/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include #include #include #include "GLContext.h" #include "gfxCrashReporterUtils.h" #include "gfxPlatform.h" #include "gfxUtils.h" #include "GLContextProvider.h" #include "GLTextureImage.h" #include "nsIMemoryReporter.h" #include "nsThreadUtils.h" #include "prenv.h" #include "prlink.h" #include "SurfaceStream.h" #include "mozilla/DebugOnly.h" #include "mozilla/Preferences.h" using namespace mozilla::gfx; namespace mozilla { namespace gl { #ifdef DEBUG unsigned GLContext::sCurrentGLContextTLS = -1; #endif uint32_t GLContext::sDebugMode = 0; #define MAX_SYMBOL_LENGTH 128 #define MAX_SYMBOL_NAMES 5 // should match the order of GLExtensions, and be null-terminated. static const char *sExtensionNames[] = { "GL_EXT_framebuffer_object", "GL_ARB_framebuffer_object", "GL_ARB_texture_rectangle", "GL_EXT_bgra", "GL_EXT_texture_format_BGRA8888", "GL_OES_depth24", "GL_OES_depth32", "GL_OES_stencil8", "GL_OES_texture_npot", "GL_OES_depth_texture", "GL_OES_packed_depth_stencil", "GL_IMG_read_format", "GL_EXT_read_format_bgra", "GL_APPLE_client_storage", "GL_ARB_texture_non_power_of_two", "GL_ARB_pixel_buffer_object", "GL_ARB_ES2_compatibility", "GL_OES_texture_float", "GL_ARB_texture_float", "GL_EXT_unpack_subimage", "GL_OES_standard_derivatives", "GL_EXT_texture_filter_anisotropic", "GL_EXT_texture_compression_s3tc", "GL_EXT_texture_compression_dxt1", "GL_ANGLE_texture_compression_dxt3", "GL_ANGLE_texture_compression_dxt5", "GL_AMD_compressed_ATC_texture", "GL_IMG_texture_compression_pvrtc", "GL_EXT_framebuffer_blit", "GL_ANGLE_framebuffer_blit", "GL_EXT_framebuffer_multisample", "GL_ANGLE_framebuffer_multisample", "GL_OES_rgb8_rgba8", "GL_ARB_robustness", "GL_EXT_robustness", "GL_ARB_sync", "GL_OES_EGL_image", "GL_OES_EGL_sync", "GL_OES_EGL_image_external", "GL_EXT_packed_depth_stencil", "GL_OES_element_index_uint", nullptr }; static int64_t sTextureMemoryUsage = 0; static int64_t GetTextureMemoryUsage() { return sTextureMemoryUsage; } void GLContext::UpdateTextureMemoryUsage(MemoryUse action, GLenum format, GLenum type, uint16_t tileSize) { uint32_t bytesPerTexel = mozilla::gl::GetBitsPerTexel(format, type) / 8; int64_t bytes = (int64_t)(tileSize * tileSize * bytesPerTexel); if (action == MemoryFreed) { sTextureMemoryUsage -= bytes; } else { sTextureMemoryUsage += bytes; } } NS_MEMORY_REPORTER_IMPLEMENT(TextureMemoryUsage, "gfx-textures", KIND_OTHER, UNITS_BYTES, GetTextureMemoryUsage, "Memory used for storing GL textures.") /* * XXX - we should really know the ARB/EXT variants of these * instead of only handling the symbol if it's exposed directly. */ bool GLContext::InitWithPrefix(const char *prefix, bool trygl) { ScopedGfxFeatureReporter reporter("GL Context"); if (mInitialized) { reporter.SetSuccessful(); return true; } mWorkAroundDriverBugs = gfxPlatform::GetPlatform()->WorkAroundDriverBugs(); SymLoadStruct symbols[] = { { (PRFuncPtr*) &mSymbols.fActiveTexture, { "ActiveTexture", "ActiveTextureARB", NULL } }, { (PRFuncPtr*) &mSymbols.fAttachShader, { "AttachShader", "AttachShaderARB", NULL } }, { (PRFuncPtr*) &mSymbols.fBindAttribLocation, { "BindAttribLocation", "BindAttribLocationARB", NULL } }, { (PRFuncPtr*) &mSymbols.fBindBuffer, { "BindBuffer", "BindBufferARB", NULL } }, { (PRFuncPtr*) &mSymbols.fBindTexture, { "BindTexture", "BindTextureARB", NULL } }, { (PRFuncPtr*) &mSymbols.fBlendColor, { "BlendColor", NULL } }, { (PRFuncPtr*) &mSymbols.fBlendEquation, { "BlendEquation", NULL } }, { (PRFuncPtr*) &mSymbols.fBlendEquationSeparate, { "BlendEquationSeparate", "BlendEquationSeparateEXT", NULL } }, { (PRFuncPtr*) &mSymbols.fBlendFunc, { "BlendFunc", NULL } }, { (PRFuncPtr*) &mSymbols.fBlendFuncSeparate, { "BlendFuncSeparate", "BlendFuncSeparateEXT", NULL } }, { (PRFuncPtr*) &mSymbols.fBufferData, { "BufferData", NULL } }, { (PRFuncPtr*) &mSymbols.fBufferSubData, { "BufferSubData", NULL } }, { (PRFuncPtr*) &mSymbols.fClear, { "Clear", NULL } }, { (PRFuncPtr*) &mSymbols.fClearColor, { "ClearColor", NULL } }, { (PRFuncPtr*) &mSymbols.fClearStencil, { "ClearStencil", NULL } }, { (PRFuncPtr*) &mSymbols.fColorMask, { "ColorMask", NULL } }, { (PRFuncPtr*) &mSymbols.fCompressedTexImage2D, {"CompressedTexImage2D", NULL} }, { (PRFuncPtr*) &mSymbols.fCompressedTexSubImage2D, {"CompressedTexSubImage2D", NULL} }, { (PRFuncPtr*) &mSymbols.fCullFace, { "CullFace", NULL } }, { (PRFuncPtr*) &mSymbols.fDetachShader, { "DetachShader", "DetachShaderARB", NULL } }, { (PRFuncPtr*) &mSymbols.fDepthFunc, { "DepthFunc", NULL } }, { (PRFuncPtr*) &mSymbols.fDepthMask, { "DepthMask", NULL } }, { (PRFuncPtr*) &mSymbols.fDisable, { "Disable", NULL } }, { (PRFuncPtr*) &mSymbols.fDisableVertexAttribArray, { "DisableVertexAttribArray", "DisableVertexAttribArrayARB", NULL } }, { (PRFuncPtr*) &mSymbols.fDrawArrays, { "DrawArrays", NULL } }, { (PRFuncPtr*) &mSymbols.fDrawElements, { "DrawElements", NULL } }, { (PRFuncPtr*) &mSymbols.fEnable, { "Enable", NULL } }, { (PRFuncPtr*) &mSymbols.fEnableVertexAttribArray, { "EnableVertexAttribArray", "EnableVertexAttribArrayARB", NULL } }, { (PRFuncPtr*) &mSymbols.fFinish, { "Finish", NULL } }, { (PRFuncPtr*) &mSymbols.fFlush, { "Flush", NULL } }, { (PRFuncPtr*) &mSymbols.fFrontFace, { "FrontFace", NULL } }, { (PRFuncPtr*) &mSymbols.fGetActiveAttrib, { "GetActiveAttrib", "GetActiveAttribARB", NULL } }, { (PRFuncPtr*) &mSymbols.fGetActiveUniform, { "GetActiveUniform", "GetActiveUniformARB", NULL } }, { (PRFuncPtr*) &mSymbols.fGetAttachedShaders, { "GetAttachedShaders", "GetAttachedShadersARB", NULL } }, { (PRFuncPtr*) &mSymbols.fGetAttribLocation, { "GetAttribLocation", "GetAttribLocationARB", NULL } }, { (PRFuncPtr*) &mSymbols.fGetIntegerv, { "GetIntegerv", NULL } }, { (PRFuncPtr*) &mSymbols.fGetFloatv, { "GetFloatv", NULL } }, { (PRFuncPtr*) &mSymbols.fGetBooleanv, { "GetBooleanv", NULL } }, { (PRFuncPtr*) &mSymbols.fGetBufferParameteriv, { "GetBufferParameteriv", "GetBufferParameterivARB", NULL } }, { (PRFuncPtr*) &mSymbols.fGetError, { "GetError", NULL } }, { (PRFuncPtr*) &mSymbols.fGetProgramiv, { "GetProgramiv", "GetProgramivARB", NULL } }, { (PRFuncPtr*) &mSymbols.fGetProgramInfoLog, { "GetProgramInfoLog", "GetProgramInfoLogARB", NULL } }, { (PRFuncPtr*) &mSymbols.fTexParameteri, { "TexParameteri", NULL } }, { (PRFuncPtr*) &mSymbols.fTexParameteriv, { "TexParameteriv", NULL } }, { (PRFuncPtr*) &mSymbols.fTexParameterf, { "TexParameterf", NULL } }, { (PRFuncPtr*) &mSymbols.fGetString, { "GetString", NULL } }, { (PRFuncPtr*) &mSymbols.fGetTexParameterfv, { "GetTexParameterfv", NULL } }, { (PRFuncPtr*) &mSymbols.fGetTexParameteriv, { "GetTexParameteriv", NULL } }, { (PRFuncPtr*) &mSymbols.fGetUniformfv, { "GetUniformfv", "GetUniformfvARB", NULL } }, { (PRFuncPtr*) &mSymbols.fGetUniformiv, { "GetUniformiv", "GetUniformivARB", NULL } }, { (PRFuncPtr*) &mSymbols.fGetUniformLocation, { "GetUniformLocation", "GetUniformLocationARB", NULL } }, { (PRFuncPtr*) &mSymbols.fGetVertexAttribfv, { "GetVertexAttribfv", "GetVertexAttribfvARB", NULL } }, { (PRFuncPtr*) &mSymbols.fGetVertexAttribiv, { "GetVertexAttribiv", "GetVertexAttribivARB", NULL } }, { (PRFuncPtr*) &mSymbols.fGetVertexAttribPointerv, { "GetVertexAttribPointerv", NULL } }, { (PRFuncPtr*) &mSymbols.fHint, { "Hint", NULL } }, { (PRFuncPtr*) &mSymbols.fIsBuffer, { "IsBuffer", "IsBufferARB", NULL } }, { (PRFuncPtr*) &mSymbols.fIsEnabled, { "IsEnabled", NULL } }, { (PRFuncPtr*) &mSymbols.fIsProgram, { "IsProgram", "IsProgramARB", NULL } }, { (PRFuncPtr*) &mSymbols.fIsShader, { "IsShader", "IsShaderARB", NULL } }, { (PRFuncPtr*) &mSymbols.fIsTexture, { "IsTexture", "IsTextureARB", NULL } }, { (PRFuncPtr*) &mSymbols.fLineWidth, { "LineWidth", NULL } }, { (PRFuncPtr*) &mSymbols.fLinkProgram, { "LinkProgram", "LinkProgramARB", NULL } }, { (PRFuncPtr*) &mSymbols.fPixelStorei, { "PixelStorei", NULL } }, { (PRFuncPtr*) &mSymbols.fPolygonOffset, { "PolygonOffset", NULL } }, { (PRFuncPtr*) &mSymbols.fReadPixels, { "ReadPixels", NULL } }, { (PRFuncPtr*) &mSymbols.fSampleCoverage, { "SampleCoverage", NULL } }, { (PRFuncPtr*) &mSymbols.fScissor, { "Scissor", NULL } }, { (PRFuncPtr*) &mSymbols.fStencilFunc, { "StencilFunc", NULL } }, { (PRFuncPtr*) &mSymbols.fStencilFuncSeparate, { "StencilFuncSeparate", "StencilFuncSeparateEXT", NULL } }, { (PRFuncPtr*) &mSymbols.fStencilMask, { "StencilMask", NULL } }, { (PRFuncPtr*) &mSymbols.fStencilMaskSeparate, { "StencilMaskSeparate", "StencilMaskSeparateEXT", NULL } }, { (PRFuncPtr*) &mSymbols.fStencilOp, { "StencilOp", NULL } }, { (PRFuncPtr*) &mSymbols.fStencilOpSeparate, { "StencilOpSeparate", "StencilOpSeparateEXT", NULL } }, { (PRFuncPtr*) &mSymbols.fTexImage2D, { "TexImage2D", NULL } }, { (PRFuncPtr*) &mSymbols.fTexSubImage2D, { "TexSubImage2D", NULL } }, { (PRFuncPtr*) &mSymbols.fUniform1f, { "Uniform1f", NULL } }, { (PRFuncPtr*) &mSymbols.fUniform1fv, { "Uniform1fv", NULL } }, { (PRFuncPtr*) &mSymbols.fUniform1i, { "Uniform1i", NULL } }, { (PRFuncPtr*) &mSymbols.fUniform1iv, { "Uniform1iv", NULL } }, { (PRFuncPtr*) &mSymbols.fUniform2f, { "Uniform2f", NULL } }, { (PRFuncPtr*) &mSymbols.fUniform2fv, { "Uniform2fv", NULL } }, { (PRFuncPtr*) &mSymbols.fUniform2i, { "Uniform2i", NULL } }, { (PRFuncPtr*) &mSymbols.fUniform2iv, { "Uniform2iv", NULL } }, { (PRFuncPtr*) &mSymbols.fUniform3f, { "Uniform3f", NULL } }, { (PRFuncPtr*) &mSymbols.fUniform3fv, { "Uniform3fv", NULL } }, { (PRFuncPtr*) &mSymbols.fUniform3i, { "Uniform3i", NULL } }, { (PRFuncPtr*) &mSymbols.fUniform3iv, { "Uniform3iv", NULL } }, { (PRFuncPtr*) &mSymbols.fUniform4f, { "Uniform4f", NULL } }, { (PRFuncPtr*) &mSymbols.fUniform4fv, { "Uniform4fv", NULL } }, { (PRFuncPtr*) &mSymbols.fUniform4i, { "Uniform4i", NULL } }, { (PRFuncPtr*) &mSymbols.fUniform4iv, { "Uniform4iv", NULL } }, { (PRFuncPtr*) &mSymbols.fUniformMatrix2fv, { "UniformMatrix2fv", NULL } }, { (PRFuncPtr*) &mSymbols.fUniformMatrix3fv, { "UniformMatrix3fv", NULL } }, { (PRFuncPtr*) &mSymbols.fUniformMatrix4fv, { "UniformMatrix4fv", NULL } }, { (PRFuncPtr*) &mSymbols.fUseProgram, { "UseProgram", NULL } }, { (PRFuncPtr*) &mSymbols.fValidateProgram, { "ValidateProgram", NULL } }, { (PRFuncPtr*) &mSymbols.fVertexAttribPointer, { "VertexAttribPointer", NULL } }, { (PRFuncPtr*) &mSymbols.fVertexAttrib1f, { "VertexAttrib1f", NULL } }, { (PRFuncPtr*) &mSymbols.fVertexAttrib2f, { "VertexAttrib2f", NULL } }, { (PRFuncPtr*) &mSymbols.fVertexAttrib3f, { "VertexAttrib3f", NULL } }, { (PRFuncPtr*) &mSymbols.fVertexAttrib4f, { "VertexAttrib4f", NULL } }, { (PRFuncPtr*) &mSymbols.fVertexAttrib1fv, { "VertexAttrib1fv", NULL } }, { (PRFuncPtr*) &mSymbols.fVertexAttrib2fv, { "VertexAttrib2fv", NULL } }, { (PRFuncPtr*) &mSymbols.fVertexAttrib3fv, { "VertexAttrib3fv", NULL } }, { (PRFuncPtr*) &mSymbols.fVertexAttrib4fv, { "VertexAttrib4fv", NULL } }, { (PRFuncPtr*) &mSymbols.fViewport, { "Viewport", NULL } }, { (PRFuncPtr*) &mSymbols.fCompileShader, { "CompileShader", NULL } }, { (PRFuncPtr*) &mSymbols.fCopyTexImage2D, { "CopyTexImage2D", NULL } }, { (PRFuncPtr*) &mSymbols.fCopyTexSubImage2D, { "CopyTexSubImage2D", NULL } }, { (PRFuncPtr*) &mSymbols.fGetShaderiv, { "GetShaderiv", NULL } }, { (PRFuncPtr*) &mSymbols.fGetShaderInfoLog, { "GetShaderInfoLog", NULL } }, { (PRFuncPtr*) &mSymbols.fGetShaderSource, { "GetShaderSource", NULL } }, { (PRFuncPtr*) &mSymbols.fShaderSource, { "ShaderSource", NULL } }, { (PRFuncPtr*) &mSymbols.fVertexAttribPointer, { "VertexAttribPointer", NULL } }, { (PRFuncPtr*) &mSymbols.fBindFramebuffer, { "BindFramebuffer", "BindFramebufferEXT", NULL } }, { (PRFuncPtr*) &mSymbols.fBindRenderbuffer, { "BindRenderbuffer", "BindRenderbufferEXT", NULL } }, { (PRFuncPtr*) &mSymbols.fCheckFramebufferStatus, { "CheckFramebufferStatus", "CheckFramebufferStatusEXT", NULL } }, { (PRFuncPtr*) &mSymbols.fFramebufferRenderbuffer, { "FramebufferRenderbuffer", "FramebufferRenderbufferEXT", NULL } }, { (PRFuncPtr*) &mSymbols.fFramebufferTexture2D, { "FramebufferTexture2D", "FramebufferTexture2DEXT", NULL } }, { (PRFuncPtr*) &mSymbols.fGenerateMipmap, { "GenerateMipmap", "GenerateMipmapEXT", NULL } }, { (PRFuncPtr*) &mSymbols.fGetFramebufferAttachmentParameteriv, { "GetFramebufferAttachmentParameteriv", "GetFramebufferAttachmentParameterivEXT", NULL } }, { (PRFuncPtr*) &mSymbols.fGetRenderbufferParameteriv, { "GetRenderbufferParameteriv", "GetRenderbufferParameterivEXT", NULL } }, { (PRFuncPtr*) &mSymbols.fIsFramebuffer, { "IsFramebuffer", "IsFramebufferEXT", NULL } }, { (PRFuncPtr*) &mSymbols.fIsRenderbuffer, { "IsRenderbuffer", "IsRenderbufferEXT", NULL } }, { (PRFuncPtr*) &mSymbols.fRenderbufferStorage, { "RenderbufferStorage", "RenderbufferStorageEXT", NULL } }, { (PRFuncPtr*) &mSymbols.fGenBuffers, { "GenBuffers", "GenBuffersARB", NULL } }, { (PRFuncPtr*) &mSymbols.fGenTextures, { "GenTextures", NULL } }, { (PRFuncPtr*) &mSymbols.fCreateProgram, { "CreateProgram", "CreateProgramARB", NULL } }, { (PRFuncPtr*) &mSymbols.fCreateShader, { "CreateShader", "CreateShaderARB", NULL } }, { (PRFuncPtr*) &mSymbols.fGenFramebuffers, { "GenFramebuffers", "GenFramebuffersEXT", NULL } }, { (PRFuncPtr*) &mSymbols.fGenRenderbuffers, { "GenRenderbuffers", "GenRenderbuffersEXT", NULL } }, { (PRFuncPtr*) &mSymbols.fDeleteBuffers, { "DeleteBuffers", "DeleteBuffersARB", NULL } }, { (PRFuncPtr*) &mSymbols.fDeleteTextures, { "DeleteTextures", "DeleteTexturesARB", NULL } }, { (PRFuncPtr*) &mSymbols.fDeleteProgram, { "DeleteProgram", "DeleteProgramARB", NULL } }, { (PRFuncPtr*) &mSymbols.fDeleteShader, { "DeleteShader", "DeleteShaderARB", NULL } }, { (PRFuncPtr*) &mSymbols.fDeleteFramebuffers, { "DeleteFramebuffers", "DeleteFramebuffersEXT", NULL } }, { (PRFuncPtr*) &mSymbols.fDeleteRenderbuffers, { "DeleteRenderbuffers", "DeleteRenderbuffersEXT", NULL } }, { NULL, { NULL } }, }; mInitialized = LoadSymbols(&symbols[0], trygl, prefix); // Load OpenGL ES 2.0 symbols, or desktop if we aren't using ES 2. if (mInitialized) { if (mIsGLES2) { SymLoadStruct symbols_ES2[] = { { (PRFuncPtr*) &mSymbols.fGetShaderPrecisionFormat, { "GetShaderPrecisionFormat", NULL } }, { (PRFuncPtr*) &mSymbols.fClearDepthf, { "ClearDepthf", NULL } }, { (PRFuncPtr*) &mSymbols.fDepthRangef, { "DepthRangef", NULL } }, { NULL, { NULL } }, }; if (!LoadSymbols(&symbols_ES2[0], trygl, prefix)) { NS_ERROR("OpenGL ES 2.0 supported, but symbols could not be loaded."); mInitialized = false; } } else { SymLoadStruct symbols_desktop[] = { { (PRFuncPtr*) &mSymbols.fClearDepth, { "ClearDepth", NULL } }, { (PRFuncPtr*) &mSymbols.fDepthRange, { "DepthRange", NULL } }, { (PRFuncPtr*) &mSymbols.fReadBuffer, { "ReadBuffer", NULL } }, { (PRFuncPtr*) &mSymbols.fMapBuffer, { "MapBuffer", NULL } }, { (PRFuncPtr*) &mSymbols.fUnmapBuffer, { "UnmapBuffer", NULL } }, { (PRFuncPtr*) &mSymbols.fPointParameterf, { "PointParameterf", NULL } }, { (PRFuncPtr*) &mSymbols.fBeginQuery, { "BeginQuery", NULL } }, { (PRFuncPtr*) &mSymbols.fGetQueryObjectuiv, { "GetQueryObjectuiv", NULL } }, { (PRFuncPtr*) &mSymbols.fGenQueries, { "GenQueries", NULL } }, { (PRFuncPtr*) &mSymbols.fDeleteQueries, { "DeleteQueries", NULL } }, { (PRFuncPtr*) &mSymbols.fGetQueryiv, { "GetQueryiv", NULL } }, { (PRFuncPtr*) &mSymbols.fGetQueryObjectiv, { "GetQueryObjectiv", NULL } }, { (PRFuncPtr*) &mSymbols.fEndQuery, { "EndQuery", NULL } }, { (PRFuncPtr*) &mSymbols.fDrawBuffer, { "DrawBuffer", NULL } }, { (PRFuncPtr*) &mSymbols.fDrawBuffers, { "DrawBuffers", NULL } }, { NULL, { NULL } }, }; if (!LoadSymbols(&symbols_desktop[0], trygl, prefix)) { NS_ERROR("Desktop symbols failed to load."); mInitialized = false; } } } const char *glVendorString = nullptr; const char *glRendererString = nullptr; if (mInitialized) { // The order of these strings must match up with the order of the enum // defined in GLContext.h for vendor IDs glVendorString = (const char *)fGetString(LOCAL_GL_VENDOR); if (!glVendorString) mInitialized = false; const char *vendorMatchStrings[VendorOther] = { "Intel", "NVIDIA", "ATI", "Qualcomm", "Imagination", "nouveau" }; mVendor = VendorOther; for (int i = 0; i < VendorOther; ++i) { if (DoesStringMatch(glVendorString, vendorMatchStrings[i])) { mVendor = i; break; } } // The order of these strings must match up with the order of the enum // defined in GLContext.h for renderer IDs glRendererString = (const char *)fGetString(LOCAL_GL_RENDERER); if (!glRendererString) mInitialized = false; const char *rendererMatchStrings[RendererOther] = { "Adreno 200", "Adreno 205", "Adreno (TM) 205", "Adreno (TM) 320", "PowerVR SGX 530", "PowerVR SGX 540", "NVIDIA Tegra" }; mRenderer = RendererOther; for (int i = 0; i < RendererOther; ++i) { if (DoesStringMatch(glRendererString, rendererMatchStrings[i])) { mRenderer = i; break; } } } #ifdef DEBUG if (PR_GetEnv("MOZ_GL_DEBUG")) sDebugMode |= DebugEnabled; // enables extra verbose output, informing of the start and finish of every GL call. // useful e.g. to record information to investigate graphics system crashes/lockups if (PR_GetEnv("MOZ_GL_DEBUG_VERBOSE")) sDebugMode |= DebugTrace; // aborts on GL error. Can be useful to debug quicker code that is known not to generate any GL error in principle. if (PR_GetEnv("MOZ_GL_DEBUG_ABORT_ON_ERROR")) sDebugMode |= DebugAbortOnError; #endif if (mInitialized) { #ifdef DEBUG static bool firstRun = true; if (firstRun && DebugMode()) { const char *vendors[VendorOther] = { "Intel", "NVIDIA", "ATI", "Qualcomm" }; MOZ_ASSERT(glVendorString); if (mVendor < VendorOther) { printf_stderr("OpenGL vendor ('%s') recognized as: %s\n", glVendorString, vendors[mVendor]); } else { printf_stderr("OpenGL vendor ('%s') unrecognized\n", glVendorString); } } firstRun = false; #endif InitExtensions(); // Disable extensions with partial or incorrect support. if (WorkAroundDriverBugs()) { if (Renderer() == RendererAdrenoTM320) { MarkExtensionUnsupported(OES_standard_derivatives); } } NS_ASSERTION(!IsExtensionSupported(GLContext::ARB_pixel_buffer_object) || (mSymbols.fMapBuffer && mSymbols.fUnmapBuffer), "ARB_pixel_buffer_object supported without glMapBuffer/UnmapBuffer being available!"); if (SupportsRobustness()) { if (IsExtensionSupported(ARB_robustness)) { SymLoadStruct robustnessSymbols[] = { { (PRFuncPtr*) &mSymbols.fGetGraphicsResetStatus, { "GetGraphicsResetStatusARB", nullptr } }, { nullptr, { nullptr } }, }; if (!LoadSymbols(&robustnessSymbols[0], trygl, prefix)) { NS_ERROR("GL supports ARB_robustness without supplying GetGraphicsResetStatusARB."); MarkExtensionUnsupported(ARB_robustness); mSymbols.fGetGraphicsResetStatus = nullptr; } else { mHasRobustness = true; } } if (!IsExtensionSupported(ARB_robustness) && IsExtensionSupported(EXT_robustness)) { SymLoadStruct robustnessSymbols[] = { { (PRFuncPtr*) &mSymbols.fGetGraphicsResetStatus, { "GetGraphicsResetStatusEXT", nullptr } }, { nullptr, { nullptr } }, }; if (!LoadSymbols(&robustnessSymbols[0], trygl, prefix)) { NS_ERROR("GL supports EXT_robustness without supplying GetGraphicsResetStatusEXT."); MarkExtensionUnsupported(EXT_robustness); mSymbols.fGetGraphicsResetStatus = nullptr; } else { mHasRobustness = true; } } } // Check for aux symbols based on extensions if (IsExtensionSupported(GLContext::ANGLE_framebuffer_blit) || IsExtensionSupported(GLContext::EXT_framebuffer_blit)) { SymLoadStruct auxSymbols[] = { { (PRFuncPtr*) &mSymbols.fBlitFramebuffer, { "BlitFramebuffer", "BlitFramebufferEXT", "BlitFramebufferANGLE", nullptr } }, { nullptr, { nullptr } }, }; if (!LoadSymbols(&auxSymbols[0], trygl, prefix)) { NS_ERROR("GL supports framebuffer_blit without supplying glBlitFramebuffer"); MarkExtensionUnsupported(ANGLE_framebuffer_blit); MarkExtensionUnsupported(EXT_framebuffer_blit); mSymbols.fBlitFramebuffer = nullptr; } } if (SupportsFramebufferMultisample()) { MOZ_ASSERT(SupportsSplitFramebuffer()); SymLoadStruct auxSymbols[] = { { (PRFuncPtr*) &mSymbols.fRenderbufferStorageMultisample, { "RenderbufferStorageMultisample", "RenderbufferStorageMultisampleEXT", "RenderbufferStorageMultisampleANGLE", nullptr } }, { nullptr, { nullptr } }, }; if (!LoadSymbols(&auxSymbols[0], trygl, prefix)) { NS_ERROR("GL supports framebuffer_multisample without supplying glRenderbufferStorageMultisample"); MarkExtensionUnsupported(ANGLE_framebuffer_multisample); MarkExtensionUnsupported(EXT_framebuffer_multisample); mSymbols.fRenderbufferStorageMultisample = nullptr; } } if (IsExtensionSupported(ARB_sync)) { SymLoadStruct syncSymbols[] = { { (PRFuncPtr*) &mSymbols.fFenceSync, { "FenceSync", nullptr } }, { (PRFuncPtr*) &mSymbols.fIsSync, { "IsSync", nullptr } }, { (PRFuncPtr*) &mSymbols.fDeleteSync, { "DeleteSync", nullptr } }, { (PRFuncPtr*) &mSymbols.fClientWaitSync, { "ClientWaitSync", nullptr } }, { (PRFuncPtr*) &mSymbols.fWaitSync, { "WaitSync", nullptr } }, { (PRFuncPtr*) &mSymbols.fGetInteger64v, { "GetInteger64v", nullptr } }, { (PRFuncPtr*) &mSymbols.fGetSynciv, { "GetSynciv", nullptr } }, { nullptr, { nullptr } }, }; if (!LoadSymbols(&syncSymbols[0], trygl, prefix)) { NS_ERROR("GL supports ARB_sync without supplying its functions."); MarkExtensionUnsupported(ARB_sync); mSymbols.fFenceSync = nullptr; mSymbols.fIsSync = nullptr; mSymbols.fDeleteSync = nullptr; mSymbols.fClientWaitSync = nullptr; mSymbols.fWaitSync = nullptr; mSymbols.fGetInteger64v = nullptr; mSymbols.fGetSynciv = nullptr; } } if (IsExtensionSupported(OES_EGL_image)) { SymLoadStruct imageSymbols[] = { { (PRFuncPtr*) &mSymbols.fEGLImageTargetTexture2D, { "EGLImageTargetTexture2DOES", nullptr } }, { (PRFuncPtr*) &mSymbols.fEGLImageTargetRenderbufferStorage, { "EGLImageTargetRenderbufferStorageOES", nullptr } }, { nullptr, { nullptr } }, }; if (!LoadSymbols(&imageSymbols[0], trygl, prefix)) { NS_ERROR("GL supports OES_EGL_image without supplying its functions."); MarkExtensionUnsupported(OES_EGL_image); mSymbols.fEGLImageTargetTexture2D = nullptr; mSymbols.fEGLImageTargetRenderbufferStorage = nullptr; } } // Load developer symbols, don't fail if we can't find them. SymLoadStruct auxSymbols[] = { { (PRFuncPtr*) &mSymbols.fGetTexImage, { "GetTexImage", nullptr } }, { (PRFuncPtr*) &mSymbols.fGetTexLevelParameteriv, { "GetTexLevelParameteriv", nullptr } }, { nullptr, { nullptr } }, }; bool warnOnFailures = DebugMode(); LoadSymbols(&auxSymbols[0], trygl, prefix, warnOnFailures); } if (mInitialized) { GLint v[4]; fGetIntegerv(LOCAL_GL_SCISSOR_BOX, v); mScissorStack.AppendElement(nsIntRect(v[0], v[1], v[2], v[3])); fGetIntegerv(LOCAL_GL_VIEWPORT, v); mViewportStack.AppendElement(nsIntRect(v[0], v[1], v[2], v[3])); raw_fGetIntegerv(LOCAL_GL_MAX_TEXTURE_SIZE, &mMaxTextureSize); raw_fGetIntegerv(LOCAL_GL_MAX_CUBE_MAP_TEXTURE_SIZE, &mMaxCubeMapTextureSize); raw_fGetIntegerv(LOCAL_GL_MAX_RENDERBUFFER_SIZE, &mMaxRenderbufferSize); #ifdef XP_MACOSX if (mWorkAroundDriverBugs && mVendor == VendorIntel) { // see bug 737182 for 2D textures, bug 684882 for cube map textures. mMaxTextureSize = std::min(mMaxTextureSize, 4096); mMaxCubeMapTextureSize = std::min(mMaxCubeMapTextureSize, 512); // for good measure, we align renderbuffers on what we do for 2D textures mMaxRenderbufferSize = std::min(mMaxRenderbufferSize, 4096); mNeedsTextureSizeChecks = true; } #endif #ifdef MOZ_X11 if (mWorkAroundDriverBugs && mVendor == VendorNouveau) { // see bug 814716. Clamp MaxCubeMapTextureSize at 2K for Nouveau. mMaxCubeMapTextureSize = std::min(mMaxCubeMapTextureSize, 2048); mNeedsTextureSizeChecks = true; } #endif mMaxTextureImageSize = mMaxTextureSize; mMaxSamples = 0; if (SupportsFramebufferMultisample()) { fGetIntegerv(LOCAL_GL_MAX_SAMPLES, (GLint*)&mMaxSamples); } // We're ready for final setup. fBindFramebuffer(LOCAL_GL_FRAMEBUFFER, 0); if (mCaps.any) DetermineCaps(); UpdatePixelFormat(); UpdateGLFormats(mCaps); mTexGarbageBin = new TextureGarbageBin(this); MOZ_ASSERT(IsCurrent()); } if (mInitialized) reporter.SetSuccessful(); else { // if initialization fails, ensure all symbols are zero, to avoid hard-to-understand bugs mSymbols.Zero(); NS_WARNING("InitWithPrefix failed!"); } return mInitialized; } void GLContext::InitExtensions() { MakeCurrent(); const char* extensions = (const char*)fGetString(LOCAL_GL_EXTENSIONS); if (!extensions) return; #ifdef DEBUG static bool firstRun = true; #else // Non-DEBUG, so never spew. const bool firstRun = false; #endif mAvailableExtensions.Load(extensions, sExtensionNames, firstRun && DebugMode()); if (WorkAroundDriverBugs() && Vendor() == VendorQualcomm) { // Some Adreno drivers do not report GL_OES_EGL_sync, but they really do support it. MarkExtensionSupported(OES_EGL_sync); } #ifdef XP_MACOSX // The Mac Nvidia driver, for versions up to and including 10.8, don't seem // to properly support this. See 814839 if (WorkAroundDriverBugs() && Vendor() == gl::GLContext::VendorNVIDIA) { MarkExtensionUnsupported(gl::GLContext::EXT_packed_depth_stencil); } #endif #ifdef DEBUG firstRun = false; #endif } // Take texture data in a given buffer and copy it into a larger buffer, // padding out the edge pixels for filtering if necessary static void CopyAndPadTextureData(const GLvoid* srcBuffer, GLvoid* dstBuffer, GLsizei srcWidth, GLsizei srcHeight, GLsizei dstWidth, GLsizei dstHeight, GLsizei stride, GLint pixelsize) { unsigned char *rowDest = static_cast(dstBuffer); const unsigned char *source = static_cast(srcBuffer); for (GLsizei h = 0; h < srcHeight; ++h) { memcpy(rowDest, source, srcWidth * pixelsize); rowDest += dstWidth * pixelsize; source += stride; } GLsizei padHeight = srcHeight; // Pad out an extra row of pixels so that edge filtering doesn't use garbage data if (dstHeight > srcHeight) { memcpy(rowDest, source - stride, srcWidth * pixelsize); padHeight++; } // Pad out an extra column of pixels if (dstWidth > srcWidth) { rowDest = static_cast(dstBuffer) + srcWidth * pixelsize; for (GLsizei h = 0; h < padHeight; ++h) { memcpy(rowDest, rowDest - pixelsize, pixelsize); rowDest += dstWidth * pixelsize; } } } // In both of these cases (for the Adreno at least) it is impossible // to determine good or bad driver versions for POT texture uploads, // so blacklist them all. Newer drivers use a different rendering // string in the form "Adreno (TM) 200" and the drivers we've seen so // far work fine with NPOT textures, so don't blacklist those until we // have evidence of any problems with them. bool GLContext::CanUploadSubTextures() { if (!mWorkAroundDriverBugs) return true; // There are certain GPUs that we don't want to use glTexSubImage2D on // because that function can be very slow and/or buggy if (Renderer() == RendererAdreno200 || Renderer() == RendererAdreno205) return false; // On PowerVR glTexSubImage does a readback, so it will be slower // than just doing a glTexImage2D() directly. i.e. 26ms vs 10ms if (Renderer() == RendererSGX540 || Renderer() == RendererSGX530) return false; return true; } bool GLContext::sPowerOfTwoForced = false; bool GLContext::sPowerOfTwoPrefCached = false; void GLContext::PlatformStartup() { CacheCanUploadNPOT(); NS_RegisterMemoryReporter(new NS_MEMORY_REPORTER_NAME(TextureMemoryUsage)); } void GLContext::CacheCanUploadNPOT() { MOZ_ASSERT(NS_IsMainThread(), "Can't cache prefs off the main thread."); MOZ_ASSERT(!sPowerOfTwoPrefCached, "Must only call this function once!"); sPowerOfTwoPrefCached = true; mozilla::Preferences::AddBoolVarCache(&sPowerOfTwoForced, "gfx.textures.poweroftwo.force-enabled"); } bool GLContext::CanUploadNonPowerOfTwo() { MOZ_ASSERT(sPowerOfTwoPrefCached); if (!mWorkAroundDriverBugs) return true; // Some GPUs driver crash when uploading non power of two 565 textures. return sPowerOfTwoForced ? false : (Renderer() != RendererAdreno200 && Renderer() != RendererAdreno205); } bool GLContext::WantsSmallTiles() { // We must use small tiles for good performance if we can't use // glTexSubImage2D() for some reason. if (!CanUploadSubTextures()) return true; // We can't use small tiles on the SGX 540, because of races in texture upload. if (mWorkAroundDriverBugs && Renderer() == RendererSGX540) return false; // Don't use small tiles otherwise. (If we implement incremental texture upload, // then we will want to revisit this.) return false; } // Common code for checking for both GL extensions and GLX extensions. bool GLContext::ListHasExtension(const GLubyte *extensions, const char *extension) { // fix bug 612572 - we were crashing as we were calling this function with extensions==null if (extensions == nullptr || extension == nullptr) return false; const GLubyte *start; GLubyte *where, *terminator; /* Extension names should not have spaces. */ where = (GLubyte *) strchr(extension, ' '); if (where || *extension == '\0') return false; /* * It takes a bit of care to be fool-proof about parsing the * OpenGL extensions string. Don't be fooled by sub-strings, * etc. */ start = extensions; for (;;) { where = (GLubyte *) strstr((const char *) start, extension); if (!where) { break; } terminator = where + strlen(extension); if (where == start || *(where - 1) == ' ') { if (*terminator == ' ' || *terminator == '\0') { return true; } } start = terminator; } return false; } already_AddRefed GLContext::CreateTextureImage(const nsIntSize& aSize, TextureImage::ContentType aContentType, GLenum aWrapMode, TextureImage::Flags aFlags) { return CreateBasicTextureImage(this, aSize, aContentType, aWrapMode, aFlags); } void GLContext::ApplyFilterToBoundTexture(gfxPattern::GraphicsFilter aFilter) { ApplyFilterToBoundTexture(LOCAL_GL_TEXTURE_2D, aFilter); } void GLContext::ApplyFilterToBoundTexture(GLuint aTarget, gfxPattern::GraphicsFilter aFilter) { if (aFilter == gfxPattern::FILTER_NEAREST) { fTexParameteri(aTarget, LOCAL_GL_TEXTURE_MIN_FILTER, LOCAL_GL_NEAREST); fTexParameteri(aTarget, LOCAL_GL_TEXTURE_MAG_FILTER, LOCAL_GL_NEAREST); } else { fTexParameteri(aTarget, LOCAL_GL_TEXTURE_MIN_FILTER, LOCAL_GL_LINEAR); fTexParameteri(aTarget, LOCAL_GL_TEXTURE_MAG_FILTER, LOCAL_GL_LINEAR); } } void GLContext::DetermineCaps() { PixelBufferFormat format = QueryPixelFormat(); SurfaceCaps caps; caps.color = !!format.red && !!format.green && !!format.blue; caps.bpp16 = caps.color && format.ColorBits() == 16; caps.alpha = !!format.alpha; caps.depth = !!format.depth; caps.stencil = !!format.stencil; caps.antialias = format.samples > 1; caps.preserve = true; mCaps = caps; } PixelBufferFormat GLContext::QueryPixelFormat() { PixelBufferFormat format; ScopedBindFramebuffer autoFB(this, 0); fGetIntegerv(LOCAL_GL_RED_BITS , &format.red ); fGetIntegerv(LOCAL_GL_GREEN_BITS, &format.green); fGetIntegerv(LOCAL_GL_BLUE_BITS , &format.blue ); fGetIntegerv(LOCAL_GL_ALPHA_BITS, &format.alpha); fGetIntegerv(LOCAL_GL_DEPTH_BITS, &format.depth); fGetIntegerv(LOCAL_GL_STENCIL_BITS, &format.stencil); fGetIntegerv(LOCAL_GL_SAMPLES, &format.samples); return format; } void GLContext::UpdatePixelFormat() { PixelBufferFormat format = QueryPixelFormat(); #ifdef DEBUG const SurfaceCaps& caps = Caps(); MOZ_ASSERT(!caps.any, "Did you forget to DetermineCaps()?"); MOZ_ASSERT(caps.color == !!format.red); MOZ_ASSERT(caps.color == !!format.green); MOZ_ASSERT(caps.color == !!format.blue); MOZ_ASSERT(caps.alpha == !!format.alpha); MOZ_ASSERT(caps.depth == !!format.depth); MOZ_ASSERT(caps.stencil == !!format.stencil); MOZ_ASSERT(caps.antialias == (format.samples > 1)); #endif mPixelFormat = new PixelBufferFormat(format); } GLFormats GLContext::ChooseGLFormats(const SurfaceCaps& caps) const { GLFormats formats; // If we're on ES2 hardware and we have an explicit request for 16 bits of color or less // OR we don't support full 8-bit color, return a 4444 or 565 format. bool bpp16 = caps.bpp16; if (mIsGLES2) { if (!IsExtensionSupported(OES_rgb8_rgba8)) bpp16 = true; } else { // RGB565 is uncommon on desktop, requiring ARB_ES2_compatibility. // Since it's also vanishingly useless there, let's not support it. bpp16 = false; } if (bpp16) { MOZ_ASSERT(mIsGLES2); if (caps.alpha) { formats.color_texInternalFormat = LOCAL_GL_RGBA; formats.color_texFormat = LOCAL_GL_RGBA; formats.color_texType = LOCAL_GL_UNSIGNED_SHORT_4_4_4_4; formats.color_rbFormat = LOCAL_GL_RGBA4; } else { formats.color_texInternalFormat = LOCAL_GL_RGB; formats.color_texFormat = LOCAL_GL_RGB; formats.color_texType = LOCAL_GL_UNSIGNED_SHORT_5_6_5; formats.color_rbFormat = LOCAL_GL_RGB565; } } else { formats.color_texType = LOCAL_GL_UNSIGNED_BYTE; if (caps.alpha) { formats.color_texInternalFormat = mIsGLES2 ? LOCAL_GL_RGBA : LOCAL_GL_RGBA8; formats.color_texFormat = LOCAL_GL_RGBA; formats.color_rbFormat = LOCAL_GL_RGBA8; } else { formats.color_texInternalFormat = mIsGLES2 ? LOCAL_GL_RGB : LOCAL_GL_RGB8; formats.color_texFormat = LOCAL_GL_RGB; formats.color_rbFormat = LOCAL_GL_RGB8; } } uint32_t msaaLevel = Preferences::GetUint("gl.msaa-level", 2); GLsizei samples = msaaLevel * msaaLevel; samples = std::min(samples, mMaxSamples); // Bug 778765. if (WorkAroundDriverBugs() && samples == 1) { samples = 0; } formats.samples = samples; // Be clear that these are 0 if unavailable. formats.depthStencil = 0; if (!mIsGLES2 || IsExtensionSupported(OES_packed_depth_stencil)) { formats.depthStencil = LOCAL_GL_DEPTH24_STENCIL8; } formats.depth = 0; if (mIsGLES2) { if (IsExtensionSupported(OES_depth24)) { formats.depth = LOCAL_GL_DEPTH_COMPONENT24; } else { formats.depth = LOCAL_GL_DEPTH_COMPONENT16; } } else { formats.depth = LOCAL_GL_DEPTH_COMPONENT24; } formats.stencil = LOCAL_GL_STENCIL_INDEX8; return formats; } GLuint GLContext::CreateTextureForOffscreen(const GLFormats& formats, const gfxIntSize& size) { MOZ_ASSERT(formats.color_texInternalFormat); MOZ_ASSERT(formats.color_texFormat); MOZ_ASSERT(formats.color_texType); return CreateTexture(formats.color_texInternalFormat, formats.color_texFormat, formats.color_texType, size); } GLuint GLContext::CreateTexture(GLenum internalFormat, GLenum format, GLenum type, const gfxIntSize& size) { GLuint tex = 0; fGenTextures(1, &tex); ScopedBindTexture autoTex(this, tex); fTexParameteri(LOCAL_GL_TEXTURE_2D, LOCAL_GL_TEXTURE_MIN_FILTER, LOCAL_GL_LINEAR); fTexParameteri(LOCAL_GL_TEXTURE_2D, LOCAL_GL_TEXTURE_MAG_FILTER, LOCAL_GL_LINEAR); fTexParameteri(LOCAL_GL_TEXTURE_2D, LOCAL_GL_TEXTURE_WRAP_S, LOCAL_GL_CLAMP_TO_EDGE); fTexParameteri(LOCAL_GL_TEXTURE_2D, LOCAL_GL_TEXTURE_WRAP_T, LOCAL_GL_CLAMP_TO_EDGE); fTexImage2D(LOCAL_GL_TEXTURE_2D, 0, internalFormat, size.width, size.height, 0, format, type, nullptr); return tex; } static inline void RenderbufferStorageBySamples(GLContext* gl, GLsizei samples, GLenum internalFormat, const gfxIntSize& size) { if (samples) { gl->fRenderbufferStorageMultisample(LOCAL_GL_RENDERBUFFER, samples, internalFormat, size.width, size.height); } else { gl->fRenderbufferStorage(LOCAL_GL_RENDERBUFFER, internalFormat, size.width, size.height); } } GLuint GLContext::CreateRenderbuffer(GLenum format, GLsizei samples, const gfxIntSize& size) { GLuint rb = 0; fGenRenderbuffers(1, &rb); ScopedBindRenderbuffer autoRB(this, rb); RenderbufferStorageBySamples(this, samples, format, size); return rb; } void GLContext::CreateRenderbuffersForOffscreen(const GLFormats& formats, const gfxIntSize& size, bool multisample, GLuint* colorMSRB, GLuint* depthRB, GLuint* stencilRB) { GLsizei samples = multisample ? formats.samples : 0; if (colorMSRB) { MOZ_ASSERT(formats.samples > 0); MOZ_ASSERT(formats.color_rbFormat); *colorMSRB = CreateRenderbuffer(formats.color_rbFormat, samples, size); } if (depthRB && stencilRB && formats.depthStencil) { *depthRB = CreateRenderbuffer(formats.depthStencil, samples, size); *stencilRB = *depthRB; } else { if (depthRB) { MOZ_ASSERT(formats.depth); *depthRB = CreateRenderbuffer(formats.depth, samples, size); } if (stencilRB) { MOZ_ASSERT(formats.stencil); *stencilRB = CreateRenderbuffer(formats.stencil, samples, size); } } } bool GLContext::IsFramebufferComplete(GLuint fb, GLenum* pStatus) { MOZ_ASSERT(fb); ScopedBindFramebuffer autoFB(this, fb); MOZ_ASSERT(fIsFramebuffer(fb)); GLenum status = fCheckFramebufferStatus(LOCAL_GL_FRAMEBUFFER); if (pStatus) *pStatus = status; return status == LOCAL_GL_FRAMEBUFFER_COMPLETE; } void GLContext::AttachBuffersToFB(GLuint colorTex, GLuint colorRB, GLuint depthRB, GLuint stencilRB, GLuint fb) { MOZ_ASSERT(fb); MOZ_ASSERT( !(colorTex && colorRB) ); ScopedBindFramebuffer autoFB(this, fb); MOZ_ASSERT(fIsFramebuffer(fb)); // It only counts after being bound. if (colorTex) { MOZ_ASSERT(fIsTexture(colorTex)); fFramebufferTexture2D(LOCAL_GL_FRAMEBUFFER, LOCAL_GL_COLOR_ATTACHMENT0, LOCAL_GL_TEXTURE_2D, colorTex, 0); } else if (colorRB) { MOZ_ASSERT(fIsRenderbuffer(colorRB)); fFramebufferRenderbuffer(LOCAL_GL_FRAMEBUFFER, LOCAL_GL_COLOR_ATTACHMENT0, LOCAL_GL_RENDERBUFFER, colorRB); } if (depthRB) { MOZ_ASSERT(fIsRenderbuffer(depthRB)); fFramebufferRenderbuffer(LOCAL_GL_FRAMEBUFFER, LOCAL_GL_DEPTH_ATTACHMENT, LOCAL_GL_RENDERBUFFER, depthRB); } if (stencilRB) { MOZ_ASSERT(fIsRenderbuffer(stencilRB)); fFramebufferRenderbuffer(LOCAL_GL_FRAMEBUFFER, LOCAL_GL_STENCIL_ATTACHMENT, LOCAL_GL_RENDERBUFFER, stencilRB); } } bool GLContext::AssembleOffscreenFBs(const GLuint colorMSRB, const GLuint depthRB, const GLuint stencilRB, const GLuint texture, GLuint* drawFB_out, GLuint* readFB_out) { if (!colorMSRB && !texture) { MOZ_ASSERT(!depthRB && !stencilRB); if (drawFB_out) *drawFB_out = 0; if (readFB_out) *readFB_out = 0; return true; } ScopedBindFramebuffer autoFB(this); GLuint drawFB = 0; GLuint readFB = 0; if (texture) { readFB = 0; fGenFramebuffers(1, &readFB); BindFB(readFB); fFramebufferTexture2D(LOCAL_GL_FRAMEBUFFER, LOCAL_GL_COLOR_ATTACHMENT0, LOCAL_GL_TEXTURE_2D, texture, 0); } if (colorMSRB) { drawFB = 0; fGenFramebuffers(1, &drawFB); BindFB(drawFB); fFramebufferRenderbuffer(LOCAL_GL_FRAMEBUFFER, LOCAL_GL_COLOR_ATTACHMENT0, LOCAL_GL_RENDERBUFFER, colorMSRB); } else { drawFB = readFB; } MOZ_ASSERT(GetFB() == drawFB); if (depthRB) { fFramebufferRenderbuffer(LOCAL_GL_FRAMEBUFFER, LOCAL_GL_DEPTH_ATTACHMENT, LOCAL_GL_RENDERBUFFER, depthRB); } if (stencilRB) { fFramebufferRenderbuffer(LOCAL_GL_FRAMEBUFFER, LOCAL_GL_STENCIL_ATTACHMENT, LOCAL_GL_RENDERBUFFER, stencilRB); } // We should be all resized. Check for framebuffer completeness. GLenum status; bool isComplete = true; if (!IsFramebufferComplete(drawFB, &status)) { NS_WARNING("DrawFBO: Incomplete"); #ifdef DEBUG if (DebugMode()) { printf_stderr("Framebuffer status: %X\n", status); } #endif isComplete = false; } if (!IsFramebufferComplete(readFB, &status)) { NS_WARNING("ReadFBO: Incomplete"); #ifdef DEBUG if (DebugMode()) { printf_stderr("Framebuffer status: %X\n", status); } #endif isComplete = false; } if (drawFB_out) { *drawFB_out = drawFB; } else if (drawFB) { NS_RUNTIMEABORT("drawFB created when not requested!"); } if (readFB_out) { *readFB_out = readFB; } else if (readFB) { NS_RUNTIMEABORT("readFB created when not requested!"); } return isComplete; } bool GLContext::PublishFrame() { MOZ_ASSERT(mScreen); if (!mScreen->PublishFrame(OffscreenSize())) return false; return true; } SharedSurface* GLContext::RequestFrame() { MOZ_ASSERT(mScreen); return mScreen->Stream()->SwapConsumer(); } void GLContext::ClearSafely() { // bug 659349 --- we must be very careful here: clearing a GL framebuffer is nontrivial, relies on a lot of state, // and in the case of the backbuffer of a WebGL context, state is exposed to scripts. // // The code here is taken from WebGLContext::ForceClearFramebufferWithDefaultValues, but I didn't find a good way of // sharing code with it. WebGL's code is somewhat performance-critical as it is typically called on every frame, so // WebGL keeps track of GL state to avoid having to query it everytime, and also tries to only do work for actually // present buffers (e.g. stencil buffer). Doing that here seems like premature optimization, // as ClearSafely() is called only when e.g. a canvas is resized, not on every animation frame. realGLboolean scissorTestEnabled; realGLboolean ditherEnabled; realGLboolean colorWriteMask[4]; realGLboolean depthWriteMask; GLint stencilWriteMaskFront, stencilWriteMaskBack; GLfloat colorClearValue[4]; GLfloat depthClearValue; GLint stencilClearValue; // save current GL state fGetBooleanv(LOCAL_GL_SCISSOR_TEST, &scissorTestEnabled); fGetBooleanv(LOCAL_GL_DITHER, &ditherEnabled); fGetBooleanv(LOCAL_GL_COLOR_WRITEMASK, colorWriteMask); fGetBooleanv(LOCAL_GL_DEPTH_WRITEMASK, &depthWriteMask); fGetIntegerv(LOCAL_GL_STENCIL_WRITEMASK, &stencilWriteMaskFront); fGetIntegerv(LOCAL_GL_STENCIL_BACK_WRITEMASK, &stencilWriteMaskBack); fGetFloatv(LOCAL_GL_COLOR_CLEAR_VALUE, colorClearValue); fGetFloatv(LOCAL_GL_DEPTH_CLEAR_VALUE, &depthClearValue); fGetIntegerv(LOCAL_GL_STENCIL_CLEAR_VALUE, &stencilClearValue); // prepare GL state for clearing fDisable(LOCAL_GL_SCISSOR_TEST); fDisable(LOCAL_GL_DITHER); PushViewportRect(nsIntRect(0, 0, OffscreenSize().width, OffscreenSize().height)); fColorMask(1, 1, 1, 1); fClearColor(0.f, 0.f, 0.f, 0.f); fDepthMask(1); fClearDepth(1.0f); fStencilMask(0xffffffff); fClearStencil(0); // do clear fClear(LOCAL_GL_COLOR_BUFFER_BIT | LOCAL_GL_DEPTH_BUFFER_BIT | LOCAL_GL_STENCIL_BUFFER_BIT); // restore GL state after clearing fColorMask(colorWriteMask[0], colorWriteMask[1], colorWriteMask[2], colorWriteMask[3]); fClearColor(colorClearValue[0], colorClearValue[1], colorClearValue[2], colorClearValue[3]); fDepthMask(depthWriteMask); fClearDepth(depthClearValue); fStencilMaskSeparate(LOCAL_GL_FRONT, stencilWriteMaskFront); fStencilMaskSeparate(LOCAL_GL_BACK, stencilWriteMaskBack); fClearStencil(stencilClearValue); PopViewportRect(); if (ditherEnabled) fEnable(LOCAL_GL_DITHER); else fDisable(LOCAL_GL_DITHER); if (scissorTestEnabled) fEnable(LOCAL_GL_SCISSOR_TEST); else fDisable(LOCAL_GL_SCISSOR_TEST); } void GLContext::MarkDestroyed() { if (IsDestroyed()) return; if (MakeCurrent()) { DestroyScreenBuffer(); // This is for Blit{Tex,FB}To{TexFB}. DeleteTexBlitProgram(); // Likely used by OGL Layers. fDeleteProgram(mBlitProgram); mBlitProgram = 0; fDeleteFramebuffers(1, &mBlitFramebuffer); mBlitFramebuffer = 0; mTexGarbageBin->GLContextTeardown(); } else { NS_WARNING("MakeCurrent() failed during MarkDestroyed! Skipping GL object teardown."); } mSymbols.Zero(); } static void SwapRAndBComponents(gfxImageSurface* surf) { for (int j = 0; j < surf->Height(); ++j) { uint32_t* row = (uint32_t*)(surf->Data() + surf->Stride() * j); for (int i = 0; i < surf->Width(); ++i) { *row = (*row & 0xff00ff00) | ((*row & 0xff) << 16) | ((*row & 0xff0000) >> 16); row++; } } } static already_AddRefed YInvertImageSurface(gfxImageSurface* aSurf) { gfxIntSize size = aSurf->GetSize(); nsRefPtr temp = new gfxImageSurface(size, aSurf->Format()); nsRefPtr ctx = new gfxContext(temp); ctx->SetOperator(gfxContext::OPERATOR_SOURCE); ctx->Scale(1.0, -1.0); ctx->Translate(-gfxPoint(0.0, size.height)); ctx->SetSource(aSurf); ctx->Paint(); return temp.forget(); } already_AddRefed GLContext::GetTexImage(GLuint aTexture, bool aYInvert, ShaderProgramType aShader) { MakeCurrent(); GuaranteeResolve(); fActiveTexture(LOCAL_GL_TEXTURE0); fBindTexture(LOCAL_GL_TEXTURE_2D, aTexture); gfxIntSize size; fGetTexLevelParameteriv(LOCAL_GL_TEXTURE_2D, 0, LOCAL_GL_TEXTURE_WIDTH, &size.width); fGetTexLevelParameteriv(LOCAL_GL_TEXTURE_2D, 0, LOCAL_GL_TEXTURE_HEIGHT, &size.height); nsRefPtr surf = new gfxImageSurface(size, gfxASurface::ImageFormatARGB32); if (!surf || surf->CairoStatus()) { return nullptr; } uint32_t currentPackAlignment = 0; fGetIntegerv(LOCAL_GL_PACK_ALIGNMENT, (GLint*)¤tPackAlignment); if (currentPackAlignment != 4) { fPixelStorei(LOCAL_GL_PACK_ALIGNMENT, 4); } fGetTexImage(LOCAL_GL_TEXTURE_2D, 0, LOCAL_GL_RGBA, LOCAL_GL_UNSIGNED_BYTE, surf->Data()); if (currentPackAlignment != 4) { fPixelStorei(LOCAL_GL_PACK_ALIGNMENT, currentPackAlignment); } if (aShader == RGBALayerProgramType || aShader == RGBXLayerProgramType) { SwapRAndBComponents(surf); } if (aYInvert) { surf = YInvertImageSurface(surf); } return surf.forget(); } already_AddRefed GLContext::ReadTextureImage(GLuint aTexture, const gfxIntSize& aSize, GLenum aTextureFormat, bool aYInvert) { MakeCurrent(); nsRefPtr isurf; GLint oldrb, oldfb, oldprog, oldPackAlignment; GLint success; GLuint rb = 0, fb = 0; GLuint vs = 0, fs = 0, prog = 0; const char *vShader = "attribute vec4 aVertex;\n" "attribute vec2 aTexCoord;\n" "varying vec2 vTexCoord;\n" "void main() { gl_Position = aVertex; vTexCoord = aTexCoord; }"; const char *fShader = "#ifdef GL_ES\n" "precision mediump float;\n" "#endif\n" "varying vec2 vTexCoord;\n" "uniform sampler2D uTexture;\n" "void main() { gl_FragColor = texture2D(uTexture, vTexCoord); }"; float verts[4*4] = { -1.0f, -1.0f, 0.0f, 1.0f, 1.0f, -1.0f, 0.0f, 1.0f, -1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f }; float texcoords[2*4] = { 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f }; fGetIntegerv(LOCAL_GL_RENDERBUFFER_BINDING, &oldrb); fGetIntegerv(LOCAL_GL_FRAMEBUFFER_BINDING, &oldfb); fGetIntegerv(LOCAL_GL_CURRENT_PROGRAM, &oldprog); fGetIntegerv(LOCAL_GL_PACK_ALIGNMENT, &oldPackAlignment); PushViewportRect(nsIntRect(0, 0, aSize.width, aSize.height)); fGenRenderbuffers(1, &rb); fBindRenderbuffer(LOCAL_GL_RENDERBUFFER, rb); fRenderbufferStorage(LOCAL_GL_RENDERBUFFER, LOCAL_GL_RGBA, aSize.width, aSize.height); fGenFramebuffers(1, &fb); fBindFramebuffer(LOCAL_GL_FRAMEBUFFER, fb); fFramebufferRenderbuffer(LOCAL_GL_FRAMEBUFFER, LOCAL_GL_COLOR_ATTACHMENT0, LOCAL_GL_RENDERBUFFER, rb); if (fCheckFramebufferStatus(LOCAL_GL_FRAMEBUFFER) != LOCAL_GL_FRAMEBUFFER_COMPLETE) { goto cleanup; } vs = fCreateShader(LOCAL_GL_VERTEX_SHADER); fs = fCreateShader(LOCAL_GL_FRAGMENT_SHADER); fShaderSource(vs, 1, (const GLchar**) &vShader, NULL); fShaderSource(fs, 1, (const GLchar**) &fShader, NULL); fCompileShader(vs); fCompileShader(fs); prog = fCreateProgram(); fAttachShader(prog, vs); fAttachShader(prog, fs); fBindAttribLocation(prog, 0, "aVertex"); fBindAttribLocation(prog, 1, "aTexCoord"); fLinkProgram(prog); fGetProgramiv(prog, LOCAL_GL_LINK_STATUS, &success); if (!success) { goto cleanup; } fUseProgram(prog); fEnableVertexAttribArray(0); fEnableVertexAttribArray(1); fVertexAttribPointer(0, 4, LOCAL_GL_FLOAT, LOCAL_GL_FALSE, 0, verts); fVertexAttribPointer(1, 2, LOCAL_GL_FLOAT, LOCAL_GL_FALSE, 0, texcoords); fActiveTexture(LOCAL_GL_TEXTURE0); fBindTexture(LOCAL_GL_TEXTURE_2D, aTexture); fUniform1i(fGetUniformLocation(prog, "uTexture"), 0); fDrawArrays(LOCAL_GL_TRIANGLE_STRIP, 0, 4); fDisableVertexAttribArray(1); fDisableVertexAttribArray(0); isurf = new gfxImageSurface(aSize, gfxASurface::ImageFormatARGB32); if (!isurf || isurf->CairoStatus()) { isurf = nullptr; goto cleanup; } if (oldPackAlignment != 4) fPixelStorei(LOCAL_GL_PACK_ALIGNMENT, 4); fReadPixels(0, 0, aSize.width, aSize.height, LOCAL_GL_RGBA, LOCAL_GL_UNSIGNED_BYTE, isurf->Data()); SwapRAndBComponents(isurf); if (oldPackAlignment != 4) fPixelStorei(LOCAL_GL_PACK_ALIGNMENT, oldPackAlignment); if (aYInvert) { isurf = YInvertImageSurface(isurf); } cleanup: // note that deleting 0 has no effect in any of these calls fDeleteRenderbuffers(1, &rb); fDeleteFramebuffers(1, &fb); fDeleteShader(vs); fDeleteShader(fs); fDeleteProgram(prog); fBindRenderbuffer(LOCAL_GL_RENDERBUFFER, oldrb); fBindFramebuffer(LOCAL_GL_FRAMEBUFFER, oldfb); fUseProgram(oldprog); PopViewportRect(); return isurf.forget(); } static bool GetActualReadFormats(GLContext* gl, GLenum destFormat, GLenum destType, GLenum& readFormat, GLenum& readType) { if (destFormat == LOCAL_GL_RGBA && destType == LOCAL_GL_UNSIGNED_BYTE) { readFormat = destFormat; readType = destType; return true; } bool fallback = true; if (gl->IsGLES2()) { GLenum auxFormat = 0; GLenum auxType = 0; gl->fGetIntegerv(LOCAL_GL_IMPLEMENTATION_COLOR_READ_FORMAT, (GLint*)&auxFormat); gl->fGetIntegerv(LOCAL_GL_IMPLEMENTATION_COLOR_READ_TYPE, (GLint*)&auxType); if (destFormat == auxFormat && destType == auxType) { fallback = false; } } else { switch (destFormat) { case LOCAL_GL_RGB: { if (destType == LOCAL_GL_UNSIGNED_SHORT_5_6_5_REV) fallback = false; break; } case LOCAL_GL_BGRA: { if (destType == LOCAL_GL_UNSIGNED_INT_8_8_8_8_REV) fallback = false; break; } } } if (fallback) { readFormat = LOCAL_GL_RGBA; readType = LOCAL_GL_UNSIGNED_BYTE; return false; } else { readFormat = destFormat; readType = destType; return true; } } void GLContext::ReadScreenIntoImageSurface(gfxImageSurface* dest) { ScopedBindFramebuffer autoFB(this, 0); ReadPixelsIntoImageSurface(dest); } void GLContext::ReadPixelsIntoImageSurface(gfxImageSurface* dest) { MakeCurrent(); MOZ_ASSERT(dest->GetSize() != gfxIntSize(0, 0)); /* ImageFormatARGB32: * RGBA+UByte: be[RGBA], le[ABGR] * RGBA+UInt: le[RGBA] * BGRA+UInt: le[BGRA] * BGRA+UIntRev: le[ARGB] * * ImageFormatRGB16_565: * RGB+UShort: le[rrrrrggg,gggbbbbb] */ bool hasAlpha = dest->Format() == gfxASurface::ImageFormatARGB32; int destPixelSize; GLenum destFormat; GLenum destType; switch (dest->Format()) { case gfxASurface::ImageFormatRGB24: // XRGB case gfxASurface::ImageFormatARGB32: destPixelSize = 4; // Needs host (little) endian ARGB. destFormat = LOCAL_GL_BGRA; destType = LOCAL_GL_UNSIGNED_INT_8_8_8_8_REV; break; case gfxASurface::ImageFormatRGB16_565: destPixelSize = 2; destFormat = LOCAL_GL_RGB; destType = LOCAL_GL_UNSIGNED_SHORT_5_6_5_REV; break; default: MOZ_NOT_REACHED("Bad format."); return; } MOZ_ASSERT(dest->Stride() == dest->Width() * destPixelSize); GLenum readFormat = destFormat; GLenum readType = destType; bool needsTempSurf = !GetActualReadFormats(this, destFormat, destType, readFormat, readType); nsAutoPtr tempSurf; gfxImageSurface* readSurf = nullptr; int readPixelSize = 0; if (needsTempSurf) { if (DebugMode()) { NS_WARNING("Needing intermediary surface for ReadPixels. This will be slow!"); } gfxASurface::gfxImageFormat readFormatGFX; switch (readFormat) { case LOCAL_GL_RGBA: case LOCAL_GL_BGRA: { readFormatGFX = hasAlpha ? gfxASurface::ImageFormatARGB32 : gfxASurface::ImageFormatRGB24; break; } case LOCAL_GL_RGB: { MOZ_ASSERT(readPixelSize == 2); MOZ_ASSERT(readType == LOCAL_GL_UNSIGNED_SHORT_5_6_5_REV); readFormatGFX = gfxASurface::ImageFormatRGB16_565; break; } default: { MOZ_NOT_REACHED("Bad read format."); return; } } switch (readType) { case LOCAL_GL_UNSIGNED_BYTE: { MOZ_ASSERT(readFormat == LOCAL_GL_RGBA); readPixelSize = 4; break; } case LOCAL_GL_UNSIGNED_INT_8_8_8_8_REV: { MOZ_ASSERT(readFormat == LOCAL_GL_BGRA); readPixelSize = 4; break; } case LOCAL_GL_UNSIGNED_SHORT_5_6_5_REV: { MOZ_ASSERT(readFormat == LOCAL_GL_RGB); readPixelSize = 2; break; } default: { MOZ_NOT_REACHED("Bad read type."); return; } } tempSurf = new gfxImageSurface(dest->GetSize(), readFormatGFX, false); readSurf = tempSurf; } else { readPixelSize = destPixelSize; readSurf = dest; } MOZ_ASSERT(readPixelSize); GLint currentPackAlignment = 0; fGetIntegerv(LOCAL_GL_PACK_ALIGNMENT, ¤tPackAlignment); if (currentPackAlignment != readPixelSize) fPixelStorei(LOCAL_GL_PACK_ALIGNMENT, readPixelSize); GLsizei width = dest->Width(); GLsizei height = dest->Height(); readSurf->Flush(); fReadPixels(0, 0, width, height, readFormat, readType, readSurf->Data()); readSurf->MarkDirty(); if (currentPackAlignment != readPixelSize) fPixelStorei(LOCAL_GL_PACK_ALIGNMENT, currentPackAlignment); if (readSurf != dest) { MOZ_ASSERT(readFormat == LOCAL_GL_RGBA); MOZ_ASSERT(readType == LOCAL_GL_UNSIGNED_BYTE); // So we just copied in RGBA in big endian, or le: 0xAABBGGRR. // We want 0xAARRGGBB, so swap R and B: dest->Flush(); SwapRAndBComponents(readSurf); dest->MarkDirty(); gfxContext ctx(dest); ctx.SetOperator(gfxContext::OPERATOR_SOURCE); ctx.SetSource(readSurf); ctx.Paint(); } // Check if GL is giving back 1.0 alpha for // RGBA reads to RGBA images from no-alpha buffers. #ifdef XP_MACOSX if (WorkAroundDriverBugs() && mVendor == VendorNVIDIA && dest->Format() == gfxASurface::ImageFormatARGB32 && width && height) { GLint alphaBits = 0; fGetIntegerv(LOCAL_GL_ALPHA_BITS, &alphaBits); if (!alphaBits) { const uint32_t alphaMask = gfxPackedPixelNoPreMultiply(0xff,0,0,0); dest->Flush(); uint32_t* itr = (uint32_t*)dest->Data(); uint32_t testPixel = *itr; if ((testPixel & alphaMask) != alphaMask) { // We need to set the alpha channel to 1.0 manually. uint32_t* itrEnd = itr + width*height; // Stride is guaranteed to be width*4. for (; itr != itrEnd; itr++) { *itr |= alphaMask; } } dest->MarkDirty(); } } #endif } void GLContext::BlitTextureImage(TextureImage *aSrc, const nsIntRect& aSrcRect, TextureImage *aDst, const nsIntRect& aDstRect) { NS_ASSERTION(!aSrc->InUpdate(), "Source texture is in update!"); NS_ASSERTION(!aDst->InUpdate(), "Destination texture is in update!"); if (aSrcRect.IsEmpty() || aDstRect.IsEmpty()) return; int savedFb = 0; fGetIntegerv(LOCAL_GL_FRAMEBUFFER_BINDING, &savedFb); fDisable(LOCAL_GL_SCISSOR_TEST); fDisable(LOCAL_GL_BLEND); // 2.0 means scale up by two float blitScaleX = float(aDstRect.width) / float(aSrcRect.width); float blitScaleY = float(aDstRect.height) / float(aSrcRect.height); // We start iterating over all destination tiles aDst->BeginTileIteration(); do { // calculate portion of the tile that is going to be painted to nsIntRect dstSubRect; nsIntRect dstTextureRect = aDst->GetTileRect(); dstSubRect.IntersectRect(aDstRect, dstTextureRect); // this tile is not part of the destination rectangle aDstRect if (dstSubRect.IsEmpty()) continue; // (*) transform the rect of this tile into the rectangle defined by aSrcRect... nsIntRect dstInSrcRect(dstSubRect); dstInSrcRect.MoveBy(-aDstRect.TopLeft()); // ...which might be of different size, hence scale accordingly dstInSrcRect.ScaleRoundOut(1.0f / blitScaleX, 1.0f / blitScaleY); dstInSrcRect.MoveBy(aSrcRect.TopLeft()); SetBlitFramebufferForDestTexture(aDst->GetTextureID()); UseBlitProgram(); aSrc->BeginTileIteration(); // now iterate over all tiles in the source Image... do { // calculate portion of the source tile that is in the source rect nsIntRect srcSubRect; nsIntRect srcTextureRect = aSrc->GetTileRect(); srcSubRect.IntersectRect(aSrcRect, srcTextureRect); // this tile is not part of the source rect if (srcSubRect.IsEmpty()) { continue; } // calculate intersection of source rect with destination rect srcSubRect.IntersectRect(srcSubRect, dstInSrcRect); // this tile does not overlap the current destination tile if (srcSubRect.IsEmpty()) { continue; } // We now have the intersection of // the current source tile // and the desired source rectangle // and the destination tile // and the desired destination rectange // in destination space. // We need to transform this back into destination space, inverting the transform from (*) nsIntRect srcSubInDstRect(srcSubRect); srcSubInDstRect.MoveBy(-aSrcRect.TopLeft()); srcSubInDstRect.ScaleRoundOut(blitScaleX, blitScaleY); srcSubInDstRect.MoveBy(aDstRect.TopLeft()); // we transform these rectangles to be relative to the current src and dst tiles, respectively nsIntSize srcSize = srcTextureRect.Size(); nsIntSize dstSize = dstTextureRect.Size(); srcSubRect.MoveBy(-srcTextureRect.x, -srcTextureRect.y); srcSubInDstRect.MoveBy(-dstTextureRect.x, -dstTextureRect.y); float dx0 = 2.0f * float(srcSubInDstRect.x) / float(dstSize.width) - 1.0f; float dy0 = 2.0f * float(srcSubInDstRect.y) / float(dstSize.height) - 1.0f; float dx1 = 2.0f * float(srcSubInDstRect.x + srcSubInDstRect.width) / float(dstSize.width) - 1.0f; float dy1 = 2.0f * float(srcSubInDstRect.y + srcSubInDstRect.height) / float(dstSize.height) - 1.0f; PushViewportRect(nsIntRect(0, 0, dstSize.width, dstSize.height)); RectTriangles rects; nsIntSize realTexSize = srcSize; if (!CanUploadNonPowerOfTwo()) { realTexSize = nsIntSize(NextPowerOfTwo(srcSize.width), NextPowerOfTwo(srcSize.height)); } if (aSrc->GetWrapMode() == LOCAL_GL_REPEAT) { rects.addRect(/* dest rectangle */ dx0, dy0, dx1, dy1, /* tex coords */ srcSubRect.x / float(realTexSize.width), srcSubRect.y / float(realTexSize.height), srcSubRect.XMost() / float(realTexSize.width), srcSubRect.YMost() / float(realTexSize.height)); } else { DecomposeIntoNoRepeatTriangles(srcSubRect, realTexSize, rects); // now put the coords into the d[xy]0 .. d[xy]1 coordinate space // from the 0..1 that it comes out of decompose RectTriangles::vert_coord* v = (RectTriangles::vert_coord*)rects.vertexPointer(); for (unsigned int i = 0; i < rects.elements(); ++i) { v[i].x = (v[i].x * (dx1 - dx0)) + dx0; v[i].y = (v[i].y * (dy1 - dy0)) + dy0; } } TextureImage::ScopedBindTexture texBind(aSrc, LOCAL_GL_TEXTURE0); fBindBuffer(LOCAL_GL_ARRAY_BUFFER, 0); fVertexAttribPointer(0, 2, LOCAL_GL_FLOAT, LOCAL_GL_FALSE, 0, rects.vertexPointer()); fVertexAttribPointer(1, 2, LOCAL_GL_FLOAT, LOCAL_GL_FALSE, 0, rects.texCoordPointer()); fEnableVertexAttribArray(0); fEnableVertexAttribArray(1); fDrawArrays(LOCAL_GL_TRIANGLES, 0, rects.elements()); fDisableVertexAttribArray(0); fDisableVertexAttribArray(1); PopViewportRect(); } while (aSrc->NextTile()); } while (aDst->NextTile()); fVertexAttribPointer(0, 2, LOCAL_GL_FLOAT, LOCAL_GL_FALSE, 0, NULL); fVertexAttribPointer(1, 2, LOCAL_GL_FLOAT, LOCAL_GL_FALSE, 0, NULL); // unbind the previous texture from the framebuffer SetBlitFramebufferForDestTexture(0); fBindFramebuffer(LOCAL_GL_FRAMEBUFFER, savedFb); fEnable(LOCAL_GL_SCISSOR_TEST); fEnable(LOCAL_GL_BLEND); } static unsigned int DataOffset(gfxImageSurface *aSurf, const nsIntPoint &aPoint) { unsigned int data = aPoint.y * aSurf->Stride(); data += aPoint.x * gfxASurface::BytePerPixelFromFormat(aSurf->Format()); return data; } ShaderProgramType GLContext::UploadSurfaceToTexture(gfxASurface *aSurface, const nsIntRegion& aDstRegion, GLuint& aTexture, bool aOverwrite, const nsIntPoint& aSrcPoint, bool aPixelBuffer, GLenum aTextureUnit) { bool textureInited = aOverwrite ? false : true; MakeCurrent(); fActiveTexture(aTextureUnit); if (!aTexture) { fGenTextures(1, &aTexture); fBindTexture(LOCAL_GL_TEXTURE_2D, aTexture); fTexParameteri(LOCAL_GL_TEXTURE_2D, LOCAL_GL_TEXTURE_MIN_FILTER, LOCAL_GL_LINEAR); fTexParameteri(LOCAL_GL_TEXTURE_2D, LOCAL_GL_TEXTURE_MAG_FILTER, LOCAL_GL_LINEAR); fTexParameteri(LOCAL_GL_TEXTURE_2D, LOCAL_GL_TEXTURE_WRAP_S, LOCAL_GL_CLAMP_TO_EDGE); fTexParameteri(LOCAL_GL_TEXTURE_2D, LOCAL_GL_TEXTURE_WRAP_T, LOCAL_GL_CLAMP_TO_EDGE); textureInited = false; } else { fBindTexture(LOCAL_GL_TEXTURE_2D, aTexture); } nsIntRegion paintRegion; if (!textureInited) { paintRegion = nsIntRegion(aDstRegion.GetBounds()); } else { paintRegion = aDstRegion; } nsRefPtr imageSurface = aSurface->GetAsImageSurface(); unsigned char* data = NULL; if (!imageSurface || (imageSurface->Format() != gfxASurface::ImageFormatARGB32 && imageSurface->Format() != gfxASurface::ImageFormatRGB24 && imageSurface->Format() != gfxASurface::ImageFormatRGB16_565 && imageSurface->Format() != gfxASurface::ImageFormatA8)) { // We can't get suitable pixel data for the surface, make a copy nsIntRect bounds = aDstRegion.GetBounds(); imageSurface = new gfxImageSurface(gfxIntSize(bounds.width, bounds.height), gfxASurface::ImageFormatARGB32); nsRefPtr context = new gfxContext(imageSurface); context->Translate(-gfxPoint(aSrcPoint.x, aSrcPoint.y)); context->SetSource(aSurface); context->Paint(); data = imageSurface->Data(); NS_ASSERTION(!aPixelBuffer, "Must be using an image compatible surface with pixel buffers!"); } else { // If a pixel buffer is bound the data pointer parameter is relative // to the start of the data block. if (!aPixelBuffer) { data = imageSurface->Data(); } data += DataOffset(imageSurface, aSrcPoint); } MOZ_ASSERT(imageSurface); imageSurface->Flush(); GLenum format; GLenum type; int32_t pixelSize = gfxASurface::BytePerPixelFromFormat(imageSurface->Format()); ShaderProgramType shader; switch (imageSurface->Format()) { case gfxASurface::ImageFormatARGB32: format = LOCAL_GL_RGBA; type = LOCAL_GL_UNSIGNED_BYTE; shader = BGRALayerProgramType; break; case gfxASurface::ImageFormatRGB24: // Treat RGB24 surfaces as RGBA32 except for the shader // program used. format = LOCAL_GL_RGBA; type = LOCAL_GL_UNSIGNED_BYTE; shader = BGRXLayerProgramType; break; case gfxASurface::ImageFormatRGB16_565: format = LOCAL_GL_RGB; type = LOCAL_GL_UNSIGNED_SHORT_5_6_5; shader = RGBALayerProgramType; break; case gfxASurface::ImageFormatA8: format = LOCAL_GL_LUMINANCE; type = LOCAL_GL_UNSIGNED_BYTE; // We don't have a specific luminance shader shader = ShaderProgramType(0); break; default: NS_ASSERTION(false, "Unhandled image surface format!"); format = 0; type = 0; shader = ShaderProgramType(0); } int32_t stride = imageSurface->Stride(); nsIntRegionRectIterator iter(paintRegion); const nsIntRect *iterRect; // Top left point of the region's bounding rectangle. nsIntPoint topLeft = paintRegion.GetBounds().TopLeft(); while ((iterRect = iter.Next())) { // The inital data pointer is at the top left point of the region's // bounding rectangle. We need to find the offset of this rect // within the region and adjust the data pointer accordingly. unsigned char *rectData = data + DataOffset(imageSurface, iterRect->TopLeft() - topLeft); NS_ASSERTION(textureInited || (iterRect->x == 0 && iterRect->y == 0), "Must be uploading to the origin when we don't have an existing texture"); if (textureInited && CanUploadSubTextures()) { TexSubImage2D(LOCAL_GL_TEXTURE_2D, 0, iterRect->x, iterRect->y, iterRect->width, iterRect->height, stride, pixelSize, format, type, rectData); } else { TexImage2D(LOCAL_GL_TEXTURE_2D, 0, format, iterRect->width, iterRect->height, stride, pixelSize, 0, format, type, rectData); } } return shader; } static GLint GetAddressAlignment(ptrdiff_t aAddress) { if (!(aAddress & 0x7)) { return 8; } else if (!(aAddress & 0x3)) { return 4; } else if (!(aAddress & 0x1)) { return 2; } else { return 1; } } void GLContext::TexImage2D(GLenum target, GLint level, GLint internalformat, GLsizei width, GLsizei height, GLsizei stride, GLint pixelsize, GLint border, GLenum format, GLenum type, const GLvoid *pixels) { if (mIsGLES2) { NS_ASSERTION(format == (GLenum)internalformat, "format and internalformat not the same for glTexImage2D on GLES2"); if (!CanUploadNonPowerOfTwo() && (stride != width * pixelsize || !IsPowerOfTwo(width) || !IsPowerOfTwo(height))) { // Pad out texture width and height to the next power of two // as we don't support/want non power of two texture uploads GLsizei paddedWidth = NextPowerOfTwo(width); GLsizei paddedHeight = NextPowerOfTwo(height); GLvoid* paddedPixels = new unsigned char[paddedWidth * paddedHeight * pixelsize]; // Pad out texture data to be in a POT sized buffer for uploading to // a POT sized texture CopyAndPadTextureData(pixels, paddedPixels, width, height, paddedWidth, paddedHeight, stride, pixelsize); fPixelStorei(LOCAL_GL_UNPACK_ALIGNMENT, std::min(GetAddressAlignment((ptrdiff_t)paddedPixels), GetAddressAlignment((ptrdiff_t)paddedWidth * pixelsize))); fTexImage2D(target, border, internalformat, paddedWidth, paddedHeight, border, format, type, paddedPixels); fPixelStorei(LOCAL_GL_UNPACK_ALIGNMENT, 4); delete[] static_cast(paddedPixels); return; } if (stride == width * pixelsize) { fPixelStorei(LOCAL_GL_UNPACK_ALIGNMENT, std::min(GetAddressAlignment((ptrdiff_t)pixels), GetAddressAlignment((ptrdiff_t)stride))); fTexImage2D(target, border, internalformat, width, height, border, format, type, pixels); fPixelStorei(LOCAL_GL_UNPACK_ALIGNMENT, 4); } else { // Use GLES-specific workarounds for GL_UNPACK_ROW_LENGTH; these are // implemented in TexSubImage2D. fTexImage2D(target, border, internalformat, width, height, border, format, type, NULL); TexSubImage2D(target, level, 0, 0, width, height, stride, pixelsize, format, type, pixels); } } else { // desktop GL (non-ES) path fPixelStorei(LOCAL_GL_UNPACK_ALIGNMENT, std::min(GetAddressAlignment((ptrdiff_t)pixels), GetAddressAlignment((ptrdiff_t)stride))); int rowLength = stride/pixelsize; fPixelStorei(LOCAL_GL_UNPACK_ROW_LENGTH, rowLength); fTexImage2D(target, level, internalformat, width, height, border, format, type, pixels); fPixelStorei(LOCAL_GL_UNPACK_ROW_LENGTH, 0); fPixelStorei(LOCAL_GL_UNPACK_ALIGNMENT, 4); } } void GLContext::TexSubImage2D(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLsizei stride, GLint pixelsize, GLenum format, GLenum type, const GLvoid* pixels) { if (mIsGLES2) { if (stride == width * pixelsize) { fPixelStorei(LOCAL_GL_UNPACK_ALIGNMENT, std::min(GetAddressAlignment((ptrdiff_t)pixels), GetAddressAlignment((ptrdiff_t)stride))); fTexSubImage2D(target, level, xoffset, yoffset, width, height, format, type, pixels); fPixelStorei(LOCAL_GL_UNPACK_ALIGNMENT, 4); } else if (IsExtensionSupported(EXT_unpack_subimage)) { TexSubImage2DWithUnpackSubimageGLES(target, level, xoffset, yoffset, width, height, stride, pixelsize, format, type, pixels); } else { TexSubImage2DWithoutUnpackSubimage(target, level, xoffset, yoffset, width, height, stride, pixelsize, format, type, pixels); } } else { // desktop GL (non-ES) path fPixelStorei(LOCAL_GL_UNPACK_ALIGNMENT, std::min(GetAddressAlignment((ptrdiff_t)pixels), GetAddressAlignment((ptrdiff_t)stride))); int rowLength = stride/pixelsize; fPixelStorei(LOCAL_GL_UNPACK_ROW_LENGTH, rowLength); fTexSubImage2D(target, level, xoffset, yoffset, width, height, format, type, pixels); fPixelStorei(LOCAL_GL_UNPACK_ROW_LENGTH, 0); fPixelStorei(LOCAL_GL_UNPACK_ALIGNMENT, 4); } } void GLContext::TexSubImage2DWithUnpackSubimageGLES(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLsizei stride, GLint pixelsize, GLenum format, GLenum type, const GLvoid* pixels) { fPixelStorei(LOCAL_GL_UNPACK_ALIGNMENT, std::min(GetAddressAlignment((ptrdiff_t)pixels), GetAddressAlignment((ptrdiff_t)stride))); // When using GL_UNPACK_ROW_LENGTH, we need to work around a Tegra // driver crash where the driver apparently tries to read // (stride - width * pixelsize) bytes past the end of the last input // row. We only upload the first height-1 rows using GL_UNPACK_ROW_LENGTH, // and then we upload the final row separately. See bug 697990. int rowLength = stride/pixelsize; fPixelStorei(LOCAL_GL_UNPACK_ROW_LENGTH, rowLength); fTexSubImage2D(target, level, xoffset, yoffset, width, height-1, format, type, pixels); fPixelStorei(LOCAL_GL_UNPACK_ROW_LENGTH, 0); fTexSubImage2D(target, level, xoffset, yoffset+height-1, width, 1, format, type, (const unsigned char *)pixels+(height-1)*stride); fPixelStorei(LOCAL_GL_UNPACK_ALIGNMENT, 4); } void GLContext::TexSubImage2DWithoutUnpackSubimage(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLsizei stride, GLint pixelsize, GLenum format, GLenum type, const GLvoid* pixels) { // Not using the whole row of texture data and GL_UNPACK_ROW_LENGTH // isn't supported. We make a copy of the texture data we're using, // such that we're using the whole row of data in the copy. This turns // out to be more efficient than uploading row-by-row; see bug 698197. unsigned char *newPixels = new unsigned char[width*height*pixelsize]; unsigned char *rowDest = newPixels; const unsigned char *rowSource = (const unsigned char *)pixels; for (int h = 0; h < height; h++) { memcpy(rowDest, rowSource, width*pixelsize); rowDest += width*pixelsize; rowSource += stride; } stride = width*pixelsize; fPixelStorei(LOCAL_GL_UNPACK_ALIGNMENT, std::min(GetAddressAlignment((ptrdiff_t)newPixels), GetAddressAlignment((ptrdiff_t)stride))); fTexSubImage2D(target, level, xoffset, yoffset, width, height, format, type, newPixels); delete [] newPixels; fPixelStorei(LOCAL_GL_UNPACK_ALIGNMENT, 4); } void GLContext::RectTriangles::addRect(GLfloat x0, GLfloat y0, GLfloat x1, GLfloat y1, GLfloat tx0, GLfloat ty0, GLfloat tx1, GLfloat ty1, bool flip_y /* = false */) { vert_coord v; v.x = x0; v.y = y0; vertexCoords.AppendElement(v); v.x = x1; v.y = y0; vertexCoords.AppendElement(v); v.x = x0; v.y = y1; vertexCoords.AppendElement(v); v.x = x0; v.y = y1; vertexCoords.AppendElement(v); v.x = x1; v.y = y0; vertexCoords.AppendElement(v); v.x = x1; v.y = y1; vertexCoords.AppendElement(v); if (flip_y) { tex_coord t; t.u = tx0; t.v = ty1; texCoords.AppendElement(t); t.u = tx1; t.v = ty1; texCoords.AppendElement(t); t.u = tx0; t.v = ty0; texCoords.AppendElement(t); t.u = tx0; t.v = ty0; texCoords.AppendElement(t); t.u = tx1; t.v = ty1; texCoords.AppendElement(t); t.u = tx1; t.v = ty0; texCoords.AppendElement(t); } else { tex_coord t; t.u = tx0; t.v = ty0; texCoords.AppendElement(t); t.u = tx1; t.v = ty0; texCoords.AppendElement(t); t.u = tx0; t.v = ty1; texCoords.AppendElement(t); t.u = tx0; t.v = ty1; texCoords.AppendElement(t); t.u = tx1; t.v = ty0; texCoords.AppendElement(t); t.u = tx1; t.v = ty1; texCoords.AppendElement(t); } } static GLfloat WrapTexCoord(GLfloat v) { // fmodf gives negative results for negative numbers; // that is, fmodf(0.75, 1.0) == 0.75, but // fmodf(-0.75, 1.0) == -0.75. For the negative case, // the result we need is 0.25, so we add 1.0f. if (v < 0.0f) { return 1.0f + fmodf(v, 1.0f); } return fmodf(v, 1.0f); } void GLContext::DecomposeIntoNoRepeatTriangles(const nsIntRect& aTexCoordRect, const nsIntSize& aTexSize, RectTriangles& aRects, bool aFlipY /* = false */) { // normalize this nsIntRect tcr(aTexCoordRect); while (tcr.x >= aTexSize.width) tcr.x -= aTexSize.width; while (tcr.y >= aTexSize.height) tcr.y -= aTexSize.height; // Compute top left and bottom right tex coordinates GLfloat tl[2] = { GLfloat(tcr.x) / GLfloat(aTexSize.width), GLfloat(tcr.y) / GLfloat(aTexSize.height) }; GLfloat br[2] = { GLfloat(tcr.XMost()) / GLfloat(aTexSize.width), GLfloat(tcr.YMost()) / GLfloat(aTexSize.height) }; // then check if we wrap in either the x or y axis; if we do, // then also use fmod to figure out the "true" non-wrapping // texture coordinates. bool xwrap = false, ywrap = false; if (tcr.x < 0 || tcr.x > aTexSize.width || tcr.XMost() < 0 || tcr.XMost() > aTexSize.width) { xwrap = true; tl[0] = WrapTexCoord(tl[0]); br[0] = WrapTexCoord(br[0]); } if (tcr.y < 0 || tcr.y > aTexSize.height || tcr.YMost() < 0 || tcr.YMost() > aTexSize.height) { ywrap = true; tl[1] = WrapTexCoord(tl[1]); br[1] = WrapTexCoord(br[1]); } NS_ASSERTION(tl[0] >= 0.0f && tl[0] <= 1.0f && tl[1] >= 0.0f && tl[1] <= 1.0f && br[0] >= 0.0f && br[0] <= 1.0f && br[1] >= 0.0f && br[1] <= 1.0f, "Somehow generated invalid texture coordinates"); // If xwrap is false, the texture will be sampled from tl[0] // .. br[0]. If xwrap is true, then it will be split into tl[0] // .. 1.0, and 0.0 .. br[0]. Same for the Y axis. The // destination rectangle is also split appropriately, according // to the calculated xmid/ymid values. // There isn't a 1:1 mapping between tex coords and destination coords; // when computing midpoints, we have to take that into account. We // need to map the texture coords, which are (in the wrap case): // |tl->1| and |0->br| to the |0->1| range of the vertex coords. So // we have the length (1-tl)+(br) that needs to map into 0->1. // These are only valid if there is wrap involved, they won't be used // otherwise. GLfloat xlen = (1.0f - tl[0]) + br[0]; GLfloat ylen = (1.0f - tl[1]) + br[1]; NS_ASSERTION(!xwrap || xlen > 0.0f, "xlen isn't > 0, what's going on?"); NS_ASSERTION(!ywrap || ylen > 0.0f, "ylen isn't > 0, what's going on?"); NS_ASSERTION(aTexCoordRect.width <= aTexSize.width && aTexCoordRect.height <= aTexSize.height, "tex coord rect would cause tiling!"); if (!xwrap && !ywrap) { aRects.addRect(0.0f, 0.0f, 1.0f, 1.0f, tl[0], tl[1], br[0], br[1], aFlipY); } else if (!xwrap && ywrap) { GLfloat ymid = (1.0f - tl[1]) / ylen; aRects.addRect(0.0f, 0.0f, 1.0f, ymid, tl[0], tl[1], br[0], 1.0f, aFlipY); aRects.addRect(0.0f, ymid, 1.0f, 1.0f, tl[0], 0.0f, br[0], br[1], aFlipY); } else if (xwrap && !ywrap) { GLfloat xmid = (1.0f - tl[0]) / xlen; aRects.addRect(0.0f, 0.0f, xmid, 1.0f, tl[0], tl[1], 1.0f, br[1], aFlipY); aRects.addRect(xmid, 0.0f, 1.0f, 1.0f, 0.0f, tl[1], br[0], br[1], aFlipY); } else { GLfloat xmid = (1.0f - tl[0]) / xlen; GLfloat ymid = (1.0f - tl[1]) / ylen; aRects.addRect(0.0f, 0.0f, xmid, ymid, tl[0], tl[1], 1.0f, 1.0f, aFlipY); aRects.addRect(xmid, 0.0f, 1.0f, ymid, 0.0f, tl[1], br[0], 1.0f, aFlipY); aRects.addRect(0.0f, ymid, xmid, 1.0f, tl[0], 0.0f, 1.0f, br[1], aFlipY); aRects.addRect(xmid, ymid, 1.0f, 1.0f, 0.0f, 0.0f, br[0], br[1], aFlipY); } } void GLContext::UseBlitProgram() { if (mBlitProgram) { fUseProgram(mBlitProgram); return; } mBlitProgram = fCreateProgram(); GLuint shaders[2]; shaders[0] = fCreateShader(LOCAL_GL_VERTEX_SHADER); shaders[1] = fCreateShader(LOCAL_GL_FRAGMENT_SHADER); const char *blitVSSrc = "attribute vec2 aVertex;" "attribute vec2 aTexCoord;" "varying vec2 vTexCoord;" "void main() {" " vTexCoord = aTexCoord;" " gl_Position = vec4(aVertex, 0.0, 1.0);" "}"; const char *blitFSSrc = "#ifdef GL_ES\nprecision mediump float;\n#endif\n" "uniform sampler2D uSrcTexture;" "varying vec2 vTexCoord;" "void main() {" " gl_FragColor = texture2D(uSrcTexture, vTexCoord);" "}"; fShaderSource(shaders[0], 1, (const GLchar**) &blitVSSrc, NULL); fShaderSource(shaders[1], 1, (const GLchar**) &blitFSSrc, NULL); for (int i = 0; i < 2; ++i) { GLint success, len = 0; fCompileShader(shaders[i]); fGetShaderiv(shaders[i], LOCAL_GL_COMPILE_STATUS, &success); NS_ASSERTION(success, "Shader compilation failed!"); if (!success) { nsAutoCString log; fGetShaderiv(shaders[i], LOCAL_GL_INFO_LOG_LENGTH, (GLint*) &len); log.SetCapacity(len); fGetShaderInfoLog(shaders[i], len, (GLint*) &len, (char*) log.BeginWriting()); log.SetLength(len); printf_stderr("Shader %d compilation failed:\n%s\n", log.get()); return; } fAttachShader(mBlitProgram, shaders[i]); fDeleteShader(shaders[i]); } fBindAttribLocation(mBlitProgram, 0, "aVertex"); fBindAttribLocation(mBlitProgram, 1, "aTexCoord"); fLinkProgram(mBlitProgram); GLint success, len = 0; fGetProgramiv(mBlitProgram, LOCAL_GL_LINK_STATUS, &success); NS_ASSERTION(success, "Shader linking failed!"); if (!success) { nsAutoCString log; fGetProgramiv(mBlitProgram, LOCAL_GL_INFO_LOG_LENGTH, (GLint*) &len); log.SetCapacity(len); fGetProgramInfoLog(mBlitProgram, len, (GLint*) &len, (char*) log.BeginWriting()); log.SetLength(len); printf_stderr("Program linking failed:\n%s\n", log.get()); return; } fUseProgram(mBlitProgram); fUniform1i(fGetUniformLocation(mBlitProgram, "uSrcTexture"), 0); } void GLContext::SetBlitFramebufferForDestTexture(GLuint aTexture) { if (!mBlitFramebuffer) { fGenFramebuffers(1, &mBlitFramebuffer); } fBindFramebuffer(LOCAL_GL_FRAMEBUFFER, mBlitFramebuffer); fFramebufferTexture2D(LOCAL_GL_FRAMEBUFFER, LOCAL_GL_COLOR_ATTACHMENT0, LOCAL_GL_TEXTURE_2D, aTexture, 0); GLenum result = fCheckFramebufferStatus(LOCAL_GL_FRAMEBUFFER); if (aTexture && (result != LOCAL_GL_FRAMEBUFFER_COMPLETE)) { nsAutoCString msg; msg.Append("Framebuffer not complete -- error 0x"); msg.AppendInt(result, 16); // Note: if you are hitting this, it is likely that // your texture is not texture complete -- that is, you // allocated a texture name, but didn't actually define its // size via a call to TexImage2D. NS_RUNTIMEABORT(msg.get()); } } #ifdef DEBUG void GLContext::CreatedProgram(GLContext *aOrigin, GLuint aName) { mTrackedPrograms.AppendElement(NamedResource(aOrigin, aName)); } void GLContext::CreatedShader(GLContext *aOrigin, GLuint aName) { mTrackedShaders.AppendElement(NamedResource(aOrigin, aName)); } void GLContext::CreatedBuffers(GLContext *aOrigin, GLsizei aCount, GLuint *aNames) { for (GLsizei i = 0; i < aCount; ++i) { mTrackedBuffers.AppendElement(NamedResource(aOrigin, aNames[i])); } } void GLContext::CreatedQueries(GLContext *aOrigin, GLsizei aCount, GLuint *aNames) { for (GLsizei i = 0; i < aCount; ++i) { mTrackedQueries.AppendElement(NamedResource(aOrigin, aNames[i])); } } void GLContext::CreatedTextures(GLContext *aOrigin, GLsizei aCount, GLuint *aNames) { for (GLsizei i = 0; i < aCount; ++i) { mTrackedTextures.AppendElement(NamedResource(aOrigin, aNames[i])); } } void GLContext::CreatedFramebuffers(GLContext *aOrigin, GLsizei aCount, GLuint *aNames) { for (GLsizei i = 0; i < aCount; ++i) { mTrackedFramebuffers.AppendElement(NamedResource(aOrigin, aNames[i])); } } void GLContext::CreatedRenderbuffers(GLContext *aOrigin, GLsizei aCount, GLuint *aNames) { for (GLsizei i = 0; i < aCount; ++i) { mTrackedRenderbuffers.AppendElement(NamedResource(aOrigin, aNames[i])); } } static void RemoveNamesFromArray(GLContext *aOrigin, GLsizei aCount, GLuint *aNames, nsTArray& aArray) { for (GLsizei j = 0; j < aCount; ++j) { GLuint name = aNames[j]; // name 0 can be ignored if (name == 0) continue; for (uint32_t i = 0; i < aArray.Length(); ++i) { if (aArray[i].name == name) { aArray.RemoveElementAt(i); break; } } } } void GLContext::DeletedProgram(GLContext *aOrigin, GLuint aName) { RemoveNamesFromArray(aOrigin, 1, &aName, mTrackedPrograms); } void GLContext::DeletedShader(GLContext *aOrigin, GLuint aName) { RemoveNamesFromArray(aOrigin, 1, &aName, mTrackedShaders); } void GLContext::DeletedBuffers(GLContext *aOrigin, GLsizei aCount, GLuint *aNames) { RemoveNamesFromArray(aOrigin, aCount, aNames, mTrackedBuffers); } void GLContext::DeletedQueries(GLContext *aOrigin, GLsizei aCount, GLuint *aNames) { RemoveNamesFromArray(aOrigin, aCount, aNames, mTrackedQueries); } void GLContext::DeletedTextures(GLContext *aOrigin, GLsizei aCount, GLuint *aNames) { RemoveNamesFromArray(aOrigin, aCount, aNames, mTrackedTextures); } void GLContext::DeletedFramebuffers(GLContext *aOrigin, GLsizei aCount, GLuint *aNames) { RemoveNamesFromArray(aOrigin, aCount, aNames, mTrackedFramebuffers); } void GLContext::DeletedRenderbuffers(GLContext *aOrigin, GLsizei aCount, GLuint *aNames) { RemoveNamesFromArray(aOrigin, aCount, aNames, mTrackedRenderbuffers); } static void MarkContextDestroyedInArray(GLContext *aContext, nsTArray& aArray) { for (uint32_t i = 0; i < aArray.Length(); ++i) { if (aArray[i].origin == aContext) aArray[i].originDeleted = true; } } void GLContext::SharedContextDestroyed(GLContext *aChild) { MarkContextDestroyedInArray(aChild, mTrackedPrograms); MarkContextDestroyedInArray(aChild, mTrackedShaders); MarkContextDestroyedInArray(aChild, mTrackedTextures); MarkContextDestroyedInArray(aChild, mTrackedFramebuffers); MarkContextDestroyedInArray(aChild, mTrackedRenderbuffers); MarkContextDestroyedInArray(aChild, mTrackedBuffers); MarkContextDestroyedInArray(aChild, mTrackedQueries); } static void ReportArrayContents(const char *title, const nsTArray& aArray) { if (aArray.Length() == 0) return; printf_stderr("%s:\n", title); nsTArray copy(aArray); copy.Sort(); GLContext *lastContext = NULL; for (uint32_t i = 0; i < copy.Length(); ++i) { if (lastContext != copy[i].origin) { if (lastContext) printf_stderr("\n"); printf_stderr(" [%p - %s] ", copy[i].origin, copy[i].originDeleted ? "deleted" : "live"); lastContext = copy[i].origin; } printf_stderr("%d ", copy[i].name); } printf_stderr("\n"); } void GLContext::ReportOutstandingNames() { if (!DebugMode()) return; printf_stderr("== GLContext %p Outstanding ==\n", this); ReportArrayContents("Outstanding Textures", mTrackedTextures); ReportArrayContents("Outstanding Buffers", mTrackedBuffers); ReportArrayContents("Outstanding Queries", mTrackedQueries); ReportArrayContents("Outstanding Programs", mTrackedPrograms); ReportArrayContents("Outstanding Shaders", mTrackedShaders); ReportArrayContents("Outstanding Framebuffers", mTrackedFramebuffers); ReportArrayContents("Outstanding Renderbuffers", mTrackedRenderbuffers); } #endif /* DEBUG */ void GLContext::GuaranteeResolve() { if (mScreen) { mScreen->AssureBlitted(); } fFinish(); } const gfxIntSize& GLContext::OffscreenSize() const { MOZ_ASSERT(IsOffscreen()); return mScreen->Size(); } bool GLContext::CreateScreenBufferImpl(const gfxIntSize& size, const SurfaceCaps& caps) { GLScreenBuffer* newScreen = GLScreenBuffer::Create(this, size, caps); if (!newScreen) return false; if (!newScreen->Resize(size)) { delete newScreen; return false; } DestroyScreenBuffer(); // This will rebind to 0 (Screen) if needed when // it falls out of scope. ScopedBindFramebuffer autoFB(this); mScreen = newScreen; return true; } bool GLContext::ResizeScreenBuffer(const gfxIntSize& size) { if (!IsOffscreenSizeAllowed(size)) return false; return mScreen->Resize(size); } void GLContext::DestroyScreenBuffer() { delete mScreen; mScreen = nullptr; } void GLContext::ForceDirtyScreen() { ScopedBindFramebuffer autoFB(0); BeforeGLDrawCall(); // no-op; just pretend we did something AfterGLDrawCall(); } void GLContext::CleanDirtyScreen() { ScopedBindFramebuffer autoFB(0); BeforeGLReadCall(); // no-op; we just want to make sure the Read FBO is updated if it needs to be AfterGLReadCall(); } void GLContext::EmptyTexGarbageBin() { TexGarbageBin()->EmptyGarbage(); } void TextureGarbageBin::GLContextTeardown() { EmptyGarbage(); MutexAutoLock lock(mMutex); mGL = nullptr; } void TextureGarbageBin::Trash(GLuint tex) { MutexAutoLock lock(mMutex); if (!mGL) return; mGarbageTextures.push(tex); } void TextureGarbageBin::EmptyGarbage() { MutexAutoLock lock(mMutex); if (!mGL) return; while (!mGarbageTextures.empty()) { GLuint tex = mGarbageTextures.top(); mGarbageTextures.pop(); mGL->fDeleteTextures(1, &tex); } } } /* namespace gl */ } /* namespace mozilla */