mReflowInput.mFloatManager; mReflowInput.mFloatManager = mNew.get(); }