/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "nsCOMPtr.h" #include "nsFrame.h" #include "nsPresContext.h" #include "nsStyleContext.h" #include "nsStyleConsts.h" #include "nsString.h" #include "nsUnicharUtils.h" #include "nsRenderingContext.h" #include "gfxPlatform.h" #include "mozilla/Preferences.h" #include "nsISupportsPrimitives.h" #include "nsIComponentManager.h" #include "nsIPersistentProperties2.h" #include "nsIServiceManager.h" #include "nsIObserverService.h" #include "nsIObserver.h" #include "nsNetUtil.h" #include "mozilla/LookAndFeel.h" #include "nsCSSRendering.h" #include "prprf.h" // For PR_snprintf() #include "nsDisplayList.h" #include "nsMathMLOperators.h" #include "nsMathMLChar.h" using namespace mozilla; //#define SHOW_BORDERS 1 //#define NOISY_SEARCH 1 // ----------------------------------------------------------------------------------- static const PRUnichar kSpaceCh = PRUnichar(' '); static const nsGlyphCode kNullGlyph = {{0, 0}, 0}; typedef enum {eExtension_base, eExtension_variants, eExtension_parts} nsMathfontPrefExtension; // ----------------------------------------------------------------------------------- // nsGlyphTable is a class that provides an interface for accessing glyphs // of stretchy chars. It acts like a table that stores the variants of bigger // sizes (if any) and the partial glyphs needed to build extensible symbols. // An instance of nsGlyphTable is associated to one primary font. Extra glyphs // can be taken in other additional fonts when stretching certain characters. // These supplementary fonts are referred to as "external" fonts to the table. // // A char for which nsGlyphTable::Has(aChar) is true means that the table // contains some glyphs (bigger and/or partial) that can be used to render // the char. Bigger sizes (if any) of the char can then be retrieved with // BigOf(aSize). Partial glyphs can be retrieved with TopOf(), GlueOf(), etc. // // A table consists of "nsGlyphCode"s which are viewed either as Unicode // points or as direct glyph indices, depending on the type of the table. // XXX The latter is not yet supported. // General format of MathFont Property Files from which glyph data are retrieved: // ----------------------------------------------------------------------------------- // Each font should have its set of glyph data. For example, the glyph data for // the "Symbol" font and the "MT Extra" font are in "mathfontSymbol.properties" // and "mathfontMTExtra.properties", respectively. The mathfont property file is a // set of all the stretchy MathML characters that can be rendered with that font // using larger and/or partial glyphs. The entry of each stretchy character in the // mathfont property file gives, in that order, the 4 partial glyphs: Top (or Left), // Middle, Bottom (or Right), Glue; and the variants of bigger sizes (if any). // A position that is not relevant to a particular character is indicated there // with the UNICODE REPLACEMENT CHARACTER 0xFFFD. // Characters that need to be built recursively from other characters are said // to be composite. For example, chars like over/underbrace in CMEX10 have to // be built from two half stretchy chars and joined in the middle (TeXbook, p.225). // Such chars are handled in a special manner by the nsMathMLChar class, which allows // several (2 or more) child chars to be composed in order to render another char. // To specify such chars, their list of glyphs in the property file should be given // as space-separated segments of glyphs. Each segment gives the 4 partial // glyphs with which to build the child char that will be joined with its other // siblings. In this code, when this situation happens (see the detailed description // of Stretch() below), the original char (referred to as "parent") creates a // singly-linked list of child chars, asking them to stretch in an equally divided // space. The nsGlyphTable embeds the necessary logic to guarantee correctness in a // recursive stretch (and in the use of TopOf(), GlueOf(), etc) on these child chars. // ----------------------------------------------------------------------------------- #define NS_TABLE_TYPE_UNICODE 0 #define NS_TABLE_TYPE_GLYPH_INDEX 1 #define NS_TABLE_STATE_ERROR -1 #define NS_TABLE_STATE_EMPTY 0 #define NS_TABLE_STATE_READY 1 // helper to trim off comments from data in a MathFont Property File static void Clean(nsString& aValue) { // chop the trailing # comment portion if any ... PRInt32 comment = aValue.RFindChar('#'); if (comment > 0) aValue.Truncate(comment); aValue.CompressWhitespace(); } // helper to load a MathFont Property File static nsresult LoadProperties(const nsString& aName, nsCOMPtr& aProperties) { nsAutoString uriStr; uriStr.AssignLiteral("resource://gre/res/fonts/mathfont"); uriStr.Append(aName); uriStr.StripWhitespace(); // that may come from aName uriStr.AppendLiteral(".properties"); return NS_LoadPersistentPropertiesFromURISpec(getter_AddRefs(aProperties), NS_ConvertUTF16toUTF8(uriStr)); } // ----------------------------------------------------------------------------------- class nsGlyphTable { public: explicit nsGlyphTable(const nsString& aPrimaryFontName) : mType(NS_TABLE_TYPE_UNICODE), mFontName(1), // ensure space for primary font name. mState(NS_TABLE_STATE_EMPTY), mCharCache(0) { MOZ_COUNT_CTOR(nsGlyphTable); mFontName.AppendElement(aPrimaryFontName); } ~nsGlyphTable() // not a virtual destructor: this class is not intended to be subclassed { MOZ_COUNT_DTOR(nsGlyphTable); } const nsAString& PrimaryFontName() const { return mFontName[0]; } const nsAString& FontNameFor(const nsGlyphCode& aGlyphCode) const { return mFontName[aGlyphCode.font]; } // True if this table contains some glyphs (variants and/or parts) // or contains child chars that can be used to render this char bool Has(nsPresContext* aPresContext, nsMathMLChar* aChar); // True if this table contains variants of larger sizes to render this char bool HasVariantsOf(nsPresContext* aPresContext, nsMathMLChar* aChar); // True if this table contains parts (or composite parts) to render this char bool HasPartsOf(nsPresContext* aPresContext, nsMathMLChar* aChar); // True if aChar is to be assembled from other child chars in this table bool IsComposite(nsPresContext* aPresContext, nsMathMLChar* aChar); // The number of child chars to assemble in order to render aChar PRInt32 ChildCountOf(nsPresContext* aPresContext, nsMathMLChar* aChar); // Getters for the parts nsGlyphCode TopOf(nsPresContext* aPresContext, nsMathMLChar* aChar) { return ElementAt(aPresContext, aChar, 0); } nsGlyphCode MiddleOf(nsPresContext* aPresContext, nsMathMLChar* aChar) { return ElementAt(aPresContext, aChar, 1); } nsGlyphCode BottomOf(nsPresContext* aPresContext, nsMathMLChar* aChar) { return ElementAt(aPresContext, aChar, 2); } nsGlyphCode GlueOf(nsPresContext* aPresContext, nsMathMLChar* aChar) { return ElementAt(aPresContext, aChar, 3); } nsGlyphCode BigOf(nsPresContext* aPresContext, nsMathMLChar* aChar, PRInt32 aSize) { return ElementAt(aPresContext, aChar, 4 + aSize); } nsGlyphCode LeftOf(nsPresContext* aPresContext, nsMathMLChar* aChar) { return ElementAt(aPresContext, aChar, 0); } nsGlyphCode RightOf(nsPresContext* aPresContext, nsMathMLChar* aChar) { return ElementAt(aPresContext, aChar, 2); } private: nsGlyphCode ElementAt(nsPresContext* aPresContext, nsMathMLChar* aChar, PRUint32 aPosition); // The type is either NS_TABLE_TYPE_UNICODE or NS_TABLE_TYPE_GLYPH_INDEX PRInt32 mType; // mFontName[0] is the primary font associated to this table. The others // are possible "external" fonts for glyphs not in the primary font // but which are needed to stretch certain characters in the table nsTArray mFontName; // Tri-state variable for error/empty/ready PRInt32 mState; // The set of glyph data in this table, as provided by the MathFont Property File nsCOMPtr mGlyphProperties; // For speedy re-use, we always cache the last data used in the table. // mCharCache is the Unicode point of the last char that was queried in this // table. mGlyphCache is a buffer containing the glyph data associated to // that char. For a property line 'key = value' in the MathFont Property File, // mCharCache will retain the 'key' -- which is a Unicode point, while mGlyphCache // will retain the 'value', which is a consecutive list of nsGlyphCodes, i.e., // the pairs of 'code@font' needed by the char -- in which 'code@0' can be specified // without the optional '@0'. However, to ease subsequent processing, mGlyphCache // excludes the '@' symbol and explicitly inserts all optional '0' that indicates // the primary font identifier. Specifically therefore, the k-th glyph is // characterized by : // 1) mGlyphCache[3*k],mGlyphCache[3*k+1] : its Unicode point (or glyph index -- depending on mType), // 2) mGlyphCache[3*k+2] : the numeric identifier of the font where it comes from. // A font identifier of '0' means the default primary font associated to this // table. Other digits map to the "external" fonts that may have been specified // in the MathFont Property File. nsString mGlyphCache; PRUnichar mCharCache; }; nsGlyphCode nsGlyphTable::ElementAt(nsPresContext* aPresContext, nsMathMLChar* aChar, PRUint32 aPosition) { if (mState == NS_TABLE_STATE_ERROR) return kNullGlyph; // Load glyph properties if this is the first time we have been here if (mState == NS_TABLE_STATE_EMPTY) { nsresult rv = LoadProperties(mFontName[0], mGlyphProperties); #ifdef DEBUG nsCAutoString uriStr; uriStr.AssignLiteral("resource://gre/res/fonts/mathfont"); LossyAppendUTF16toASCII(mFontName[0], uriStr); uriStr.StripWhitespace(); // that may come from mFontName uriStr.AppendLiteral(".properties"); printf("Loading %s ... %s\n", uriStr.get(), (NS_FAILED(rv)) ? "Failed" : "Done"); #endif if (NS_FAILED(rv)) { mState = NS_TABLE_STATE_ERROR; // never waste time with this table again return kNullGlyph; } mState = NS_TABLE_STATE_READY; // see if there are external fonts needed for certain chars in this table nsCAutoString key; nsAutoString value; for (PRInt32 i = 1; ; i++) { key.AssignLiteral("external."); key.AppendInt(i, 10); rv = mGlyphProperties->GetStringProperty(key, value); if (NS_FAILED(rv)) break; Clean(value); mFontName.AppendElement(value); // i.e., mFontName[i] holds this font name } } // If aChar is a child char to be used by a parent composite char, make // sure that it is really attached to this table if (aChar->mParent && (aChar->mGlyphTable != this)) return kNullGlyph; // Update our cache if it is not associated to this character PRUnichar uchar = aChar->mData[0]; if (mCharCache != uchar) { // The key in the property file is interpreted as ASCII and kept // as such ... char key[10]; PR_snprintf(key, sizeof(key), "\\u%04X", uchar); nsAutoString value; nsresult rv = mGlyphProperties->GetStringProperty(nsDependentCString(key), value); if (NS_FAILED(rv)) return kNullGlyph; Clean(value); // See if this char uses external fonts; e.g., if the 2nd glyph is taken from the // external font '1', the property line looks like \uNNNN = \uNNNN\uNNNN@1\uNNNN. // This is where mGlyphCache is pre-processed to explicitly store all glyph codes // as combined pairs of 'code@font', excluding the '@' separator. This means that // mGlyphCache[3*k],mGlyphCache[3*k+1] will later be rendered with mFontName[mGlyphCache[3*k+2]] // Note: font identifier is internally an ASCII digit to avoid the null char issue nsAutoString buffer; PRInt32 length = value.Length(); PRInt32 i = 0; // index in value PRInt32 j = 0; // part/variant index while (i < length) { PRUnichar code = value[i]; ++i; buffer.Append(code); // see if we are at the beginning of a child char if (code == kSpaceCh) { // reset the annotation indicator to be 0 for the next code point j = -1; } #if 0 // If we want this then the nsGlyphTableList must be declared // or the UnicodeTable could be made a global. // See if this code point is an *indirect reference* to the Unicode // table and lookup the code there. else if (code == PRUnichar(0xF8FF) && gGlyphTableList && this != &gGlyphTableList->mUnicodeTable) { code = gGlyphTableList->mUnicodeTable. ElementAt(aPresContext, aChar, aPosition).code; } // see if this code point is a *direct reference* to // the Unicode table, and lookup the [TLMBRG1-9] position for code. else if ((i+1 < length) && (value[i] == PRUnichar('.'))) { ++i; // Need to implement this if we want it: // Set (new) code from the value[i] position for (current) code. if (1) return kNullGlyph; ++i; } #endif // Read the next word if we have a non-BMP character. if (i < length && NS_IS_HIGH_SURROGATE(code)) { code = value[i]; ++i; } else { code = PRUnichar('\0'); } buffer.Append(code); // See if an external font is needed for the code point. // Limit of 9 external fonts PRUnichar font = 0; if (i+1 < length && value[i] == PRUnichar('@') && value[i+1] >= PRUnichar('0') && value[i+1] <= PRUnichar('9')) { ++i; font = value[i] - '0'; ++i; if (font >= mFontName.Length()) { NS_ERROR("Nonexistent font referenced in glyph table"); return kNullGlyph; } // The char cannot be handled if this font is not installed if (!mFontName[font].Length()) { return kNullGlyph; } } buffer.Append(font); ++j; } // update our cache with the new settings mGlyphCache.Assign(buffer); mCharCache = uchar; } // If aChar is a composite char, only its children are allowed // to use its glyphs in this table, i.e., the parent char itself // is disabled and cannot be stretched directly with these glyphs. // This guarantees a coherent behavior in Stretch(). if (!aChar->mParent && (kNotFound != mGlyphCache.FindChar(kSpaceCh))) { return kNullGlyph; } // If aChar is a child char, the index of the glyph is relative to // the offset of the list of glyphs corresponding to the child char. PRUint32 offset = 0; PRUint32 length = mGlyphCache.Length(); if (aChar->mParent) { nsMathMLChar* child = aChar->mParent->mSibling; // XXXkt composite chars can't have size variants while (child && (child != aChar)) { offset += 5; // skip the 4 partial glyphs + the whitespace separator child = child->mSibling; } length = 3*(offset + 4); // stay confined in the 4 partial glyphs of this child } PRUint32 index = 3*(offset + aPosition); // 3* is to account for the code@font pairs if (index+2 >= length) return kNullGlyph; nsGlyphCode ch; ch.code[0] = mGlyphCache.CharAt(index); ch.code[1] = mGlyphCache.CharAt(index + 1); ch.font = mGlyphCache.CharAt(index + 2); return ch.code[0] == PRUnichar(0xFFFD) ? kNullGlyph : ch; } bool nsGlyphTable::IsComposite(nsPresContext* aPresContext, nsMathMLChar* aChar) { // there is only one level of recursion in our model. a child // cannot be composite because it cannot have its own children if (aChar->mParent) return false; // shortcut to sync the cache with this char... mCharCache = 0; mGlyphCache.Truncate(); ElementAt(aPresContext, aChar, 0); // the cache remained empty if the char wasn't found in this table if (4*3 >= mGlyphCache.Length()) return false; // the lists of glyphs of a composite char are space-separated return (kSpaceCh == mGlyphCache.CharAt(4*3)); } PRInt32 nsGlyphTable::ChildCountOf(nsPresContext* aPresContext, nsMathMLChar* aChar) { // this will sync the cache as well ... if (!IsComposite(aPresContext, aChar)) return 0; // the lists of glyphs of a composite char are space-separated return 1 + mGlyphCache.CountChar(kSpaceCh); } bool nsGlyphTable::Has(nsPresContext* aPresContext, nsMathMLChar* aChar) { return HasVariantsOf(aPresContext, aChar) || HasPartsOf(aPresContext, aChar); } bool nsGlyphTable::HasVariantsOf(nsPresContext* aPresContext, nsMathMLChar* aChar) { //XXXkt all variants must be in the same file as size 1 return BigOf(aPresContext, aChar, 1).Exists(); } bool nsGlyphTable::HasPartsOf(nsPresContext* aPresContext, nsMathMLChar* aChar) { return GlueOf(aPresContext, aChar).Exists() || TopOf(aPresContext, aChar).Exists() || BottomOf(aPresContext, aChar).Exists() || MiddleOf(aPresContext, aChar).Exists() || IsComposite(aPresContext, aChar); } // ----------------------------------------------------------------------------------- // This is the list of all the applicable glyph tables. // We will maintain a single global instance that will only reveal those // glyph tables that are associated to fonts currently installed on the // user' system. The class is an XPCOM shutdown observer to allow us to // free its allocated data at shutdown class nsGlyphTableList : public nsIObserver { public: NS_DECL_ISUPPORTS NS_DECL_NSIOBSERVER nsGlyphTable mUnicodeTable; nsGlyphTableList() : mUnicodeTable(NS_LITERAL_STRING("Unicode")) { MOZ_COUNT_CTOR(nsGlyphTableList); } virtual ~nsGlyphTableList() { MOZ_COUNT_DTOR(nsGlyphTableList); } nsresult Initialize(); nsresult Finalize(); // Add a glyph table in the list, return the new table that was added nsGlyphTable* AddGlyphTable(const nsString& aPrimaryFontName); // Find a glyph table in the list that has a glyph for the given char nsGlyphTable* GetGlyphTableFor(nsPresContext* aPresContext, nsMathMLChar* aChar); // Find the glyph table in the list corresponding to the given font family. nsGlyphTable* GetGlyphTableFor(const nsAString& aFamily); private: nsGlyphTable* TableAt(PRInt32 aIndex) { return &mTableList.ElementAt(aIndex); } PRInt32 Count() { return mTableList.Length(); } // List of glyph tables; nsTArray mTableList; }; NS_IMPL_ISUPPORTS1(nsGlyphTableList, nsIObserver) // ----------------------------------------------------------------------------------- // Here is the global list of applicable glyph tables that we will be using static nsGlyphTableList* gGlyphTableList = nullptr; static bool gInitialized = false; // XPCOM shutdown observer NS_IMETHODIMP nsGlyphTableList::Observe(nsISupports* aSubject, const char* aTopic, const PRUnichar* someData) { Finalize(); return NS_OK; } // Add an observer to XPCOM shutdown so that we can free our data at shutdown nsresult nsGlyphTableList::Initialize() { nsCOMPtr obs = mozilla::services::GetObserverService(); if (!obs) return NS_ERROR_FAILURE; nsresult rv = obs->AddObserver(this, NS_XPCOM_SHUTDOWN_OBSERVER_ID, false); NS_ENSURE_SUCCESS(rv, rv); return NS_OK; } // Remove our observer and free the memory that were allocated for us nsresult nsGlyphTableList::Finalize() { // Remove our observer from the observer service nsresult rv = NS_OK; nsCOMPtr obs = mozilla::services::GetObserverService(); if (obs) rv = obs->RemoveObserver(this, NS_XPCOM_SHUTDOWN_OBSERVER_ID); else rv = NS_ERROR_FAILURE; gInitialized = false; // our oneself will be destroyed when our |Release| is called by the observer return rv; } nsGlyphTable* nsGlyphTableList::AddGlyphTable(const nsString& aPrimaryFontName) { // See if there is already a special table for this family. nsGlyphTable* glyphTable = GetGlyphTableFor(aPrimaryFontName); if (glyphTable != &mUnicodeTable) return glyphTable; // allocate a table glyphTable = mTableList.AppendElement(aPrimaryFontName); return glyphTable; } nsGlyphTable* nsGlyphTableList::GetGlyphTableFor(nsPresContext* aPresContext, nsMathMLChar* aChar) { if (mUnicodeTable.Has(aPresContext, aChar)) return &mUnicodeTable; PRInt32 i; for (i = 0; i < Count(); i++) { nsGlyphTable* glyphTable = TableAt(i); if (glyphTable->Has(aPresContext, aChar)) { return glyphTable; } } return nullptr; } nsGlyphTable* nsGlyphTableList::GetGlyphTableFor(const nsAString& aFamily) { for (PRInt32 i = 0; i < Count(); i++) { nsGlyphTable* glyphTable = TableAt(i); const nsAString& fontName = glyphTable->PrimaryFontName(); // TODO: would be nice to consider StripWhitespace and other aliasing if (fontName.Equals(aFamily, nsCaseInsensitiveStringComparator())) { return glyphTable; } } // Fall back to default Unicode table return &mUnicodeTable; } // ----------------------------------------------------------------------------------- // Lookup the preferences: // "font.mathfont-family.\uNNNN.base" -- fonts for the base size // "font.mathfont-family.\uNNNN.variants" -- fonts for larger glyphs // "font.mathfont-family.\uNNNN.parts" -- fonts for partial glyphs // Given the char code and mode of stretch, retrieve the preferred extension // font families. static bool GetFontExtensionPref(PRUnichar aChar, nsMathfontPrefExtension aExtension, nsString& aValue) { // initialize OUT param aValue.Truncate(); // We are going to try two keys because some users specify their pref as // user_pref("font.mathfont-family.\uNNNN.base", "...") rather than // user_pref("font.mathfont-family.\\uNNNN.base", "..."). // The \uNNNN in the former is interpreted as an UTF16 escape sequence by // JavaScript and is converted to the internal UTF8 string that JavaScript uses. // But clueless users who are not savvy of JavaScript have no idea as to what // is going on and are baffled as to why their pref setting is not working. // So to save countless explanations, we are going to support both keys. static const char* kMathFontPrefix = "font.mathfont-family."; nsCAutoString extension; switch (aExtension) { case eExtension_base: extension.AssignLiteral(".base"); break; case eExtension_variants: extension.AssignLiteral(".variants"); break; case eExtension_parts: extension.AssignLiteral(".parts"); break; default: return false; } // .\\uNNNN key nsCAutoString key; key.AssignASCII(kMathFontPrefix); char ustr[10]; PR_snprintf(ustr, sizeof(ustr), "\\u%04X", aChar); key.Append(ustr); key.Append(extension); // .\uNNNN key nsCAutoString alternateKey; alternateKey.AssignASCII(kMathFontPrefix); NS_ConvertUTF16toUTF8 tmp(&aChar, 1); alternateKey.Append(tmp); alternateKey.Append(extension); aValue = Preferences::GetString(key.get()); if (aValue.IsEmpty()) { aValue = Preferences::GetString(alternateKey.get()); } return !aValue.IsEmpty(); } static bool MathFontEnumCallback(const nsString& aFamily, bool aGeneric, void *aData) { if (!gGlyphTableList->AddGlyphTable(aFamily)) return false; // stop in low-memory situations return true; // don't stop } static nsresult InitGlobals(nsPresContext* aPresContext) { NS_ASSERTION(!gInitialized, "Error -- already initialized"); gInitialized = true; // Allocate the placeholders for the preferred parts and variants nsresult rv = NS_ERROR_OUT_OF_MEMORY; gGlyphTableList = new nsGlyphTableList(); if (gGlyphTableList) { rv = gGlyphTableList->Initialize(); } if (NS_FAILED(rv)) { delete gGlyphTableList; gGlyphTableList = nullptr; return rv; } /* else The gGlyphTableList has been successfully registered as a shutdown observer. It will be deleted at shutdown, even if a failure happens below. */ nsCAutoString key; nsAutoString value; nsCOMPtr mathfontProp; // Add the math fonts in the gGlyphTableList in order of preference ... // Note: we only load font-names at this stage. The actual glyph tables will // be loaded lazily (see nsGlyphTable::ElementAt()). // Load the "mathfont.properties" file value.Truncate(); rv = LoadProperties(value, mathfontProp); if (NS_FAILED(rv)) return rv; // Get the list of mathfonts having special glyph tables to be used for // stretchy characters. // We just want to iterate over the font-family list using the // callback mechanism that nsFont has... nsFont font("", 0, 0, 0, 0, 0, 0); NS_NAMED_LITERAL_CSTRING(defaultKey, "font.mathfont-glyph-tables"); rv = mathfontProp->GetStringProperty(defaultKey, font.name); if (NS_FAILED(rv)) return rv; // Parse the font list and append an entry for each family to gGlyphTableList nsAutoString missingFamilyList; font.EnumerateFamilies(MathFontEnumCallback, nullptr); return rv; } // ----------------------------------------------------------------------------------- // And now the implementation of nsMathMLChar nsStyleContext* nsMathMLChar::GetStyleContext() const { NS_ASSERTION(!mParent, "invalid call - not allowed for child chars"); NS_ASSERTION(mStyleContext, "chars should always have style context"); return mStyleContext; } void nsMathMLChar::SetStyleContext(nsStyleContext* aStyleContext) { NS_ASSERTION(!mParent, "invalid call - not allowed for child chars"); NS_PRECONDITION(aStyleContext, "null ptr"); if (aStyleContext != mStyleContext) { if (mStyleContext) mStyleContext->Release(); if (aStyleContext) { mStyleContext = aStyleContext; aStyleContext->AddRef(); // Sync the pointers of child chars. nsMathMLChar* child = mSibling; while (child) { child->mStyleContext = mStyleContext; child = child->mSibling; } } } } void nsMathMLChar::SetData(nsPresContext* aPresContext, nsString& aData) { NS_ASSERTION(!mParent, "invalid call - not allowed for child chars"); if (!gInitialized) { InitGlobals(aPresContext); } mData = aData; // some assumptions until proven otherwise // note that mGlyph is not initialized mDirection = NS_STRETCH_DIRECTION_UNSUPPORTED; mBoundingMetrics = nsBoundingMetrics(); mGlyphTable = nullptr; // check if stretching is applicable ... if (gGlyphTableList && (1 == mData.Length())) { mDirection = nsMathMLOperators::GetStretchyDirection(mData); // default tentative table (not the one that is necessarily going // to be used) mGlyphTable = gGlyphTableList->GetGlyphTableFor(aPresContext, this); } } // ----------------------------------------------------------------------------------- /* The Stretch: @param aContainerSize - suggested size for the stretched char @param aDesiredStretchSize - OUT parameter. The desired size after stretching. If no stretching is done, the output will simply give the base size. How it works? Summary:- The Stretch() method first looks for a glyph of appropriate size; If a glyph is found, it is cached by this object and its size is returned in aDesiredStretchSize. The cached glyph will then be used at the painting stage. If no glyph of appropriate size is found, a search is made to see if the char can be built by parts. Details:- A character gets stretched through the following pipeline : 1) If the base size of the char is sufficient to cover the container' size, we use that. If not, it will still be used as a fallback if the other stages in the pipeline fail. Issues : a) The base size, the parts and the variants of a char can be in different fonts. For eg., the base size for '(' should come from a normal ascii font if CMEX10 is used, since CMEX10 only contains the stretched versions. Hence, there are two style contexts in use throughout the process. The leaf style context of the char holds fonts with which to try to stretch the char. The parent style context of the char contains fonts for normal rendering. So the parent context is the one used to get the initial base size at the start of the pipeline. b) For operators that can be largeop's in display mode, we will skip the base size even if it fits, so that the next stage in the pipeline is given a chance to find a largeop variant. If the next stage fails, we fallback to the base size. 2) We search for the first larger variant of the char that fits the container' size. We first search for larger variants using the glyph table corresponding to the first existing font specified in the list of stretchy fonts held by the leaf style context (from -moz-math-stretchy in mathml.css). Generic fonts are resolved by the preference "font.mathfont-family". Issues : a) the largeop and display settings determine the starting size when we do the above search, regardless of whether smaller variants already fit the container' size. b) if it is a largeopOnly request (i.e., a displaystyle operator with largeop=true and stretchy=false), we break after finding the first starting variant, regardless of whether that variant fits the container's size. 3) If a variant of appropriate size wasn't found, we see if the char can be built by parts using the same glyph table. Issues: a) Certain chars like over/underbrace in CMEX10 have to be built from two half stretchy chars and joined in the middle. Such chars are handled in a special manner. When this situation is detected, the initial char (referred to as "parent") creates a singly-linked list of child chars, asking them to stretch in a divided space. A convention is used in the setup of nsGlyphTable to express that a composite parent char can be built from child chars. b) There are some chars that have no middle and glue glyphs. For such chars, the parts need to be joined using the rule. By convention (TeXbook p.225), the descent of the parts is zero while their ascent gives the thickness of the rule that should be used to join them. 4) If a match was not found in that glyph table, repeat from 2 to search the ordered list of stretchy fonts for the first font with a glyph table that provides a fit to the container size. If no fit is found, the closest fit is used. Of note: When the pipeline completes successfully, the desired size of the stretched char can actually be slightly larger or smaller than aContainerSize. But it is the responsibility of the caller to account for the spacing when setting aContainerSize, and to leave any extra margin when placing the stretched char. */ // ----------------------------------------------------------------------------------- // plain TeX settings (TeXbook p.152) #define NS_MATHML_DELIMITER_FACTOR 0.901f #define NS_MATHML_DELIMITER_SHORTFALL_POINTS 5.0f static bool IsSizeOK(nsPresContext* aPresContext, nscoord a, nscoord b, PRUint32 aHint) { // Normal: True if 'a' is around +/-10% of the target 'b' (10% is // 1-DelimiterFactor). This often gives a chance to the base size to // win, especially in the context of without tall elements // or in sloppy markups without protective bool isNormal = (aHint & NS_STRETCH_NORMAL) && bool(float(NS_ABS(a - b)) < (1.0f - NS_MATHML_DELIMITER_FACTOR) * float(b)); // Nearer: True if 'a' is around max{ +/-10% of 'b' , 'b' - 5pt }, // as documented in The TeXbook, Ch.17, p.152. // i.e. within 10% and within 5pt bool isNearer = false; if (aHint & (NS_STRETCH_NEARER | NS_STRETCH_LARGEOP)) { float c = NS_MAX(float(b) * NS_MATHML_DELIMITER_FACTOR, float(b) - nsPresContext::CSSPointsToAppUnits(NS_MATHML_DELIMITER_SHORTFALL_POINTS)); isNearer = bool(float(NS_ABS(b - a)) <= (float(b) - c)); } // Smaller: Mainly for transitory use, to compare two candidate // choices bool isSmaller = (aHint & NS_STRETCH_SMALLER) && bool((float(a) >= (NS_MATHML_DELIMITER_FACTOR * float(b))) && (a <= b)); // Larger: Critical to the sqrt code to ensure that the radical // size is tall enough bool isLarger = (aHint & (NS_STRETCH_LARGER | NS_STRETCH_LARGEOP)) && bool(a >= b); return (isNormal || isSmaller || isNearer || isLarger); } static bool IsSizeBetter(nscoord a, nscoord olda, nscoord b, PRUint32 aHint) { if (0 == olda) return true; if (aHint & (NS_STRETCH_LARGER | NS_STRETCH_LARGEOP)) return (a >= olda) ? (olda < b) : (a >= b); if (aHint & NS_STRETCH_SMALLER) return (a <= olda) ? (olda > b) : (a <= b); // XXXkt prob want log scale here i.e. 1.5 is closer to 1 than 0.5 return NS_ABS(a - b) < NS_ABS(olda - b); } // We want to place the glyphs even when they don't fit at their // full extent, i.e., we may clip to tolerate a small amount of // overlap between the parts. This is important to cater for fonts // with long glues. static nscoord ComputeSizeFromParts(nsPresContext* aPresContext, nsGlyphCode* aGlyphs, nscoord* aSizes, nscoord aTargetSize) { enum {first, middle, last, glue}; // Add the parts that cannot be left out. nscoord sum = 0; for (PRInt32 i = first; i <= last; i++) { if (aGlyphs[i] != aGlyphs[glue]) { sum += aSizes[i]; } } // Determine how much is used in joins nscoord oneDevPixel = aPresContext->AppUnitsPerDevPixel(); PRInt32 joins = aGlyphs[middle] == aGlyphs[glue] ? 1 : 2; // Pick a maximum size using a maximum number of glue glyphs that we are // prepared to draw for one character. const PRInt32 maxGlyphs = 1000; // This also takes into account the fact that, if the glue has no size, // then the character can't be lengthened. nscoord maxSize = sum - 2 * joins * oneDevPixel + maxGlyphs * aSizes[glue]; if (maxSize < aTargetSize) return maxSize; // settle with the maximum size // Get the minimum allowable size using some flex. nscoord minSize = NSToCoordRound(NS_MATHML_DELIMITER_FACTOR * sum); if (minSize > aTargetSize) return minSize; // settle with the minimum size // Fill-up the target area return aTargetSize; } // Insert aFallbackFamilies before the first generic family in or at the end // of a CSS aFontName. static void AddFallbackFonts(nsAString& aFontName, const nsAString& aFallbackFamilies) { if (aFallbackFamilies.IsEmpty()) return; if (aFontName.IsEmpty()) { return; } static const PRUnichar kSingleQuote = PRUnichar('\''); static const PRUnichar kDoubleQuote = PRUnichar('\"'); static const PRUnichar kComma = PRUnichar(','); const PRUnichar *p_begin, *p_end; aFontName.BeginReading(p_begin); aFontName.EndReading(p_end); const PRUnichar *p = p_begin; const PRUnichar *p_name = nullptr; while (p < p_end) { while (nsCRT::IsAsciiSpace(*p)) if (++p == p_end) goto insert; p_name = p; if (*p == kSingleQuote || *p == kDoubleQuote) { // quoted font family PRUnichar quoteMark = *p; if (++p == p_end) goto insert; // XXX What about CSS character escapes? while (*p != quoteMark) if (++p == p_end) goto insert; while (++p != p_end && *p != kComma) /* nothing */ ; } else { // unquoted font family const PRUnichar *nameStart = p; while (++p != p_end && *p != kComma) /* nothing */ ; nsAutoString family; family = Substring(nameStart, p); family.CompressWhitespace(false, true); PRUint8 generic; nsFont::GetGenericID(family, &generic); if (generic != kGenericFont_NONE) goto insert; } ++p; // may advance past p_end } aFontName.Append(NS_LITERAL_STRING(",") + aFallbackFamilies); return; insert: if (p_name) { aFontName.Insert(aFallbackFamilies + NS_LITERAL_STRING(","), p_name - p_begin); } else { // whitespace or empty aFontName = aFallbackFamilies; } } // Update the font and rendering context if there is a family change static bool SetFontFamily(nsStyleContext* aStyleContext, nsRenderingContext& aRenderingContext, nsFont& aFont, const nsGlyphTable* aGlyphTable, const nsGlyphCode& aGlyphCode, const nsAString& aDefaultFamily) { const nsAString& family = aGlyphCode.font ? aGlyphTable->FontNameFor(aGlyphCode) : aDefaultFamily; if (! family.Equals(aFont.name)) { nsFont font = aFont; font.name = family; nsRefPtr fm; aRenderingContext.DeviceContext()->GetMetricsFor(font, aStyleContext->GetStyleFont()->mLanguage, aStyleContext->PresContext()->GetUserFontSet(), *getter_AddRefs(fm)); // Set the font if it is an unicode table // or if the same family name has been found if (aGlyphTable == &gGlyphTableList->mUnicodeTable || fm->GetThebesFontGroup()->GetFontAt(0)->GetFontEntry()-> FamilyName() == family) { aFont.name = family; aRenderingContext.SetFont(fm); } else return false; // We did not set the font } return true; } class nsMathMLChar::StretchEnumContext { public: StretchEnumContext(nsMathMLChar* aChar, nsPresContext* aPresContext, nsRenderingContext& aRenderingContext, nsStretchDirection aStretchDirection, nscoord aTargetSize, PRUint32 aStretchHint, nsBoundingMetrics& aStretchedMetrics, const nsAString& aFamilies, bool& aGlyphFound) : mChar(aChar), mPresContext(aPresContext), mRenderingContext(aRenderingContext), mDirection(aStretchDirection), mTargetSize(aTargetSize), mStretchHint(aStretchHint), mBoundingMetrics(aStretchedMetrics), mFamilies(aFamilies), mTryVariants(true), mTryParts(true), mGlyphFound(aGlyphFound) {} static bool EnumCallback(const nsString& aFamily, bool aGeneric, void *aData); private: bool TryVariants(nsGlyphTable* aGlyphTable, const nsAString& aFamily); bool TryParts(nsGlyphTable* aGlyphTable, const nsAString& aFamily); nsMathMLChar* mChar; nsPresContext* mPresContext; nsRenderingContext& mRenderingContext; const nsStretchDirection mDirection; const nscoord mTargetSize; const PRUint32 mStretchHint; nsBoundingMetrics& mBoundingMetrics; // Font families to search const nsAString& mFamilies; public: bool mTryVariants; bool mTryParts; private: nsAutoTArray mTablesTried; nsGlyphTable* mGlyphTable; // for this callback bool& mGlyphFound; }; // 2. See if there are any glyphs of the appropriate size. // Returns true if the size is OK, false to keep searching. // Always updates the char if a better match is found. bool nsMathMLChar::StretchEnumContext::TryVariants(nsGlyphTable* aGlyphTable, const nsAString& aFamily) { // Use our stretchy style context now that stretching is in progress nsStyleContext *sc = mChar->mStyleContext; nsFont font = sc->GetStyleFont()->mFont; // Ensure mRenderingContext.SetFont will be called: font.name.Truncate(); bool isVertical = (mDirection == NS_STRETCH_DIRECTION_VERTICAL); bool largeop = (NS_STRETCH_LARGEOP & mStretchHint) != 0; bool largeopOnly = largeop && (NS_STRETCH_VARIABLE_MASK & mStretchHint) == 0; bool maxWidth = (NS_STRETCH_MAXWIDTH & mStretchHint) != 0; nscoord bestSize = isVertical ? mBoundingMetrics.ascent + mBoundingMetrics.descent : mBoundingMetrics.rightBearing - mBoundingMetrics.leftBearing; bool haveBetter = false; // start at size = 1 (size = 0 is the char at its normal size) PRInt32 size = 1; #ifdef NOISY_SEARCH printf(" searching in %s ...\n", NS_LossyConvertUTF16toASCII(aFamily).get()); #endif nsGlyphCode ch; while ((ch = aGlyphTable->BigOf(mPresContext, mChar, size)).Exists()) { if(!SetFontFamily(sc, mRenderingContext, font, aGlyphTable, ch, aFamily)) { // if largeopOnly is set, break now if (largeopOnly) break; ++size; continue; } NS_ASSERTION(maxWidth || ch.code[0] != mChar->mGlyph.code[0] || ch.code[1] != mChar->mGlyph.code[1] || !font.name.Equals(mChar->mFamily), "glyph table incorrectly set -- duplicate found"); nsBoundingMetrics bm = mRenderingContext.GetBoundingMetrics(ch.code, ch.Length()); nscoord charSize = isVertical ? bm.ascent + bm.descent : bm.rightBearing - bm.leftBearing; if (largeopOnly || IsSizeBetter(charSize, bestSize, mTargetSize, mStretchHint)) { mGlyphFound = true; if (maxWidth) { // IsSizeBetter() checked that charSize < maxsize; // Leave ascent, descent, and bestsize as these contain maxsize. if (mBoundingMetrics.width < bm.width) mBoundingMetrics.width = bm.width; if (mBoundingMetrics.leftBearing > bm.leftBearing) mBoundingMetrics.leftBearing = bm.leftBearing; if (mBoundingMetrics.rightBearing < bm.rightBearing) mBoundingMetrics.rightBearing = bm.rightBearing; // Continue to check other sizes unless largeopOnly haveBetter = largeopOnly; } else { mBoundingMetrics = bm; haveBetter = true; bestSize = charSize; mChar->mGlyphTable = aGlyphTable; mChar->mGlyph = ch; mChar->mFamily = font.name; } #ifdef NOISY_SEARCH printf(" size:%d Current best\n", size); #endif } else { #ifdef NOISY_SEARCH printf(" size:%d Rejected!\n", size); #endif if (haveBetter) break; // Not making an futher progress, stop searching } // if largeopOnly is set, break now if (largeopOnly) break; ++size; } return haveBetter && (largeopOnly || IsSizeOK(mPresContext, bestSize, mTargetSize, mStretchHint)); } // 3. Build by parts. // Returns true if the size is OK, false to keep searching. // Always updates the char if a better match is found. bool nsMathMLChar::StretchEnumContext::TryParts(nsGlyphTable* aGlyphTable, const nsAString& aFamily) { if (!aGlyphTable->HasPartsOf(mPresContext, mChar)) return false; // to next table // See if this is a composite character ///////////////////////////////////// if (aGlyphTable->IsComposite(mPresContext, mChar)) { // let the child chars do the job nsBoundingMetrics compositeSize; nsresult rv = mChar->ComposeChildren(mPresContext, mRenderingContext, aGlyphTable, mTargetSize, compositeSize, mStretchHint); #ifdef NOISY_SEARCH printf(" Composing %d chars in font %s %s!\n", aGlyphTable->ChildCountOf(mPresContext, mChar), NS_LossyConvertUTF16toASCII(fontName).get(), NS_SUCCEEDED(rv)? "OK" : "Rejected"); #endif if (NS_FAILED(rv)) return false; // to next table // all went well, painting will be delegated from now on to children mChar->mGlyph = kNullGlyph; // this will tell paint to build by parts mGlyphFound = true; mChar->mGlyphTable = aGlyphTable; mBoundingMetrics = compositeSize; return true; // no more searching } // See if the parts of this table fit in the desired space ////////////////// // Use our stretchy style context now that stretching is in progress nsFont font = mChar->mStyleContext->GetStyleFont()->mFont; // Ensure mRenderingContext.SetFont will be called: font.name.Truncate(); // Compute the bounding metrics of all partial glyphs nsGlyphCode chdata[4]; nsBoundingMetrics bmdata[4]; nscoord sizedata[4]; nsGlyphCode glue = aGlyphTable->GlueOf(mPresContext, mChar); bool isVertical = (mDirection == NS_STRETCH_DIRECTION_VERTICAL); bool maxWidth = (NS_STRETCH_MAXWIDTH & mStretchHint) != 0; for (PRInt32 i = 0; i < 4; i++) { nsGlyphCode ch; switch (i) { case 0: ch = aGlyphTable->TopOf(mPresContext, mChar); break; case 1: ch = aGlyphTable->MiddleOf(mPresContext, mChar); break; case 2: ch = aGlyphTable->BottomOf(mPresContext, mChar); break; case 3: ch = glue; break; } // empty slots are filled with the glue if it is not null if (!ch.Exists()) ch = glue; chdata[i] = ch; if (!ch.Exists()) { // Null glue indicates that a rule will be drawn, which can stretch to // fill any space. Leave bounding metrics at 0. sizedata[i] = mTargetSize; } else { if (!SetFontFamily(mChar->mStyleContext, mRenderingContext, font, aGlyphTable, ch, aFamily)) return false; nsBoundingMetrics bm = mRenderingContext.GetBoundingMetrics(ch.code, ch.Length()); // TODO: For the generic Unicode table, ideally we should check that the // glyphs are actually found and that they each come from the same // font. bmdata[i] = bm; sizedata[i] = isVertical ? bm.ascent + bm.descent : bm.rightBearing - bm.leftBearing; } } // Build by parts if we have successfully computed the // bounding metrics of all parts. nscoord computedSize = ComputeSizeFromParts(mPresContext, chdata, sizedata, mTargetSize); nscoord currentSize = isVertical ? mBoundingMetrics.ascent + mBoundingMetrics.descent : mBoundingMetrics.rightBearing - mBoundingMetrics.leftBearing; if (!IsSizeBetter(computedSize, currentSize, mTargetSize, mStretchHint)) { #ifdef NOISY_SEARCH printf(" Font %s Rejected!\n", NS_LossyConvertUTF16toASCII(fontName).get()); #endif return false; // to next table } #ifdef NOISY_SEARCH printf(" Font %s Current best!\n", NS_LossyConvertUTF16toASCII(fontName).get()); #endif // The computed size is the best we have found so far... // now is the time to compute and cache our bounding metrics if (isVertical) { PRInt32 i; nscoord lbearing; nscoord rbearing; nscoord width; if (maxWidth) { lbearing = mBoundingMetrics.leftBearing; rbearing = mBoundingMetrics.rightBearing; width = mBoundingMetrics.width; i = 0; } else { lbearing = bmdata[0].leftBearing; rbearing = bmdata[0].rightBearing; width = bmdata[0].width; i = 1; } for (; i < 4; i++) { const nsBoundingMetrics& bm = bmdata[i]; if (width < bm.width) width = bm.width; if (lbearing > bm.leftBearing) lbearing = bm.leftBearing; if (rbearing < bm.rightBearing) rbearing = bm.rightBearing; } mBoundingMetrics.width = width; // When maxWidth, updating ascent and descent indicates that no characters // larger than this character's minimum size need to be checked as they // will not be used. mBoundingMetrics.ascent = bmdata[0].ascent; // not used except with descent for height mBoundingMetrics.descent = computedSize - mBoundingMetrics.ascent; mBoundingMetrics.leftBearing = lbearing; mBoundingMetrics.rightBearing = rbearing; } else { nscoord ascent = bmdata[0].ascent; nscoord descent = bmdata[0].descent; for (PRInt32 i = 1; i < 4; i++) { const nsBoundingMetrics& bm = bmdata[i]; if (ascent < bm.ascent) ascent = bm.ascent; if (descent < bm.descent) descent = bm.descent; } mBoundingMetrics.width = computedSize; mBoundingMetrics.ascent = ascent; mBoundingMetrics.descent = descent; mBoundingMetrics.leftBearing = 0; mBoundingMetrics.rightBearing = computedSize; } mGlyphFound = true; if (maxWidth) return false; // Continue to check other sizes // reset mChar->mGlyph = kNullGlyph; // this will tell paint to build by parts mChar->mGlyphTable = aGlyphTable; mChar->mFamily = aFamily; return IsSizeOK(mPresContext, computedSize, mTargetSize, mStretchHint); } // This is called for each family, whether it exists or not bool nsMathMLChar::StretchEnumContext::EnumCallback(const nsString& aFamily, bool aGeneric, void *aData) { StretchEnumContext* context = static_cast(aData); // See if there is a special table for the family, but always use the // Unicode table for generic fonts. nsGlyphTable* glyphTable = aGeneric ? &gGlyphTableList->mUnicodeTable : gGlyphTableList->GetGlyphTableFor(aFamily); if (context->mTablesTried.Contains(glyphTable)) return true; // already tried this one // Check font family if it is not a generic one // We test with the kNullGlyph nsStyleContext *sc = context->mChar->mStyleContext; nsFont font = sc->GetStyleFont()->mFont; if (!aGeneric && !SetFontFamily(sc, context->mRenderingContext, font, NULL, kNullGlyph, aFamily)) return true; // Could not set the family context->mGlyphTable = glyphTable; // Now see if the table has a glyph that matches the container // Only try this table once. context->mTablesTried.AppendElement(glyphTable); // If the unicode table is being used, then search all font families. If a // special table is being used then the font in this family should have the // specified glyphs. const nsAString& family = glyphTable == &gGlyphTableList->mUnicodeTable ? context->mFamilies : aFamily; if((context->mTryVariants && context->TryVariants(glyphTable, family)) || (context->mTryParts && context->TryParts(glyphTable, family))) return false; // no need to continue return true; // true means continue } nsresult nsMathMLChar::StretchInternal(nsPresContext* aPresContext, nsRenderingContext& aRenderingContext, nsStretchDirection& aStretchDirection, const nsBoundingMetrics& aContainerSize, nsBoundingMetrics& aDesiredStretchSize, PRUint32 aStretchHint, // These are currently only used when // aStretchHint & NS_STRETCH_MAXWIDTH: float aMaxSize, bool aMaxSizeIsAbsolute) { // if we have been called before, and we didn't actually stretch, our // direction may have been set to NS_STRETCH_DIRECTION_UNSUPPORTED. // So first set our direction back to its instrinsic value nsStretchDirection direction = nsMathMLOperators::GetStretchyDirection(mData); // Set default font and get the default bounding metrics // mStyleContext is a leaf context used only when stretching happens. // For the base size, the default font should come from the parent context nsFont font = mStyleContext->GetParent()->GetStyleFont()->mFont; // Override with specific fonts if applicable for this character nsAutoString families; if (GetFontExtensionPref(mData[0], eExtension_base, families)) { font.name = families; } // Don't modify this nsMathMLChar when doing GetMaxWidth() bool maxWidth = (NS_STRETCH_MAXWIDTH & aStretchHint) != 0; if (!maxWidth) { // Record the families in case there is no stretch. But don't bother // storing families when they are just those from the StyleContext. mFamily = families; } nsRefPtr fm; aRenderingContext.DeviceContext()->GetMetricsFor(font, mStyleContext->GetStyleFont()->mLanguage, aPresContext->GetUserFontSet(), *getter_AddRefs(fm)); aRenderingContext.SetFont(fm); aDesiredStretchSize = aRenderingContext.GetBoundingMetrics(mData.get(), PRUint32(mData.Length())); if (!maxWidth) { mUnscaledAscent = aDesiredStretchSize.ascent; } //////////////////////////////////////////////////////////////////////////////////// // 1. Check the common situations where stretching is not actually needed //////////////////////////////////////////////////////////////////////////////////// // quick return if there is nothing special about this char if ((aStretchDirection != direction && aStretchDirection != NS_STRETCH_DIRECTION_DEFAULT) || (aStretchHint & ~NS_STRETCH_MAXWIDTH) == NS_STRETCH_NONE) { mDirection = NS_STRETCH_DIRECTION_UNSUPPORTED; return NS_OK; } // if no specified direction, attempt to stretch in our preferred direction if (aStretchDirection == NS_STRETCH_DIRECTION_DEFAULT) { aStretchDirection = direction; } // see if this is a particular largeop or largeopOnly request bool largeop = (NS_STRETCH_LARGEOP & aStretchHint) != 0; bool stretchy = (NS_STRETCH_VARIABLE_MASK & aStretchHint) != 0; bool largeopOnly = largeop && !stretchy; bool isVertical = (direction == NS_STRETCH_DIRECTION_VERTICAL); nscoord targetSize = isVertical ? aContainerSize.ascent + aContainerSize.descent : aContainerSize.rightBearing - aContainerSize.leftBearing; if (maxWidth) { // See if it is only necessary to consider glyphs up to some maximum size. // Set the current height to the maximum size, and set aStretchHint to // NS_STRETCH_SMALLER if the size is variable, so that only smaller sizes // are considered. targetSize from GetMaxWidth() is 0. if (stretchy) { // variable size stretch - consider all sizes < maxsize aStretchHint = (aStretchHint & ~NS_STRETCH_VARIABLE_MASK) | NS_STRETCH_SMALLER; } // Use NS_MATHML_DELIMITER_FACTOR to allow some slightly larger glyphs as // maxsize is not enforced exactly. if (aMaxSize == NS_MATHML_OPERATOR_SIZE_INFINITY) { aDesiredStretchSize.ascent = nscoord_MAX; aDesiredStretchSize.descent = 0; } else { nscoord height = aDesiredStretchSize.ascent + aDesiredStretchSize.descent; if (height == 0) { if (aMaxSizeIsAbsolute) { aDesiredStretchSize.ascent = NSToCoordRound(aMaxSize / NS_MATHML_DELIMITER_FACTOR); aDesiredStretchSize.descent = 0; } // else: leave height as 0 } else { float scale = aMaxSizeIsAbsolute ? aMaxSize / height : aMaxSize; scale /= NS_MATHML_DELIMITER_FACTOR; aDesiredStretchSize.ascent = NSToCoordRound(scale * aDesiredStretchSize.ascent); aDesiredStretchSize.descent = NSToCoordRound(scale * aDesiredStretchSize.descent); } } } nsBoundingMetrics initialSize = aDesiredStretchSize; nscoord charSize = isVertical ? initialSize.ascent + initialSize.descent : initialSize.rightBearing - initialSize.leftBearing; bool done = (mGlyphTable ? false : true); if (!done && !maxWidth && !largeop) { // Doing Stretch() not GetMaxWidth(), // and not a largeop in display mode; we're done if size fits if ((targetSize <= 0) || ((isVertical && charSize >= targetSize) || IsSizeOK(aPresContext, charSize, targetSize, aStretchHint))) done = true; } //////////////////////////////////////////////////////////////////////////////////// // 2/3. Search for a glyph or set of part glyphs of appropriate size //////////////////////////////////////////////////////////////////////////////////// bool glyphFound = false; nsAutoString cssFamilies; if (!done) { font = mStyleContext->GetStyleFont()->mFont; cssFamilies = font.name; } // See if there are preferred fonts for the variants of this char if (!done && GetFontExtensionPref(mData[0], eExtension_variants, families)) { font.name = families; StretchEnumContext enumData(this, aPresContext, aRenderingContext, aStretchDirection, targetSize, aStretchHint, aDesiredStretchSize, font.name, glyphFound); enumData.mTryParts = false; done = !font.EnumerateFamilies(StretchEnumContext::EnumCallback, &enumData); } // See if there are preferred fonts for the parts of this char if (!done && !largeopOnly && GetFontExtensionPref(mData[0], eExtension_parts, families)) { font.name = families; StretchEnumContext enumData(this, aPresContext, aRenderingContext, aStretchDirection, targetSize, aStretchHint, aDesiredStretchSize, font.name, glyphFound); enumData.mTryVariants = false; done = !font.EnumerateFamilies(StretchEnumContext::EnumCallback, &enumData); } if (!done) { // normal case // Use the css font-family but add preferred fallback fonts. font.name = cssFamilies; NS_NAMED_LITERAL_CSTRING(defaultKey, "font.mathfont-family"); nsAdoptingString fallbackFonts = Preferences::GetString(defaultKey.get()); if (!fallbackFonts.IsEmpty()) { AddFallbackFonts(font.name, fallbackFonts); } #ifdef NOISY_SEARCH printf("Searching in "%s" for a glyph of appropriate size for: 0x%04X:%c\n", font.name, mData[0], mData[0]&0x00FF); #endif StretchEnumContext enumData(this, aPresContext, aRenderingContext, aStretchDirection, targetSize, aStretchHint, aDesiredStretchSize, font.name, glyphFound); enumData.mTryParts = !largeopOnly; font.EnumerateFamilies(StretchEnumContext::EnumCallback, &enumData); } if (!maxWidth) { // Now, we know how we are going to draw the char. Update the member // variables accordingly. mDrawNormal = !glyphFound; mUnscaledAscent = aDesiredStretchSize.ascent; } // stretchy character if (stretchy) { if (isVertical) { float scale = float(aContainerSize.ascent + aContainerSize.descent) / (aDesiredStretchSize.ascent + aDesiredStretchSize.descent); if (!largeop || scale > 1.0) { // make the character match the desired height. if (!maxWidth) { mScaleY *= scale; } aDesiredStretchSize.ascent *= scale; aDesiredStretchSize.descent *= scale; } } else { float scale = float(aContainerSize.rightBearing - aContainerSize.leftBearing) / (aDesiredStretchSize.rightBearing - aDesiredStretchSize.leftBearing); if (!largeop || scale > 1.0) { // make the character match the desired width. if (!maxWidth) { mScaleX *= scale; } aDesiredStretchSize.leftBearing *= scale; aDesiredStretchSize.rightBearing *= scale; aDesiredStretchSize.width *= scale; } } } // We do not have a char variant for this largeop in display mode, so we // apply a scale transform to the base char. if (!glyphFound && largeop) { float scale; float largeopFactor = M_SQRT2; // increase the width if it is not largeopFactor times larger // than the initial one. if ((aDesiredStretchSize.rightBearing - aDesiredStretchSize.leftBearing) < largeopFactor * (initialSize.rightBearing - initialSize.leftBearing)) { scale = (largeopFactor * (initialSize.rightBearing - initialSize.leftBearing)) / (aDesiredStretchSize.rightBearing - aDesiredStretchSize.leftBearing); if (!maxWidth) { mScaleX *= scale; } aDesiredStretchSize.leftBearing *= scale; aDesiredStretchSize.rightBearing *= scale; aDesiredStretchSize.width *= scale; } // increase the height if it is not largeopFactor times larger // than the initial one. if (NS_STRETCH_INTEGRAL & aStretchHint) { // integrals are drawn taller largeopFactor = 2.0; } if ((aDesiredStretchSize.ascent + aDesiredStretchSize.descent) < largeopFactor * (initialSize.ascent + initialSize.descent)) { scale = (largeopFactor * (initialSize.ascent + initialSize.descent)) / (aDesiredStretchSize.ascent + aDesiredStretchSize.descent); if (!maxWidth) { mScaleY *= scale; } aDesiredStretchSize.ascent *= scale; aDesiredStretchSize.descent *= scale; } } return NS_OK; } nsresult nsMathMLChar::Stretch(nsPresContext* aPresContext, nsRenderingContext& aRenderingContext, nsStretchDirection aStretchDirection, const nsBoundingMetrics& aContainerSize, nsBoundingMetrics& aDesiredStretchSize, PRUint32 aStretchHint, bool aRTL) { NS_ASSERTION(!(aStretchHint & ~(NS_STRETCH_VARIABLE_MASK | NS_STRETCH_LARGEOP | NS_STRETCH_INTEGRAL)), "Unexpected stretch flags"); mDrawNormal = true; mMirrored = aRTL && nsMathMLOperators::IsMirrorableOperator(mData); mScaleY = mScaleX = 1.0; mDirection = aStretchDirection; nsresult rv = StretchInternal(aPresContext, aRenderingContext, mDirection, aContainerSize, aDesiredStretchSize, aStretchHint); // Record the metrics mBoundingMetrics = aDesiredStretchSize; return rv; } // What happens here is that the StretchInternal algorithm is used but // modified by passing the NS_STRETCH_MAXWIDTH stretch hint. That causes // StretchInternal to return horizontal bounding metrics that are the maximum // that might be returned from a Stretch. // // In order to avoid considering widths of some characters in fonts that will // not be used for any stretch size, StretchInternal sets the initial height // to infinity and looks for any characters smaller than this height. When a // character built from parts is considered, (it will be used by Stretch for // any characters greater than its minimum size, so) the height is set to its // minimum size, so that only widths of smaller subsequent characters are // considered. nscoord nsMathMLChar::GetMaxWidth(nsPresContext* aPresContext, nsRenderingContext& aRenderingContext, PRUint32 aStretchHint, float aMaxSize, bool aMaxSizeIsAbsolute) { nsBoundingMetrics bm; nsStretchDirection direction = NS_STRETCH_DIRECTION_VERTICAL; const nsBoundingMetrics container; // zero target size StretchInternal(aPresContext, aRenderingContext, direction, container, bm, aStretchHint | NS_STRETCH_MAXWIDTH); return NS_MAX(bm.width, bm.rightBearing) - NS_MIN(0, bm.leftBearing); } nsresult nsMathMLChar::ComposeChildren(nsPresContext* aPresContext, nsRenderingContext& aRenderingContext, nsGlyphTable* aGlyphTable, nscoord aTargetSize, nsBoundingMetrics& aCompositeSize, PRUint32 aStretchHint) { PRInt32 i = 0; nsMathMLChar* child; PRInt32 count = aGlyphTable->ChildCountOf(aPresContext, this); NS_ASSERTION(count, "something is wrong somewhere"); if (!count) return NS_ERROR_FAILURE; // if we haven't been here before, create the linked list of children now // otherwise, use what we have, adding more children as needed or deleting the extra nsMathMLChar* last = this; while ((i < count) && last->mSibling) { i++; last = last->mSibling; } while (i < count) { child = new nsMathMLChar(this); last->mSibling = child; last = child; i++; } if (last->mSibling) { delete last->mSibling; last->mSibling = nullptr; } // let children stretch in an equal space nsBoundingMetrics splitSize; if (NS_STRETCH_DIRECTION_HORIZONTAL == mDirection) splitSize.width = aTargetSize / count; else { splitSize.ascent = aTargetSize / (count * 2); splitSize.descent = splitSize.ascent; } nscoord dx = 0, dy = 0; for (i = 0, child = mSibling; child; child = child->mSibling, i++) { // child chars should just inherit our values - which may change between calls... child->mData = mData; child->mDirection = mDirection; child->mStyleContext = mStyleContext; child->mGlyphTable = aGlyphTable; // the child is associated to this table child->mMirrored = mMirrored; // there goes the Stretch() ... nsBoundingMetrics childSize; nsresult rv = child->Stretch(aPresContext, aRenderingContext, mDirection, splitSize, childSize, aStretchHint, mMirrored); // check if something went wrong or the child couldn't fit in the alloted space if (NS_FAILED(rv) || (NS_STRETCH_DIRECTION_UNSUPPORTED == child->mDirection)) { delete mSibling; // don't leave a dangling list behind ... mSibling = nullptr; return NS_ERROR_FAILURE; } child->SetRect(nsRect(dx, dy, childSize.width, childSize.ascent+childSize.descent)); if (0 == i) aCompositeSize = childSize; else { if (NS_STRETCH_DIRECTION_HORIZONTAL == mDirection) aCompositeSize += childSize; else { aCompositeSize.descent += childSize.ascent + childSize.descent; if (aCompositeSize.leftBearing > childSize.leftBearing) aCompositeSize.leftBearing = childSize.leftBearing; if (aCompositeSize.rightBearing < childSize.rightBearing) aCompositeSize.rightBearing = childSize.rightBearing; } } if (NS_STRETCH_DIRECTION_HORIZONTAL == mDirection) dx += childSize.width; else dy += childSize.ascent + childSize.descent; } return NS_OK; } class nsDisplayMathMLSelectionRect : public nsDisplayItem { public: nsDisplayMathMLSelectionRect(nsDisplayListBuilder* aBuilder, nsIFrame* aFrame, const nsRect& aRect) : nsDisplayItem(aBuilder, aFrame), mRect(aRect) { MOZ_COUNT_CTOR(nsDisplayMathMLSelectionRect); } #ifdef NS_BUILD_REFCNT_LOGGING virtual ~nsDisplayMathMLSelectionRect() { MOZ_COUNT_DTOR(nsDisplayMathMLSelectionRect); } #endif virtual void Paint(nsDisplayListBuilder* aBuilder, nsRenderingContext* aCtx); NS_DISPLAY_DECL_NAME("MathMLSelectionRect", TYPE_MATHML_SELECTION_RECT) private: nsRect mRect; }; void nsDisplayMathMLSelectionRect::Paint(nsDisplayListBuilder* aBuilder, nsRenderingContext* aCtx) { // get color to use for selection from the look&feel object nscolor bgColor = LookAndFeel::GetColor(LookAndFeel::eColorID_TextSelectBackground, NS_RGB(0, 0, 0)); aCtx->SetColor(bgColor); aCtx->FillRect(mRect + ToReferenceFrame()); } class nsDisplayMathMLCharBackground : public nsDisplayItem { public: nsDisplayMathMLCharBackground(nsDisplayListBuilder* aBuilder, nsIFrame* aFrame, const nsRect& aRect, nsStyleContext* aStyleContext) : nsDisplayItem(aBuilder, aFrame), mStyleContext(aStyleContext), mRect(aRect) { MOZ_COUNT_CTOR(nsDisplayMathMLCharBackground); } #ifdef NS_BUILD_REFCNT_LOGGING virtual ~nsDisplayMathMLCharBackground() { MOZ_COUNT_DTOR(nsDisplayMathMLCharBackground); } #endif virtual void Paint(nsDisplayListBuilder* aBuilder, nsRenderingContext* aCtx); NS_DISPLAY_DECL_NAME("MathMLCharBackground", TYPE_MATHML_CHAR_BACKGROUND) private: nsStyleContext* mStyleContext; nsRect mRect; }; void nsDisplayMathMLCharBackground::Paint(nsDisplayListBuilder* aBuilder, nsRenderingContext* aCtx) { const nsStyleBorder* border = mStyleContext->GetStyleBorder(); nsRect rect(mRect + ToReferenceFrame()); nsCSSRendering::PaintBackgroundWithSC(mFrame->PresContext(), *aCtx, mFrame, mVisibleRect, rect, mStyleContext, *border, aBuilder->GetBackgroundPaintFlags()); } class nsDisplayMathMLCharForeground : public nsDisplayItem { public: nsDisplayMathMLCharForeground(nsDisplayListBuilder* aBuilder, nsIFrame* aFrame, nsMathMLChar* aChar, PRUint32 aIndex, bool aIsSelected) : nsDisplayItem(aBuilder, aFrame), mChar(aChar), mIndex(aIndex), mIsSelected(aIsSelected) { MOZ_COUNT_CTOR(nsDisplayMathMLCharForeground); } #ifdef NS_BUILD_REFCNT_LOGGING virtual ~nsDisplayMathMLCharForeground() { MOZ_COUNT_DTOR(nsDisplayMathMLCharForeground); } #endif virtual nsRect GetBounds(nsDisplayListBuilder* aBuilder, bool* aSnap) { *aSnap = false; nsRect rect; mChar->GetRect(rect); nsPoint offset = ToReferenceFrame() + rect.TopLeft(); nsBoundingMetrics bm; mChar->GetBoundingMetrics(bm); return nsRect(offset.x + bm.leftBearing, offset.y, bm.rightBearing - bm.leftBearing, bm.ascent + bm.descent); } virtual void Paint(nsDisplayListBuilder* aBuilder, nsRenderingContext* aCtx) { mChar->PaintForeground(mFrame->PresContext(), *aCtx, ToReferenceFrame(), mIsSelected); } NS_DISPLAY_DECL_NAME("MathMLCharForeground", TYPE_MATHML_CHAR_FOREGROUND) virtual nsRect GetComponentAlphaBounds(nsDisplayListBuilder* aBuilder) { bool snap; return GetBounds(aBuilder, &snap); } virtual PRUint32 GetPerFrameKey() { return (mIndex << nsDisplayItem::TYPE_BITS) | nsDisplayItem::GetPerFrameKey(); } private: nsMathMLChar* mChar; PRUint32 mIndex; bool mIsSelected; }; #ifdef DEBUG class nsDisplayMathMLCharDebug : public nsDisplayItem { public: nsDisplayMathMLCharDebug(nsDisplayListBuilder* aBuilder, nsIFrame* aFrame, const nsRect& aRect) : nsDisplayItem(aBuilder, aFrame), mRect(aRect) { MOZ_COUNT_CTOR(nsDisplayMathMLCharDebug); } #ifdef NS_BUILD_REFCNT_LOGGING virtual ~nsDisplayMathMLCharDebug() { MOZ_COUNT_DTOR(nsDisplayMathMLCharDebug); } #endif virtual void Paint(nsDisplayListBuilder* aBuilder, nsRenderingContext* aCtx); NS_DISPLAY_DECL_NAME("MathMLCharDebug", TYPE_MATHML_CHAR_DEBUG) private: nsRect mRect; }; void nsDisplayMathMLCharDebug::Paint(nsDisplayListBuilder* aBuilder, nsRenderingContext* aCtx) { // for visual debug PRIntn skipSides = 0; nsPresContext* presContext = mFrame->PresContext(); nsStyleContext* styleContext = mFrame->GetStyleContext(); nsRect rect = mRect + ToReferenceFrame(); nsCSSRendering::PaintBorder(presContext, *aCtx, mFrame, mVisibleRect, rect, styleContext, skipSides); nsCSSRendering::PaintOutline(presContext, *aCtx, mFrame, mVisibleRect, rect, styleContext); } #endif nsresult nsMathMLChar::Display(nsDisplayListBuilder* aBuilder, nsIFrame* aForFrame, const nsDisplayListSet& aLists, PRUint32 aIndex, const nsRect* aSelectedRect) { nsresult rv = NS_OK; nsStyleContext* parentContext = mStyleContext->GetParent(); nsStyleContext* styleContext = mStyleContext; if (mDrawNormal) { // normal drawing if there is nothing special about this char // Set default context to the parent context styleContext = parentContext; } if (!styleContext->GetStyleVisibility()->IsVisible()) return NS_OK; // if the leaf style context that we use for stretchy chars has a background // color we use it -- this feature is mostly used for testing and debugging // purposes. Normally, users will set the background on the container frame. // paint the selection background -- beware MathML frames overlap a lot if (aSelectedRect && !aSelectedRect->IsEmpty()) { rv = aLists.BorderBackground()->AppendNewToTop(new (aBuilder) nsDisplayMathMLSelectionRect(aBuilder, aForFrame, *aSelectedRect)); NS_ENSURE_SUCCESS(rv, rv); } else if (mRect.width && mRect.height) { const nsStyleBackground* backg = styleContext->GetStyleBackground(); if (styleContext != parentContext && NS_GET_A(backg->mBackgroundColor) > 0) { rv = aLists.BorderBackground()->AppendNewToTop(new (aBuilder) nsDisplayMathMLCharBackground(aBuilder, aForFrame, mRect, styleContext)); NS_ENSURE_SUCCESS(rv, rv); } //else // our container frame will take care of painting its background #if defined(DEBUG) && defined(SHOW_BOUNDING_BOX) // for visual debug rv = aLists.BorderBackground()->AppendToTop(new (aBuilder) nsDisplayMathMLCharDebug(aBuilder, aForFrame, mRect)); NS_ENSURE_SUCCESS(rv, rv); #endif } return aLists.Content()->AppendNewToTop(new (aBuilder) nsDisplayMathMLCharForeground(aBuilder, aForFrame, this, aIndex, aSelectedRect && !aSelectedRect->IsEmpty())); } void nsMathMLChar::ApplyTransforms(nsRenderingContext& aRenderingContext, nsRect &r) { // apply the transforms if (mMirrored) { aRenderingContext.Translate(r.TopRight()); aRenderingContext.Scale(-mScaleX, mScaleY); } else { aRenderingContext.Translate(r.TopLeft()); aRenderingContext.Scale(mScaleX, mScaleY); } // update the bounding rectangle. r.x = r.y = 0; r.width /= mScaleX; r.height /= mScaleY; } void nsMathMLChar::PaintForeground(nsPresContext* aPresContext, nsRenderingContext& aRenderingContext, nsPoint aPt, bool aIsSelected) { nsStyleContext* parentContext = mStyleContext->GetParent(); nsStyleContext* styleContext = mStyleContext; if (mDrawNormal) { // normal drawing if there is nothing special about this char // Set default context to the parent context styleContext = parentContext; } // Set color ... nscolor fgColor = styleContext->GetVisitedDependentColor(eCSSProperty_color); if (aIsSelected) { // get color to use for selection from the look&feel object fgColor = LookAndFeel::GetColor(LookAndFeel::eColorID_TextSelectForeground, fgColor); } aRenderingContext.SetColor(fgColor); nsFont theFont(styleContext->GetStyleFont()->mFont); if (! mFamily.IsEmpty()) { theFont.name = mFamily; } nsRefPtr fm; aRenderingContext.DeviceContext()->GetMetricsFor(theFont, styleContext->GetStyleFont()->mLanguage, aPresContext->GetUserFontSet(), *getter_AddRefs(fm)); aRenderingContext.SetFont(fm); aRenderingContext.PushState(); nsRect r = mRect + aPt; ApplyTransforms(aRenderingContext, r); if (mDrawNormal) { // normal drawing if there is nothing special about this char ... // Grab some metrics to adjust the placements ... PRUint32 len = PRUint32(mData.Length()); //printf("Painting %04X like a normal char\n", mData[0]); //aRenderingContext.SetColor(NS_RGB(255,0,0)); aRenderingContext.DrawString(mData.get(), len, 0, mUnscaledAscent); } else { // Grab some metrics to adjust the placements ... // if there is a glyph of appropriate size, paint that glyph if (mGlyph.Exists()) { //printf("Painting %04X with a glyph of appropriate size\n", mData[0]); //aRenderingContext.SetColor(NS_RGB(0,0,255)); aRenderingContext.DrawString(mGlyph.code, mGlyph.Length(), 0, mUnscaledAscent); } else { // paint by parts //aRenderingContext.SetColor(NS_RGB(0,255,0)); if (NS_STRETCH_DIRECTION_VERTICAL == mDirection) PaintVertically(aPresContext, aRenderingContext, theFont, styleContext, mGlyphTable, r); else if (NS_STRETCH_DIRECTION_HORIZONTAL == mDirection) PaintHorizontally(aPresContext, aRenderingContext, theFont, styleContext, mGlyphTable, r); } } aRenderingContext.PopState(); } /* ================================================================================= And now the helper routines that actually do the job of painting the char by parts */ class AutoPushClipRect { nsRenderingContext& mCtx; public: AutoPushClipRect(nsRenderingContext& aCtx, const nsRect& aRect) : mCtx(aCtx) { mCtx.PushState(); mCtx.IntersectClip(aRect); } ~AutoPushClipRect() { mCtx.PopState(); } }; static nsPoint SnapToDevPixels(const gfxContext* aThebesContext, PRInt32 aAppUnitsPerGfxUnit, const nsPoint& aPt) { gfxPoint pt(NSAppUnitsToFloatPixels(aPt.x, aAppUnitsPerGfxUnit), NSAppUnitsToFloatPixels(aPt.y, aAppUnitsPerGfxUnit)); pt = aThebesContext->UserToDevice(pt); pt.Round(); pt = aThebesContext->DeviceToUser(pt); return nsPoint(NSFloatPixelsToAppUnits(pt.x, aAppUnitsPerGfxUnit), NSFloatPixelsToAppUnits(pt.y, aAppUnitsPerGfxUnit)); } // paint a stretchy char by assembling glyphs vertically nsresult nsMathMLChar::PaintVertically(nsPresContext* aPresContext, nsRenderingContext& aRenderingContext, nsFont& aFont, nsStyleContext* aStyleContext, nsGlyphTable* aGlyphTable, nsRect& aRect) { // Get the device pixel size in the vertical direction. // (This makes no effort to optimize for non-translation transformations.) nscoord oneDevPixel = aPresContext->AppUnitsPerDevPixel(); // get metrics data to be re-used later PRInt32 i = 0; nsGlyphCode ch, chdata[4]; nsBoundingMetrics bmdata[4]; PRInt32 glue, bottom; nsGlyphCode chGlue = aGlyphTable->GlueOf(aPresContext, this); for (PRInt32 j = 0; j < 4; ++j) { switch (j) { case 0: ch = aGlyphTable->TopOf(aPresContext, this); break; case 1: ch = aGlyphTable->MiddleOf(aPresContext, this); if (!ch.Exists()) continue; // no middle break; case 2: ch = aGlyphTable->BottomOf(aPresContext, this); bottom = i; break; case 3: ch = chGlue; glue = i; break; } // empty slots are filled with the glue if it is not null if (!ch.Exists()) ch = chGlue; // if (!ch.Exists()) glue is null, leave bounding metrics at 0 if (ch.Exists()) { SetFontFamily(aStyleContext, aRenderingContext, aFont, aGlyphTable, ch, mFamily); bmdata[i] = aRenderingContext.GetBoundingMetrics(ch.code, ch.Length()); } chdata[i] = ch; ++i; } nscoord dx = aRect.x; nscoord offset[3], start[3], end[3]; nsRefPtr ctx = aRenderingContext.ThebesContext(); for (i = 0; i <= bottom; ++i) { ch = chdata[i]; const nsBoundingMetrics& bm = bmdata[i]; nscoord dy; if (0 == i) { // top dy = aRect.y + bm.ascent; } else if (bottom == i) { // bottom dy = aRect.y + aRect.height - bm.descent; } else { // middle dy = aRect.y + bm.ascent + (aRect.height - (bm.ascent + bm.descent))/2; } // _cairo_scaled_font_show_glyphs snaps origins to device pixels. // Do this now so that we can get the other dimensions right. // (This may not achieve much with non-rectangular transformations.) dy = SnapToDevPixels(ctx, oneDevPixel, nsPoint(dx, dy)).y; // abcissa passed to DrawString offset[i] = dy; // _cairo_scaled_font_glyph_device_extents rounds outwards to the nearest // pixel, so the bm values can include 1 row of faint pixels on each edge. // Don't rely on this pixel as it can look like a gap. start[i] = dy - bm.ascent + oneDevPixel; // top join end[i] = dy + bm.descent - oneDevPixel; // bottom join } // If there are overlaps, then join at the mid point for (i = 0; i < bottom; ++i) { if (end[i] > start[i+1]) { end[i] = (end[i] + start[i+1]) / 2; start[i+1] = end[i]; } } nsRect unionRect = aRect; unionRect.x += mBoundingMetrics.leftBearing; unionRect.width = mBoundingMetrics.rightBearing - mBoundingMetrics.leftBearing; unionRect.Inflate(oneDevPixel, oneDevPixel); ///////////////////////////////////// // draw top, middle, bottom for (i = 0; i <= bottom; ++i) { ch = chdata[i]; // glue can be null, and other parts could have been set to glue if (ch.Exists()) { #ifdef SHOW_BORDERS // bounding box of the part aRenderingContext.SetColor(NS_RGB(0,0,0)); aRenderingContext.DrawRect(nsRect(dx,start[i],aRect.width+30*(i+1),end[i]-start[i])); #endif nscoord dy = offset[i]; // Draw a glyph in a clipped area so that we don't have hairy chars // pending outside nsRect clipRect = unionRect; // Clip at the join to get a solid edge (without overlap or gap), when // this won't change the glyph too much. If the glyph is too small to // clip then we'll overlap rather than have a gap. nscoord height = bmdata[i].ascent + bmdata[i].descent; if (ch == chGlue || height * (1.0 - NS_MATHML_DELIMITER_FACTOR) > oneDevPixel) { if (0 == i) { // top clipRect.height = end[i] - clipRect.y; } else if (bottom == i) { // bottom clipRect.height -= start[i] - clipRect.y; clipRect.y = start[i]; } else { // middle clipRect.y = start[i]; clipRect.height = end[i] - start[i]; } } if (!clipRect.IsEmpty()) { AutoPushClipRect clip(aRenderingContext, clipRect); SetFontFamily(aStyleContext, aRenderingContext, aFont, aGlyphTable, ch, mFamily); aRenderingContext.DrawString(ch.code, ch.Length(), dx, dy); } } } /////////////// // fill the gap between top and middle, and between middle and bottom. if (!chGlue.Exists()) { // null glue : draw a rule // figure out the dimensions of the rule to be drawn : // set lbearing to rightmost lbearing among the two current successive parts. // set rbearing to leftmost rbearing among the two current successive parts. // this not only satisfies the convention used for over/underbraces // in TeX, but also takes care of broken fonts like the stretchy integral // in Symbol for small font sizes in unix. nscoord lbearing, rbearing; PRInt32 first = 0, last = 1; while (last <= bottom) { if (chdata[last].Exists()) { lbearing = bmdata[last].leftBearing; rbearing = bmdata[last].rightBearing; if (chdata[first].Exists()) { if (lbearing < bmdata[first].leftBearing) lbearing = bmdata[first].leftBearing; if (rbearing > bmdata[first].rightBearing) rbearing = bmdata[first].rightBearing; } } else if (chdata[first].Exists()) { lbearing = bmdata[first].leftBearing; rbearing = bmdata[first].rightBearing; } else { NS_ERROR("Cannot stretch - All parts missing"); return NS_ERROR_UNEXPECTED; } // paint the rule between the parts nsRect rule(aRect.x + lbearing, end[first], rbearing - lbearing, start[last] - end[first]); if (!rule.IsEmpty()) aRenderingContext.FillRect(rule); first = last; last++; } } else if (bmdata[glue].ascent + bmdata[glue].descent > 0) { // glue is present nsBoundingMetrics& bm = bmdata[glue]; // Ensure the stride for the glue is not reduced to less than one pixel if (bm.ascent + bm.descent >= 3 * oneDevPixel) { // To protect against gaps, pretend the glue is smaller than it is, // in order to trim off ends and thus get a solid edge for the join. bm.ascent -= oneDevPixel; bm.descent -= oneDevPixel; } SetFontFamily(aStyleContext, aRenderingContext, aFont, aGlyphTable, chGlue, mFamily); nsRect clipRect = unionRect; for (i = 0; i < bottom; ++i) { // Make sure not to draw outside the character nscoord dy = NS_MAX(end[i], aRect.y); nscoord fillEnd = NS_MIN(start[i+1], aRect.YMost()); #ifdef SHOW_BORDERS // exact area to fill aRenderingContext.SetColor(NS_RGB(255,0,0)); clipRect.y = dy; clipRect.height = fillEnd - dy; aRenderingContext.DrawRect(clipRect); { #endif while (dy < fillEnd) { clipRect.y = dy; clipRect.height = NS_MIN(bm.ascent + bm.descent, fillEnd - dy); AutoPushClipRect clip(aRenderingContext, clipRect); dy += bm.ascent; aRenderingContext.DrawString(chGlue.code, chGlue.Length(), dx, dy); dy += bm.descent; } #ifdef SHOW_BORDERS } // last glyph that may cross past its boundary and collide with the next nscoord height = bm.ascent + bm.descent; aRenderingContext.SetColor(NS_RGB(0,255,0)); aRenderingContext.DrawRect(nsRect(dx, dy-bm.ascent, aRect.width, height)); #endif } } #ifdef DEBUG else { for (i = 0; i < bottom; ++i) { NS_ASSERTION(end[i] >= start[i+1], "gap between parts with missing glue glyph"); } } #endif return NS_OK; } // paint a stretchy char by assembling glyphs horizontally nsresult nsMathMLChar::PaintHorizontally(nsPresContext* aPresContext, nsRenderingContext& aRenderingContext, nsFont& aFont, nsStyleContext* aStyleContext, nsGlyphTable* aGlyphTable, nsRect& aRect) { // Get the device pixel size in the horizontal direction. // (This makes no effort to optimize for non-translation transformations.) nscoord oneDevPixel = aPresContext->AppUnitsPerDevPixel(); // get metrics data to be re-used later PRInt32 i = 0; nsGlyphCode ch, chdata[4]; nsBoundingMetrics bmdata[4]; PRInt32 glue, right; nsGlyphCode chGlue = aGlyphTable->GlueOf(aPresContext, this); for (PRInt32 j = 0; j < 4; ++j) { switch (j) { case 0: ch = aGlyphTable->LeftOf(aPresContext, this); break; case 1: ch = aGlyphTable->MiddleOf(aPresContext, this); if (!ch.Exists()) continue; // no middle break; case 2: ch = aGlyphTable->RightOf(aPresContext, this); right = i; break; case 3: ch = chGlue; glue = i; break; } // empty slots are filled with the glue if it is not null if (!ch.Exists()) ch = chGlue; // if (!ch.Exists()) glue is null, leave bounding metrics at 0. if (ch.Exists()) { SetFontFamily(aStyleContext, aRenderingContext, aFont, aGlyphTable, ch, mFamily); bmdata[i] = aRenderingContext.GetBoundingMetrics(ch.code, ch.Length()); } chdata[i] = ch; ++i; } nscoord dy = aRect.y + mBoundingMetrics.ascent; nscoord offset[3], start[3], end[3]; nsRefPtr ctx = aRenderingContext.ThebesContext(); for (i = 0; i <= right; ++i) { ch = chdata[i]; const nsBoundingMetrics& bm = bmdata[i]; nscoord dx; if (0 == i) { // left dx = aRect.x - bm.leftBearing; } else if (right == i) { // right dx = aRect.x + aRect.width - bm.rightBearing; } else { // middle dx = aRect.x + (aRect.width - bm.width)/2; } // _cairo_scaled_font_show_glyphs snaps origins to device pixels. // Do this now so that we can get the other dimensions right. // (This may not achieve much with non-rectangular transformations.) dx = SnapToDevPixels(ctx, oneDevPixel, nsPoint(dx, dy)).x; // abcissa passed to DrawString offset[i] = dx; // _cairo_scaled_font_glyph_device_extents rounds outwards to the nearest // pixel, so the bm values can include 1 row of faint pixels on each edge. // Don't rely on this pixel as it can look like a gap. start[i] = dx + bm.leftBearing + oneDevPixel; // left join end[i] = dx + bm.rightBearing - oneDevPixel; // right join } // If there are overlaps, then join at the mid point for (i = 0; i < right; ++i) { if (end[i] > start[i+1]) { end[i] = (end[i] + start[i+1]) / 2; start[i+1] = end[i]; } } nsRect unionRect = aRect; unionRect.Inflate(oneDevPixel, oneDevPixel); /////////////////////////// // draw left, middle, right for (i = 0; i <= right; ++i) { ch = chdata[i]; // glue can be null, and other parts could have been set to glue if (ch.Exists()) { #ifdef SHOW_BORDERS aRenderingContext.SetColor(NS_RGB(255,0,0)); aRenderingContext.DrawRect(nsRect(start[i], dy - bmdata[i].ascent, end[i] - start[i], bmdata[i].ascent + bmdata[i].descent)); #endif nscoord dx = offset[i]; nsRect clipRect = unionRect; // Clip at the join to get a solid edge (without overlap or gap), when // this won't change the glyph too much. If the glyph is too small to // clip then we'll overlap rather than have a gap. nscoord width = bmdata[i].rightBearing - bmdata[i].leftBearing; if (ch == chGlue || width * (1.0 - NS_MATHML_DELIMITER_FACTOR) > oneDevPixel) { if (0 == i) { // left clipRect.width = end[i] - clipRect.x; } else if (right == i) { // right clipRect.width -= start[i] - clipRect.x; clipRect.x = start[i]; } else { // middle clipRect.x = start[i]; clipRect.width = end[i] - start[i]; } } if (!clipRect.IsEmpty()) { AutoPushClipRect clip(aRenderingContext, clipRect); SetFontFamily(aStyleContext, aRenderingContext, aFont, aGlyphTable, ch, mFamily); aRenderingContext.DrawString(ch.code, ch.Length(), dx, dy); } } } //////////////// // fill the gap between left and middle, and between middle and right. if (!chGlue.Exists()) { // null glue : draw a rule // figure out the dimensions of the rule to be drawn : // set ascent to lowest ascent among the two current successive parts. // set descent to highest descent among the two current successive parts. // this satisfies the convention used for over/underbraces, and helps // fix broken fonts. nscoord ascent, descent; PRInt32 first = 0, last = 1; while (last <= right) { if (chdata[last].Exists()) { ascent = bmdata[last].ascent; descent = bmdata[last].descent; if (chdata[first].Exists()) { if (ascent > bmdata[first].ascent) ascent = bmdata[first].ascent; if (descent > bmdata[first].descent) descent = bmdata[first].descent; } } else if (chdata[first].Exists()) { ascent = bmdata[first].ascent; descent = bmdata[first].descent; } else { NS_ERROR("Cannot stretch - All parts missing"); return NS_ERROR_UNEXPECTED; } // paint the rule between the parts nsRect rule(end[first], dy - ascent, start[last] - end[first], ascent + descent); if (!rule.IsEmpty()) aRenderingContext.FillRect(rule); first = last; last++; } } else if (bmdata[glue].rightBearing - bmdata[glue].leftBearing > 0) { // glue is present nsBoundingMetrics& bm = bmdata[glue]; // Ensure the stride for the glue is not reduced to less than one pixel if (bm.rightBearing - bm.leftBearing >= 3 * oneDevPixel) { // To protect against gaps, pretend the glue is smaller than it is, // in order to trim off ends and thus get a solid edge for the join. bm.leftBearing += oneDevPixel; bm.rightBearing -= oneDevPixel; } SetFontFamily(aStyleContext, aRenderingContext, aFont, aGlyphTable, chGlue, mFamily); nsRect clipRect = unionRect; for (i = 0; i < right; ++i) { // Make sure not to draw outside the character nscoord dx = NS_MAX(end[i], aRect.x); nscoord fillEnd = NS_MIN(start[i+1], aRect.XMost()); #ifdef SHOW_BORDERS // rectangles in-between that are to be filled aRenderingContext.SetColor(NS_RGB(255,0,0)); clipRect.x = dx; clipRect.width = fillEnd - dx; aRenderingContext.DrawRect(clipRect); { #endif while (dx < fillEnd) { clipRect.x = dx; clipRect.width = NS_MIN(bm.rightBearing - bm.leftBearing, fillEnd - dx); AutoPushClipRect clip(aRenderingContext, clipRect); dx -= bm.leftBearing; aRenderingContext.DrawString(chGlue.code, chGlue.Length(), dx, dy); dx += bm.rightBearing; } #ifdef SHOW_BORDERS } // last glyph that may cross past its boundary and collide with the next nscoord width = bm.rightBearing - bm.leftBearing; aRenderingContext.SetColor(NS_RGB(0,255,0)); aRenderingContext.DrawRect(nsRect(dx + bm.leftBearing, aRect.y, width, aRect.height)); #endif } } #ifdef DEBUG else { // no glue for (i = 0; i < right; ++i) { NS_ASSERTION(end[i] >= start[i+1], "gap between parts with missing glue glyph"); } } #endif return NS_OK; }