/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=8 sts=2 et sw=2 tw=80: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifndef nsThread_h__ #define nsThread_h__ #include "mozilla/AlreadyAddRefed.h" #include "mozilla/Array.h" #include "mozilla/Atomics.h" #include "mozilla/Attributes.h" #include "mozilla/IntegerTypeTraits.h" #include "mozilla/LinkedList.h" #include "mozilla/MemoryReporting.h" #include "mozilla/Mutex.h" #include "mozilla/NotNull.h" #include "mozilla/SynchronizedEventQueue.h" #include "mozilla/TaskDispatcher.h" #include "mozilla/TimeStamp.h" #include "mozilla/UniquePtr.h" #include "mozilla/dom/DocGroup.h" #include "nsIDirectTaskDispatcher.h" #include "nsISupportsPriority.h" #include "nsIThreadInternal.h" #include "nsString.h" #include "nsTObserverArray.h" #include "nsThreadUtils.h" #include "prenv.h" namespace mozilla { class CycleCollectedJSContext; class EventQueue; template class ThreadEventQueue; class ThreadEventTarget; } // namespace mozilla using mozilla::NotNull; class nsLocalExecutionRecord; class nsThreadEnumerator; // See https://www.w3.org/TR/longtasks #define LONGTASK_BUSY_WINDOW_MS 50 static inline bool UseTaskController() { static const bool kUseTaskController = !!PR_GetEnv("MOZ_USE_TASKCONTROLLER"); return kUseTaskController; } // A class for managing performance counter state. namespace mozilla { class PerformanceCounterState { public: explicit PerformanceCounterState(const uint32_t& aNestedEventLoopDepthRef, bool aIsMainThread) : mNestedEventLoopDepth(aNestedEventLoopDepthRef), mIsMainThread(aIsMainThread), // Does it really make sense to initialize these to "now" when we // haven't run any tasks? mLastLongTaskEnd(TimeStamp::Now()), mLastLongNonIdleTaskEnd(mLastLongTaskEnd) {} class Snapshot { public: Snapshot(uint32_t aOldEventLoopDepth, PerformanceCounter* aCounter, bool aOldIsIdleRunnable) : mOldEventLoopDepth(aOldEventLoopDepth), mOldPerformanceCounter(aCounter), mOldIsIdleRunnable(aOldIsIdleRunnable) {} Snapshot(const Snapshot&) = default; Snapshot(Snapshot&&) = default; private: friend class PerformanceCounterState; const uint32_t mOldEventLoopDepth; // Non-const so we can move out of it and avoid the extra refcounting. RefPtr mOldPerformanceCounter; const bool mOldIsIdleRunnable; }; // Notification that a runnable is about to run. This captures a snapshot of // our current state before we reset to prepare for the new runnable. This // muast be called after mNestedEventLoopDepth has been incremented for the // runnable execution. The performance counter passed in should be the one // for the relevant runnable and may be null. aIsIdleRunnable should be true // if and only if the runnable has idle priority. Snapshot RunnableWillRun(PerformanceCounter* Counter, TimeStamp aNow, bool aIsIdleRunnable); // Notification that a runnable finished executing. This must be passed the // snapshot that RunnableWillRun returned for the same runnable. This must be // called before mNestedEventLoopDepth is decremented after the runnable's // execution. void RunnableDidRun(Snapshot&& aSnapshot); const TimeStamp& LastLongTaskEnd() const { return mLastLongTaskEnd; } const TimeStamp& LastLongNonIdleTaskEnd() const { return mLastLongNonIdleTaskEnd; } private: // Called to report accumulated time, as needed, when we're about to run a // runnable or just finished running one. void MaybeReportAccumulatedTime(TimeStamp aNow); // Whether the runnable we are about to run, or just ran, is a nested // runnable, in the sense that there is some other runnable up the stack // spinning the event loop. This must be called before we change our // mCurrentEventLoopDepth (when about to run a new event) or after we restore // it (after we ran one). bool IsNestedRunnable() const { return mNestedEventLoopDepth > mCurrentEventLoopDepth; } // The event loop depth of the currently running runnable. Set to the max // value of a uint32_t when there is no runnable running, so when starting to // run a toplevel (not nested) runnable IsNestedRunnable() will test false. uint32_t mCurrentEventLoopDepth = std::numeric_limits::max(); // A reference to the nsThread's mNestedEventLoopDepth, so we can // see what it is right now. const uint32_t& mNestedEventLoopDepth; // A boolean that indicates whether the currently running runnable is an idle // runnable. Only has a useful value between RunnableWillRun() being called // and RunnableDidRun() returning. bool mCurrentRunnableIsIdleRunnable = false; // Whether we're attached to the mainthread nsThread. const bool mIsMainThread; // The timestamp from which time to be accounted for should be measured. This // can be the start of a runnable running or the end of a nested runnable // running. TimeStamp mCurrentTimeSliceStart; // Information about when long tasks last ended. TimeStamp mLastLongTaskEnd; TimeStamp mLastLongNonIdleTaskEnd; // The performance counter to use for accumulating the runtime of // the currently running event. May be null, in which case the // event's running time should not be accounted to any performance // counters. RefPtr mCurrentPerformanceCounter; }; } // namespace mozilla // A native thread class nsThread : public nsIThreadInternal, public nsISupportsPriority, public nsIDirectTaskDispatcher, private mozilla::LinkedListElement { friend mozilla::LinkedList; friend mozilla::LinkedListElement; public: NS_DECL_THREADSAFE_ISUPPORTS NS_DECL_NSIEVENTTARGET_FULL NS_DECL_NSITHREAD NS_DECL_NSITHREADINTERNAL NS_DECL_NSISUPPORTSPRIORITY NS_DECL_NSIDIRECTTASKDISPATCHER enum MainThreadFlag { MAIN_THREAD, NOT_MAIN_THREAD }; nsThread(NotNull aQueue, MainThreadFlag aMainThread, uint32_t aStackSize); private: nsThread(); public: // Initialize this as a named wrapper for a new PRThread. nsresult Init(const nsACString& aName); // Initialize this as a wrapper for the current PRThread. nsresult InitCurrentThread(); private: // Initializes the mThreadId and stack base/size members, and adds the thread // to the ThreadList(). void InitCommon(); public: // The PRThread corresponding to this thread. PRThread* GetPRThread() const { return mThread; } const void* StackBase() const { return mStackBase; } size_t StackSize() const { return mStackSize; } uint32_t ThreadId() const { return mThreadId; } // If this flag is true, then the nsThread was created using // nsIThreadManager::NewThread. bool ShutdownRequired() { return mShutdownRequired; } // Lets GetRunningEventDelay() determine if the pool this is part // of has an unstarted thread void SetPoolThreadFreePtr(mozilla::Atomic* aPtr) { mIsAPoolThreadFree = aPtr; } void SetScriptObserver(mozilla::CycleCollectedJSContext* aScriptObserver); uint32_t RecursionDepth() const; void ShutdownComplete(NotNull aContext); void WaitForAllAsynchronousShutdowns(); static const uint32_t kRunnableNameBufSize = 1000; static mozilla::Array sMainThreadRunnableName; void EnableInputEventPrioritization() { EventQueue()->EnableInputEventPrioritization(); } void FlushInputEventPrioritization() { EventQueue()->FlushInputEventPrioritization(); } void SuspendInputEventPrioritization() { EventQueue()->SuspendInputEventPrioritization(); } void ResumeInputEventPrioritization() { EventQueue()->ResumeInputEventPrioritization(); } mozilla::SynchronizedEventQueue* EventQueue() { return mEvents.get(); } bool ShuttingDown() const { return mShutdownContext != nullptr; } static bool GetLabeledRunnableName(nsIRunnable* aEvent, nsACString& aName, mozilla::EventQueuePriority aPriority); virtual mozilla::PerformanceCounter* GetPerformanceCounter( nsIRunnable* aEvent) const; static mozilla::PerformanceCounter* GetPerformanceCounterBase( nsIRunnable* aEvent); size_t SizeOfIncludingThis(mozilla::MallocSizeOf aMallocSizeOf) const; // Returns the size of this object, its PRThread, and its shutdown contexts, // but excluding its event queues. size_t ShallowSizeOfIncludingThis(mozilla::MallocSizeOf aMallocSizeOf) const; size_t SizeOfEventQueues(mozilla::MallocSizeOf aMallocSizeOf) const; static nsThreadEnumerator Enumerate(); static uint32_t MaxActiveThreads(); // When entering local execution mode a new event queue is created and used as // an event source. This queue is only accessible through an // nsLocalExecutionGuard constructed from the nsLocalExecutionRecord returned // by this function, effectively restricting the events that get run while in // local execution mode to those dispatched by the owner of the guard object. // // Local execution is not nestable. When the nsLocalExecutionGuard is // destructed, the thread exits the local execution mode. // // Note that code run in local execution mode is not considered a task in the // spec sense. Events from the local queue are considered part of the // enclosing task and as such do not trigger profiling hooks, observer // notifications, etc. nsLocalExecutionRecord EnterLocalExecution(); void SetUseHangMonitor(bool aValue) { MOZ_ASSERT(IsOnCurrentThread()); mUseHangMonitor = aValue; } private: void DoMainThreadSpecificProcessing() const; protected: friend class nsThreadShutdownEvent; friend class nsThreadEnumerator; virtual ~nsThread(); static void ThreadFunc(void* aArg); // Helper already_AddRefed GetObserver() { nsIThreadObserver* obs; nsThread::GetObserver(&obs); return already_AddRefed(obs); } struct nsThreadShutdownContext* ShutdownInternal(bool aSync); friend class nsThreadManager; friend class nsThreadPool; static mozilla::OffTheBooksMutex& ThreadListMutex(); static mozilla::LinkedList& ThreadList(); static void ClearThreadList(); // The current number of active threads. static uint32_t sActiveThreads; // The maximum current number of active threads we've had in this session. static uint32_t sMaxActiveThreads; void AddToThreadList(); void MaybeRemoveFromThreadList(); // Whether or not these members have a value determines whether the nsThread // is treated as a full XPCOM thread or as a thin wrapper. // // For full nsThreads, they will always contain valid pointers. For thin // wrappers around non-XPCOM threads, they will be null, and event dispatch // methods which rely on them will fail (and assert) if called. RefPtr mEvents; RefPtr mEventTarget; // The shutdown contexts for any other threads we've asked to shut down. using ShutdownContexts = nsTArray>; // Helper for finding a ShutdownContext in the contexts array. struct ShutdownContextsComp { bool Equals(const ShutdownContexts::elem_type& a, const ShutdownContexts::elem_type::Pointer b) const; }; ShutdownContexts mRequestedShutdownContexts; // The shutdown context for ourselves. struct nsThreadShutdownContext* mShutdownContext; mozilla::CycleCollectedJSContext* mScriptObserver; void* mStackBase = nullptr; uint32_t mStackSize; uint32_t mThreadId; uint32_t mNestedEventLoopDepth; mozilla::Atomic mShutdownRequired; int8_t mPriority; const bool mIsMainThread; bool mUseHangMonitor; mozilla::Atomic* mIsAPoolThreadFree; // Set to true if this thread creates a JSRuntime. bool mCanInvokeJS; bool mHasTLSEntry = false; // The time the currently running event spent in event queues, and // when it started running. If no event is running, they are // TimeDuration() & TimeStamp(). mozilla::TimeDuration mLastEventDelay; mozilla::TimeStamp mLastEventStart; #ifdef EARLY_BETA_OR_EARLIER nsCString mNameForWakeupTelemetry; mozilla::TimeStamp mLastWakeupCheckTime; uint32_t mWakeupCount = 0; #endif mozilla::PerformanceCounterState mPerformanceCounterState; bool mIsInLocalExecutionMode = false; mozilla::SimpleTaskQueue mDirectTasks; }; struct nsThreadShutdownContext { nsThreadShutdownContext(NotNull aTerminatingThread, NotNull aJoiningThread, bool aAwaitingShutdownAck) : mTerminatingThread(aTerminatingThread), mTerminatingPRThread(aTerminatingThread->GetPRThread()), mJoiningThread(aJoiningThread), mAwaitingShutdownAck(aAwaitingShutdownAck), mIsMainThreadJoining(NS_IsMainThread()) { MOZ_COUNT_CTOR(nsThreadShutdownContext); } MOZ_COUNTED_DTOR(nsThreadShutdownContext) // NB: This will be the last reference. NotNull> mTerminatingThread; PRThread* const mTerminatingPRThread; NotNull MOZ_UNSAFE_REF( "Thread manager is holding reference to joining thread") mJoiningThread; bool mAwaitingShutdownAck; bool mIsMainThreadJoining; }; class nsLocalExecutionRecord; // This RAII class controls the duration of the associated nsThread's local // execution mode and provides access to the local event target. (See // nsThread::EnterLocalExecution() for details.) It is constructed from an // nsLocalExecutionRecord, which can only be constructed by nsThread. class MOZ_RAII nsLocalExecutionGuard final { public: MOZ_IMPLICIT nsLocalExecutionGuard( nsLocalExecutionRecord&& aLocalExecutionRecord); nsLocalExecutionGuard(const nsLocalExecutionGuard&) = delete; nsLocalExecutionGuard(nsLocalExecutionGuard&&) = delete; ~nsLocalExecutionGuard(); nsCOMPtr GetEventTarget() const { return mLocalEventTarget; } private: mozilla::SynchronizedEventQueue& mEventQueueStack; nsCOMPtr mLocalEventTarget; bool& mLocalExecutionFlag; }; class MOZ_TEMPORARY_CLASS nsLocalExecutionRecord final { private: friend class nsThread; friend class nsLocalExecutionGuard; nsLocalExecutionRecord(mozilla::SynchronizedEventQueue& aEventQueueStack, bool& aLocalExecutionFlag) : mEventQueueStack(aEventQueueStack), mLocalExecutionFlag(aLocalExecutionFlag) {} nsLocalExecutionRecord(nsLocalExecutionRecord&&) = default; public: nsLocalExecutionRecord(const nsLocalExecutionRecord&) = delete; private: mozilla::SynchronizedEventQueue& mEventQueueStack; bool& mLocalExecutionFlag; }; class MOZ_STACK_CLASS nsThreadEnumerator final { public: nsThreadEnumerator() = default; auto begin() { return nsThread::ThreadList().begin(); } auto end() { return nsThread::ThreadList().end(); } private: mozilla::OffTheBooksMutexAutoLock mMal{nsThread::ThreadListMutex()}; }; #if defined(XP_UNIX) && !defined(ANDROID) && !defined(DEBUG) && HAVE_UALARM && \ defined(_GNU_SOURCE) # define MOZ_CANARY extern int sCanaryOutputFD; #endif #endif // nsThread_h__