gecko-dev/gfx/2d/PathCairo.cpp
Lee Salzman b2d67698b9 Bug 1846079 - Ensure pruned point begins first sub-path if necessary. r=aosmond
The Canvas2D specification says that if a path has no active sub-paths, and a
primitive is drawn, that the first point of that primitive becomes the start of
the newly created sub-path that will be created for it.

So if we prune a point when a path has no active sub-paths, and then a new
primitive comes in that does not start with that same point, we risk not
installing the pruned point as the start of that new sub-path.

To solve this, we need to detect if a path has no active sub-paths while
we are building it. This adds PathBuilder::IsActive() to help with that.
Then before we go to add a primitive, we check if there is a pruned point
on a path that is not active yet, and if so, install the correct start
point with a MoveTo.

This also makes IsActive and IsEmpty required so to ensure all our path
implementations behave consistently rather than having any surprising
unimplemented behavior.

Differential Revision: https://phabricator.services.mozilla.com/D184891
2023-07-30 14:31:09 +00:00

316 lines
9.3 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "PathCairo.h"
#include <math.h>
#include "DrawTargetCairo.h"
#include "Logging.h"
#include "PathHelpers.h"
#include "HelpersCairo.h"
namespace mozilla {
namespace gfx {
already_AddRefed<PathBuilder> PathBuilderCairo::Create(FillRule aFillRule) {
return MakeAndAddRef<PathBuilderCairo>(aFillRule);
}
PathBuilderCairo::PathBuilderCairo(FillRule aFillRule) : mFillRule(aFillRule) {}
void PathBuilderCairo::MoveTo(const Point& aPoint) {
cairo_path_data_t data;
data.header.type = CAIRO_PATH_MOVE_TO;
data.header.length = 2;
mPathData.push_back(data);
data.point.x = aPoint.x;
data.point.y = aPoint.y;
mPathData.push_back(data);
mBeginPoint = mCurrentPoint = aPoint;
}
void PathBuilderCairo::LineTo(const Point& aPoint) {
cairo_path_data_t data;
data.header.type = CAIRO_PATH_LINE_TO;
data.header.length = 2;
mPathData.push_back(data);
data.point.x = aPoint.x;
data.point.y = aPoint.y;
mPathData.push_back(data);
mCurrentPoint = aPoint;
}
void PathBuilderCairo::BezierTo(const Point& aCP1, const Point& aCP2,
const Point& aCP3) {
cairo_path_data_t data;
data.header.type = CAIRO_PATH_CURVE_TO;
data.header.length = 4;
mPathData.push_back(data);
data.point.x = aCP1.x;
data.point.y = aCP1.y;
mPathData.push_back(data);
data.point.x = aCP2.x;
data.point.y = aCP2.y;
mPathData.push_back(data);
data.point.x = aCP3.x;
data.point.y = aCP3.y;
mPathData.push_back(data);
mCurrentPoint = aCP3;
}
void PathBuilderCairo::QuadraticBezierTo(const Point& aCP1, const Point& aCP2) {
// We need to elevate the degree of this quadratic Bézier to cubic, so we're
// going to add an intermediate control point, and recompute control point 1.
// The first and last control points remain the same.
// This formula can be found on http://fontforge.sourceforge.net/bezier.html
Point CP0 = CurrentPoint();
Point CP1 = (CP0 + aCP1 * 2.0) / 3.0;
Point CP2 = (aCP2 + aCP1 * 2.0) / 3.0;
Point CP3 = aCP2;
cairo_path_data_t data;
data.header.type = CAIRO_PATH_CURVE_TO;
data.header.length = 4;
mPathData.push_back(data);
data.point.x = CP1.x;
data.point.y = CP1.y;
mPathData.push_back(data);
data.point.x = CP2.x;
data.point.y = CP2.y;
mPathData.push_back(data);
data.point.x = CP3.x;
data.point.y = CP3.y;
mPathData.push_back(data);
mCurrentPoint = aCP2;
}
void PathBuilderCairo::Close() {
cairo_path_data_t data;
data.header.type = CAIRO_PATH_CLOSE_PATH;
data.header.length = 1;
mPathData.push_back(data);
mCurrentPoint = mBeginPoint;
}
void PathBuilderCairo::Arc(const Point& aOrigin, float aRadius,
float aStartAngle, float aEndAngle,
bool aAntiClockwise) {
ArcToBezier(this, aOrigin, Size(aRadius, aRadius), aStartAngle, aEndAngle,
aAntiClockwise);
}
already_AddRefed<Path> PathBuilderCairo::Finish() {
return MakeAndAddRef<PathCairo>(mFillRule, mPathData, mCurrentPoint,
mBeginPoint);
}
PathCairo::PathCairo(FillRule aFillRule,
std::vector<cairo_path_data_t>& aPathData,
const Point& aCurrentPoint, const Point& aBeginPoint)
: mFillRule(aFillRule),
mContainingContext(nullptr),
mCurrentPoint(aCurrentPoint),
mBeginPoint(aBeginPoint) {
mPathData.swap(aPathData);
}
PathCairo::PathCairo(cairo_t* aContext)
: mFillRule(FillRule::FILL_WINDING), mContainingContext(nullptr) {
cairo_path_t* path = cairo_copy_path(aContext);
// XXX - mCurrentPoint is not properly set here, the same is true for the
// D2D Path code, we never require current point when hitting this codepath
// but this should be fixed.
for (int i = 0; i < path->num_data; i++) {
mPathData.push_back(path->data[i]);
}
cairo_path_destroy(path);
}
PathCairo::~PathCairo() {
if (mContainingContext) {
cairo_destroy(mContainingContext);
}
}
already_AddRefed<PathBuilder> PathCairo::CopyToBuilder(
FillRule aFillRule) const {
RefPtr<PathBuilderCairo> builder = new PathBuilderCairo(aFillRule);
builder->mPathData = mPathData;
builder->mCurrentPoint = mCurrentPoint;
builder->mBeginPoint = mBeginPoint;
return builder.forget();
}
already_AddRefed<PathBuilder> PathCairo::TransformedCopyToBuilder(
const Matrix& aTransform, FillRule aFillRule) const {
RefPtr<PathBuilderCairo> builder = new PathBuilderCairo(aFillRule);
AppendPathToBuilder(builder, &aTransform);
builder->mCurrentPoint = aTransform.TransformPoint(mCurrentPoint);
builder->mBeginPoint = aTransform.TransformPoint(mBeginPoint);
return builder.forget();
}
bool PathCairo::ContainsPoint(const Point& aPoint,
const Matrix& aTransform) const {
Matrix inverse = aTransform;
inverse.Invert();
Point transformed = inverse.TransformPoint(aPoint);
EnsureContainingContext(aTransform);
return cairo_in_fill(mContainingContext, transformed.x, transformed.y);
}
bool PathCairo::StrokeContainsPoint(const StrokeOptions& aStrokeOptions,
const Point& aPoint,
const Matrix& aTransform) const {
Matrix inverse = aTransform;
inverse.Invert();
Point transformed = inverse.TransformPoint(aPoint);
EnsureContainingContext(aTransform);
SetCairoStrokeOptions(mContainingContext, aStrokeOptions);
return cairo_in_stroke(mContainingContext, transformed.x, transformed.y);
}
Rect PathCairo::GetBounds(const Matrix& aTransform) const {
EnsureContainingContext(aTransform);
double x1, y1, x2, y2;
cairo_path_extents(mContainingContext, &x1, &y1, &x2, &y2);
Rect bounds(Float(x1), Float(y1), Float(x2 - x1), Float(y2 - y1));
return aTransform.TransformBounds(bounds);
}
Rect PathCairo::GetStrokedBounds(const StrokeOptions& aStrokeOptions,
const Matrix& aTransform) const {
EnsureContainingContext(aTransform);
double x1, y1, x2, y2;
SetCairoStrokeOptions(mContainingContext, aStrokeOptions);
cairo_stroke_extents(mContainingContext, &x1, &y1, &x2, &y2);
Rect bounds((Float)x1, (Float)y1, (Float)(x2 - x1), (Float)(y2 - y1));
return aTransform.TransformBounds(bounds);
}
void PathCairo::StreamToSink(PathSink* aSink) const {
for (size_t i = 0; i < mPathData.size(); i++) {
switch (mPathData[i].header.type) {
case CAIRO_PATH_MOVE_TO:
i++;
aSink->MoveTo(Point(mPathData[i].point.x, mPathData[i].point.y));
break;
case CAIRO_PATH_LINE_TO:
i++;
aSink->LineTo(Point(mPathData[i].point.x, mPathData[i].point.y));
break;
case CAIRO_PATH_CURVE_TO:
aSink->BezierTo(
Point(mPathData[i + 1].point.x, mPathData[i + 1].point.y),
Point(mPathData[i + 2].point.x, mPathData[i + 2].point.y),
Point(mPathData[i + 3].point.x, mPathData[i + 3].point.y));
i += 3;
break;
case CAIRO_PATH_CLOSE_PATH:
aSink->Close();
break;
default:
// Corrupt path data!
MOZ_ASSERT(false);
}
}
}
bool PathCairo::IsEmpty() const {
for (size_t i = 0; i < mPathData.size(); i++) {
switch (mPathData[i].header.type) {
case CAIRO_PATH_MOVE_TO:
break;
case CAIRO_PATH_CLOSE_PATH:
break;
default:
return false;
}
}
return true;
}
void PathCairo::EnsureContainingContext(const Matrix& aTransform) const {
if (mContainingContext) {
if (mContainingTransform.ExactlyEquals(aTransform)) {
return;
}
} else {
mContainingContext = cairo_create(DrawTargetCairo::GetDummySurface());
}
mContainingTransform = aTransform;
cairo_matrix_t mat;
GfxMatrixToCairoMatrix(mContainingTransform, mat);
cairo_set_matrix(mContainingContext, &mat);
SetPathOnContext(mContainingContext);
}
void PathCairo::SetPathOnContext(cairo_t* aContext) const {
// Needs the correct fill rule set.
cairo_set_fill_rule(aContext, GfxFillRuleToCairoFillRule(mFillRule));
cairo_new_path(aContext);
if (!mPathData.empty()) {
cairo_path_t path;
path.data = const_cast<cairo_path_data_t*>(&mPathData.front());
path.num_data = mPathData.size();
path.status = CAIRO_STATUS_SUCCESS;
cairo_append_path(aContext, &path);
}
}
void PathCairo::AppendPathToBuilder(PathBuilderCairo* aBuilder,
const Matrix* aTransform) const {
if (aTransform) {
size_t i = 0;
while (i < mPathData.size()) {
uint32_t pointCount = mPathData[i].header.length - 1;
aBuilder->mPathData.push_back(mPathData[i]);
i++;
for (uint32_t c = 0; c < pointCount; c++) {
cairo_path_data_t data;
Point newPoint = aTransform->TransformPoint(
Point(mPathData[i].point.x, mPathData[i].point.y));
data.point.x = newPoint.x;
data.point.y = newPoint.y;
aBuilder->mPathData.push_back(data);
i++;
}
}
} else {
for (size_t i = 0; i < mPathData.size(); i++) {
aBuilder->mPathData.push_back(mPathData[i]);
}
}
}
} // namespace gfx
} // namespace mozilla