gecko-dev/gfx/gl/GLBlitHelper.cpp

1901 lines
62 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "GLBlitHelper.h"
#include "gfxEnv.h"
#include "gfxUtils.h"
#include "GLContext.h"
#include "GLScreenBuffer.h"
#include "GPUVideoImage.h"
#include "HeapCopyOfStackArray.h"
#include "ImageContainer.h"
#include "ScopedGLHelpers.h"
#include "mozilla/ArrayUtils.h"
#include "mozilla/Casting.h"
#include "mozilla/Preferences.h"
#include "mozilla/StaticPrefs_gfx.h"
#include "mozilla/UniquePtr.h"
#include "mozilla/gfx/BuildConstants.h"
#include "mozilla/gfx/Logging.h"
#include "mozilla/gfx/Matrix.h"
#include "mozilla/layers/ImageDataSerializer.h"
#include "mozilla/layers/LayersSurfaces.h"
#ifdef MOZ_WIDGET_ANDROID
# include "AndroidSurfaceTexture.h"
# include "GLImages.h"
# include "GLLibraryEGL.h"
#endif
#ifdef XP_MACOSX
# include "GLContextCGL.h"
# include "MacIOSurfaceImage.h"
#endif
#ifdef XP_WIN
# include "mozilla/layers/D3D11ShareHandleImage.h"
# include "mozilla/layers/D3D11TextureIMFSampleImage.h"
# include "mozilla/layers/D3D11YCbCrImage.h"
#endif
#ifdef MOZ_WIDGET_GTK
# include "mozilla/layers/DMABUFSurfaceImage.h"
# include "mozilla/widget/DMABufSurface.h"
# include "mozilla/widget/DMABufLibWrapper.h"
#endif
using mozilla::layers::PlanarYCbCrData;
using mozilla::layers::PlanarYCbCrImage;
namespace mozilla {
namespace gl {
// --
static const char kFragPreprocHeader[] = R"(
#ifdef GL_ES
#ifdef GL_FRAGMENT_PRECISION_HIGH
#define MAXP highp
#endif
#else
#define MAXP highp
#endif
#ifndef MAXP
#define MAXP mediump
#endif
#if __VERSION__ >= 130
#define VARYING in
#else
#define VARYING varying
#endif
#if __VERSION__ >= 120
#define MAT4X3 mat4x3
#else
#define MAT4X3 mat4
#endif
)";
// -
const char* const kFragHeader_Tex2D = R"(
#define SAMPLER sampler2D
#if __VERSION__ >= 130
#define TEXTURE texture
#else
#define TEXTURE texture2D
#endif
)";
const char* const kFragHeader_Tex2DRect = R"(
#define SAMPLER sampler2DRect
#if __VERSION__ >= 130
#define TEXTURE texture
#else
#define TEXTURE texture2DRect
#endif
)";
const char* const kFragHeader_TexExt = R"(
#extension GL_OES_EGL_image_external : enable
#extension GL_OES_EGL_image_external_essl3 : enable
#if __VERSION__ >= 130
#define TEXTURE texture
#else
#define TEXTURE texture2D
#endif
#define SAMPLER samplerExternalOES
)";
// -
static const char kFragDeclHeader[] = R"(
precision PRECISION float;
#if __VERSION__ >= 130
#define FRAG_COLOR oFragColor
out vec4 FRAG_COLOR;
#else
#define FRAG_COLOR gl_FragColor
#endif
)";
// -
const char* const kFragSample_OnePlane = R"(
VARYING mediump vec2 vTexCoord0;
uniform PRECISION SAMPLER uTex0;
vec4 metaSample() {
vec4 src = TEXTURE(uTex0, vTexCoord0);
return src;
}
)";
// Ideally this would just change the color-matrix it uses, but this is
// acceptable debt for now.
// `extern` so that we don't get ifdef-dependent const-var-unused Werrors.
extern const char* const kFragSample_OnePlane_YUV_via_GBR = R"(
VARYING mediump vec2 vTexCoord0;
uniform PRECISION SAMPLER uTex0;
vec4 metaSample() {
vec4 yuva = TEXTURE(uTex0, vTexCoord0).gbra;
return yuva;
}
)";
const char* const kFragSample_TwoPlane = R"(
VARYING mediump vec2 vTexCoord0;
VARYING mediump vec2 vTexCoord1;
uniform PRECISION SAMPLER uTex0;
uniform PRECISION SAMPLER uTex1;
vec4 metaSample() {
vec4 src = TEXTURE(uTex0, vTexCoord0); // Keep r and a.
src.gb = TEXTURE(uTex1, vTexCoord1).rg;
return src;
}
)";
const char* const kFragSample_ThreePlane = R"(
VARYING mediump vec2 vTexCoord0;
VARYING mediump vec2 vTexCoord1;
uniform PRECISION SAMPLER uTex0;
uniform PRECISION SAMPLER uTex1;
uniform PRECISION SAMPLER uTex2;
vec4 metaSample() {
vec4 src = TEXTURE(uTex0, vTexCoord0); // Keep r and a.
src.g = TEXTURE(uTex1, vTexCoord1).r;
src.b = TEXTURE(uTex2, vTexCoord1).r;
return src;
}
)";
// -
const char* const kFragConvert_None = R"(
vec3 metaConvert(vec3 src) {
return src;
}
)";
const char* const kFragConvert_BGR = R"(
vec3 metaConvert(vec3 src) {
return src.bgr;
}
)";
const char* const kFragConvert_ColorMatrix = R"(
uniform mediump MAT4X3 uColorMatrix;
vec3 metaConvert(vec3 src) {
return (uColorMatrix * vec4(src, 1)).rgb;
}
)";
const char* const kFragConvert_ColorLut3d = R"(
uniform PRECISION sampler3D uColorLut;
vec3 metaConvert(vec3 src) {
// Half-texel filtering hazard!
// E.g. For texture size of 2,
// E.g. x=0.25 is still sampling 100% of texel x=0, 0% of texel x=1.
// For the LUT, we need r=0.25 to filter 75/25 from texel 0 and 1.
// That is, we need to adjust our sampling point such that it starts in the
// center of texel 0, and ends in the center of texel N-1.
// We need, for N=2:
// v=0.0|N=2 => v'=0.5/2
// v=1.0|N=2 => v'=1.5/2
// For N=3:
// v=0.0|N=3 => v'=0.5/3
// v=1.0|N=3 => v'=2.5/3
// => v' = ( 0.5 + v * (3 - 1) )/3
vec3 size = vec3(textureSize(uColorLut, 0));
src = (0.5 + src * (size - 1.0)) / size;
return texture(uColorLut, src).rgb;
}
)";
// Delete if unused after 2024-10-01:
const char* const kFragConvert_ColorLut2d = R"(
uniform PRECISION sampler2D uColorLut;
uniform mediump vec3 uColorLut3dSize;
vec3 metaConvert(vec3 src) {
// Half-texel filtering hazard!
// E.g. For texture size of 2,
// E.g. x=0.25 is still sampling 100% of texel x=0, 0% of texel x=1.
// For the LUT, we need r=0.25 to filter 75/25 from texel 0 and 1.
// That is, we need to adjust our sampling point such that it starts in the
// center of texel 0, and ends in the center of texel N-1.
// We need, for N=2:
// v=0.0|N=2 => v'=0.5/2
// v=1.0|N=2 => v'=1.5/2
// For N=3:
// v=0.0|N=3 => v'=0.5/3
// v=1.0|N=3 => v'=2.5/3
// => v' = ( 0.5 + v * (3 - 1) )/3
src = clamp(src, vec3(0,0,0), vec3(1,1,1));
vec3 lut3dSize = uColorLut3dSize;
vec2 lut2dSize = vec2(lut3dSize.x, lut3dSize.y * lut3dSize.z);
vec3 texelSrc3d = 0.5 + src * (lut3dSize - 1.0);
vec3 texelSrc3d_zFloor = texelSrc3d;
texelSrc3d_zFloor.z = floor(texelSrc3d_zFloor.z);
vec3 texelSrc3d_zNext = texelSrc3d_zFloor + vec3(0,0,1);
texelSrc3d_zNext.z = min(texelSrc3d_zNext.z, lut3dSize.z - 1.0);
vec2 texelSrc2d_zFloor = texelSrc3d_zFloor.xy + vec2(0, texelSrc3d_zFloor.z * lut3dSize.y);
vec2 texelSrc2d_zNext = texelSrc3d_zNext.xy + vec2(0, texelSrc3d_zNext.z * lut3dSize.y);
vec4 dst_zFloor = texture(uColorLut, texelSrc2d_zFloor / lut2dSize);
vec4 dst_zNext = texture(uColorLut, texelSrc2d_zNext / lut2dSize);
return mix(dst_zFloor, dst_zNext, texelSrc3d.z - texelSrc3d_zFloor.z);
}
)";
// -
const char* const kFragMixin_AlphaMultColors = R"(
#define MIXIN_ALPHA_MULT_COLORS
)";
const char* const kFragMixin_AlphaClampColors = R"(
#define MIXIN_ALPHA_CLAMP_COLORS
)";
const char* const kFragMixin_AlphaOne = R"(
#define MIXIN_ALPHA_ONE
)";
// -
static const char kFragBody[] = R"(
void main(void) {
vec4 src = metaSample();
vec4 dst = vec4(metaConvert(src.rgb), src.a);
#ifdef MIXIN_ALPHA_MULT_COLORS
dst.rgb *= dst.a;
#endif
#ifdef MIXIN_ALPHA_CLAMP_COLORS
dst.rgb = min(dst.rgb, vec3(dst.a)); // Ensure valid premult-alpha colors.
#endif
#ifdef MIXIN_ALPHA_ONE
dst.a = 1.0;
#endif
FRAG_COLOR = dst;
}
)";
// --
Mat3 SubRectMat3(const float x, const float y, const float w, const float h) {
auto ret = Mat3{};
ret.at(0, 0) = w;
ret.at(1, 1) = h;
ret.at(2, 0) = x;
ret.at(2, 1) = y;
ret.at(2, 2) = 1.0f;
return ret;
}
Mat3 SubRectMat3(const gfx::IntRect& subrect, const gfx::IntSize& size) {
return SubRectMat3(float(subrect.X()) / size.width,
float(subrect.Y()) / size.height,
float(subrect.Width()) / size.width,
float(subrect.Height()) / size.height);
}
Mat3 SubRectMat3(const gfx::IntRect& bigSubrect, const gfx::IntSize& smallSize,
const gfx::IntSize& divisors) {
const float x = float(bigSubrect.X()) / divisors.width;
const float y = float(bigSubrect.Y()) / divisors.height;
const float w = float(bigSubrect.Width()) / divisors.width;
const float h = float(bigSubrect.Height()) / divisors.height;
return SubRectMat3(x / smallSize.width, y / smallSize.height,
w / smallSize.width, h / smallSize.height);
}
Mat3 MatrixToMat3(const gfx::Matrix& aMatrix) {
auto ret = Mat3();
ret.at(0, 0) = aMatrix._11;
ret.at(1, 0) = aMatrix._21;
ret.at(2, 0) = aMatrix._31;
ret.at(0, 1) = aMatrix._12;
ret.at(1, 1) = aMatrix._22;
ret.at(2, 1) = aMatrix._32;
ret.at(0, 2) = 0.0f;
ret.at(1, 2) = 0.0f;
ret.at(2, 2) = 1.0f;
return ret;
}
// --
ScopedSaveMultiTex::ScopedSaveMultiTex(GLContext* const gl,
const size_t texUnits,
const GLenum texTarget)
: mGL(*gl),
mTexUnits(texUnits),
mTexTarget(texTarget),
mOldTexUnit(mGL.GetIntAs<GLenum>(LOCAL_GL_ACTIVE_TEXTURE)) {
MOZ_RELEASE_ASSERT(texUnits >= 1);
GLenum texBinding;
switch (mTexTarget) {
case LOCAL_GL_TEXTURE_2D:
texBinding = LOCAL_GL_TEXTURE_BINDING_2D;
break;
case LOCAL_GL_TEXTURE_3D:
texBinding = LOCAL_GL_TEXTURE_BINDING_3D;
break;
case LOCAL_GL_TEXTURE_RECTANGLE:
texBinding = LOCAL_GL_TEXTURE_BINDING_RECTANGLE;
break;
case LOCAL_GL_TEXTURE_EXTERNAL:
texBinding = LOCAL_GL_TEXTURE_BINDING_EXTERNAL;
break;
default:
gfxCriticalError() << "Unhandled texTarget: " << texTarget;
MOZ_CRASH();
}
for (const auto i : IntegerRange(mTexUnits)) {
mGL.fActiveTexture(LOCAL_GL_TEXTURE0 + i);
if (mGL.IsSupported(GLFeature::sampler_objects)) {
mOldTexSampler[i] = mGL.GetIntAs<GLuint>(LOCAL_GL_SAMPLER_BINDING);
mGL.fBindSampler(i, 0);
}
mOldTex[i] = mGL.GetIntAs<GLuint>(texBinding);
}
}
ScopedSaveMultiTex::~ScopedSaveMultiTex() {
// Unbind in reverse order, in case we have repeats.
// Order matters because we unbound samplers during ctor, so now we have to
// make sure we rebind them in the right order.
for (const auto i : Reversed(IntegerRange(mTexUnits))) {
mGL.fActiveTexture(LOCAL_GL_TEXTURE0 + i);
if (mGL.IsSupported(GLFeature::sampler_objects)) {
mGL.fBindSampler(i, mOldTexSampler[i]);
}
mGL.fBindTexture(mTexTarget, mOldTex[i]);
}
mGL.fActiveTexture(mOldTexUnit);
}
// --
class ScopedBindArrayBuffer final {
public:
GLContext& mGL;
const GLuint mOldVBO;
ScopedBindArrayBuffer(GLContext* const gl, const GLuint vbo)
: mGL(*gl), mOldVBO(mGL.GetIntAs<GLuint>(LOCAL_GL_ARRAY_BUFFER_BINDING)) {
mGL.fBindBuffer(LOCAL_GL_ARRAY_BUFFER, vbo);
}
~ScopedBindArrayBuffer() { mGL.fBindBuffer(LOCAL_GL_ARRAY_BUFFER, mOldVBO); }
};
// --
class ScopedShader final {
GLContext& mGL;
const GLuint mName;
public:
ScopedShader(GLContext* const gl, const GLenum shaderType)
: mGL(*gl), mName(mGL.fCreateShader(shaderType)) {}
~ScopedShader() { mGL.fDeleteShader(mName); }
operator GLuint() const { return mName; }
};
// --
class SaveRestoreCurrentProgram final {
GLContext& mGL;
const GLuint mOld;
public:
explicit SaveRestoreCurrentProgram(GLContext* const gl)
: mGL(*gl), mOld(mGL.GetIntAs<GLuint>(LOCAL_GL_CURRENT_PROGRAM)) {}
~SaveRestoreCurrentProgram() { mGL.fUseProgram(mOld); }
};
// --
class ScopedDrawBlitState final {
GLContext& mGL;
const bool blend;
const bool cullFace;
const bool depthTest;
const bool dither;
const bool polyOffsFill;
const bool sampleAToC;
const bool sampleCover;
const bool scissor;
const bool stencil;
Maybe<bool> rasterizerDiscard;
realGLboolean colorMask[4];
GLint viewport[4];
public:
ScopedDrawBlitState(GLContext* const gl, const gfx::IntSize& destSize)
: mGL(*gl),
blend(mGL.PushEnabled(LOCAL_GL_BLEND, false)),
cullFace(mGL.PushEnabled(LOCAL_GL_CULL_FACE, false)),
depthTest(mGL.PushEnabled(LOCAL_GL_DEPTH_TEST, false)),
dither(mGL.PushEnabled(LOCAL_GL_DITHER, true)),
polyOffsFill(mGL.PushEnabled(LOCAL_GL_POLYGON_OFFSET_FILL, false)),
sampleAToC(mGL.PushEnabled(LOCAL_GL_SAMPLE_ALPHA_TO_COVERAGE, false)),
sampleCover(mGL.PushEnabled(LOCAL_GL_SAMPLE_COVERAGE, false)),
scissor(mGL.PushEnabled(LOCAL_GL_SCISSOR_TEST, false)),
stencil(mGL.PushEnabled(LOCAL_GL_STENCIL_TEST, false)) {
if (mGL.IsSupported(GLFeature::transform_feedback2)) {
// Technically transform_feedback2 requires transform_feedback, which
// actually adds RASTERIZER_DISCARD.
rasterizerDiscard =
Some(mGL.PushEnabled(LOCAL_GL_RASTERIZER_DISCARD, false));
}
mGL.fGetBooleanv(LOCAL_GL_COLOR_WRITEMASK, colorMask);
if (mGL.IsSupported(GLFeature::draw_buffers_indexed)) {
mGL.fColorMaski(0, true, true, true, true);
} else {
mGL.fColorMask(true, true, true, true);
}
mGL.fGetIntegerv(LOCAL_GL_VIEWPORT, viewport);
MOZ_ASSERT(destSize.width && destSize.height);
mGL.fViewport(0, 0, destSize.width, destSize.height);
}
~ScopedDrawBlitState() {
mGL.SetEnabled(LOCAL_GL_BLEND, blend);
mGL.SetEnabled(LOCAL_GL_CULL_FACE, cullFace);
mGL.SetEnabled(LOCAL_GL_DEPTH_TEST, depthTest);
mGL.SetEnabled(LOCAL_GL_DITHER, dither);
mGL.SetEnabled(LOCAL_GL_POLYGON_OFFSET_FILL, polyOffsFill);
mGL.SetEnabled(LOCAL_GL_SAMPLE_ALPHA_TO_COVERAGE, sampleAToC);
mGL.SetEnabled(LOCAL_GL_SAMPLE_COVERAGE, sampleCover);
mGL.SetEnabled(LOCAL_GL_SCISSOR_TEST, scissor);
mGL.SetEnabled(LOCAL_GL_STENCIL_TEST, stencil);
if (rasterizerDiscard) {
mGL.SetEnabled(LOCAL_GL_RASTERIZER_DISCARD, rasterizerDiscard.value());
}
if (mGL.IsSupported(GLFeature::draw_buffers_indexed)) {
mGL.fColorMaski(0, colorMask[0], colorMask[1], colorMask[2],
colorMask[3]);
} else {
mGL.fColorMask(colorMask[0], colorMask[1], colorMask[2], colorMask[3]);
}
mGL.fViewport(viewport[0], viewport[1], viewport[2], viewport[3]);
}
};
// --
DrawBlitProg::DrawBlitProg(const GLBlitHelper* const parent, const GLuint prog)
: mParent(*parent),
mProg(prog),
mLoc_uDestMatrix(mParent.mGL->fGetUniformLocation(mProg, "uDestMatrix")),
mLoc_uTexMatrix0(mParent.mGL->fGetUniformLocation(mProg, "uTexMatrix0")),
mLoc_uTexMatrix1(mParent.mGL->fGetUniformLocation(mProg, "uTexMatrix1")),
mLoc_uColorLut(mParent.mGL->fGetUniformLocation(mProg, "uColorLut")),
mLoc_uColorMatrix(
mParent.mGL->fGetUniformLocation(mProg, "uColorMatrix")) {
const auto& gl = mParent.mGL;
MOZ_GL_ASSERT(gl, mLoc_uDestMatrix != -1); // Required
MOZ_GL_ASSERT(gl, mLoc_uTexMatrix0 != -1); // Required
if (mLoc_uColorMatrix != -1) {
MOZ_GL_ASSERT(gl, mLoc_uTexMatrix1 != -1);
int32_t numActiveUniforms = 0;
gl->fGetProgramiv(mProg, LOCAL_GL_ACTIVE_UNIFORMS, &numActiveUniforms);
const size_t kMaxNameSize = 32;
char name[kMaxNameSize] = {0};
GLint size = 0;
GLenum type = 0;
for (int32_t i = 0; i < numActiveUniforms; i++) {
gl->fGetActiveUniform(mProg, i, kMaxNameSize, nullptr, &size, &type,
name);
if (strcmp("uColorMatrix", name) == 0) {
mType_uColorMatrix = type;
break;
}
}
MOZ_GL_ASSERT(gl, mType_uColorMatrix);
}
}
DrawBlitProg::~DrawBlitProg() {
const auto& gl = mParent.mGL;
if (!gl->MakeCurrent()) return;
gl->fDeleteProgram(mProg);
}
void DrawBlitProg::Draw(const BaseArgs& args,
const YUVArgs* const argsYUV) const {
const auto& gl = mParent.mGL;
const SaveRestoreCurrentProgram oldProg(gl);
gl->fUseProgram(mProg);
// --
Mat3 destMatrix;
if (args.destRect) {
const auto& destRect = args.destRect.value();
destMatrix = SubRectMat3(destRect.X() / args.destSize.width,
destRect.Y() / args.destSize.height,
destRect.Width() / args.destSize.width,
destRect.Height() / args.destSize.height);
} else {
destMatrix = Mat3::I();
}
if (args.yFlip) {
// Apply the y-flip matrix before the destMatrix.
// That is, flip y=[0-1] to y=[1-0] before we restrict to the destRect.
destMatrix.at(2, 1) += destMatrix.at(1, 1);
destMatrix.at(1, 1) *= -1.0f;
}
gl->fUniformMatrix3fv(mLoc_uDestMatrix, 1, false, destMatrix.m);
gl->fUniformMatrix3fv(mLoc_uTexMatrix0, 1, false, args.texMatrix0.m);
MOZ_ASSERT(bool(argsYUV) == (mLoc_uColorMatrix != -1));
if (argsYUV) {
gl->fUniformMatrix3fv(mLoc_uTexMatrix1, 1, false, argsYUV->texMatrix1.m);
if (mLoc_uColorMatrix != -1) {
const auto& colorMatrix =
gfxUtils::YuvToRgbMatrix4x4ColumnMajor(*argsYUV->colorSpaceForMatrix);
float mat4x3[4 * 3];
switch (mType_uColorMatrix) {
case LOCAL_GL_FLOAT_MAT4:
gl->fUniformMatrix4fv(mLoc_uColorMatrix, 1, false, colorMatrix);
break;
case LOCAL_GL_FLOAT_MAT4x3:
for (int x = 0; x < 4; x++) {
for (int y = 0; y < 3; y++) {
mat4x3[3 * x + y] = colorMatrix[4 * x + y];
}
}
gl->fUniformMatrix4x3fv(mLoc_uColorMatrix, 1, false, mat4x3);
break;
default:
gfxCriticalError()
<< "Bad mType_uColorMatrix: " << gfx::hexa(mType_uColorMatrix);
}
}
}
// --
const ScopedDrawBlitState drawState(gl, args.destSize);
GLuint oldVAO;
GLint vaa0Enabled;
GLint vaa0Size;
GLenum vaa0Type;
GLint vaa0Normalized;
GLsizei vaa0Stride;
GLvoid* vaa0Pointer;
GLuint vaa0Buffer;
if (mParent.mQuadVAO) {
oldVAO = gl->GetIntAs<GLuint>(LOCAL_GL_VERTEX_ARRAY_BINDING);
gl->fBindVertexArray(mParent.mQuadVAO);
} else {
// clang-format off
gl->fGetVertexAttribiv(0, LOCAL_GL_VERTEX_ATTRIB_ARRAY_BUFFER_BINDING, (GLint*)&vaa0Buffer);
gl->fGetVertexAttribiv(0, LOCAL_GL_VERTEX_ATTRIB_ARRAY_ENABLED, &vaa0Enabled);
gl->fGetVertexAttribiv(0, LOCAL_GL_VERTEX_ATTRIB_ARRAY_SIZE, &vaa0Size);
gl->fGetVertexAttribiv(0, LOCAL_GL_VERTEX_ATTRIB_ARRAY_TYPE, (GLint*)&vaa0Type);
gl->fGetVertexAttribiv(0, LOCAL_GL_VERTEX_ATTRIB_ARRAY_NORMALIZED, &vaa0Normalized);
gl->fGetVertexAttribiv(0, LOCAL_GL_VERTEX_ATTRIB_ARRAY_STRIDE, (GLint*)&vaa0Stride);
gl->fGetVertexAttribPointerv(0, LOCAL_GL_VERTEX_ATTRIB_ARRAY_POINTER, &vaa0Pointer);
// clang-format on
gl->fEnableVertexAttribArray(0);
const ScopedBindArrayBuffer bindVBO(gl, mParent.mQuadVBO);
gl->fVertexAttribPointer(0, 2, LOCAL_GL_FLOAT, false, 0, 0);
}
gl->fDrawArrays(LOCAL_GL_TRIANGLE_STRIP, 0, 4);
if (mParent.mQuadVAO) {
gl->fBindVertexArray(oldVAO);
} else {
if (vaa0Enabled) {
gl->fEnableVertexAttribArray(0);
} else {
gl->fDisableVertexAttribArray(0);
}
// The current VERTEX_ARRAY_BINDING is not necessarily the same as the
// buffer set for vaa0Buffer.
const ScopedBindArrayBuffer bindVBO(gl, vaa0Buffer);
gl->fVertexAttribPointer(0, vaa0Size, vaa0Type, bool(vaa0Normalized),
vaa0Stride, vaa0Pointer);
}
}
// --
GLBlitHelper::GLBlitHelper(GLContext* const gl)
: mGL(gl),
mDrawBlitProg_VertShader(mGL->fCreateShader(LOCAL_GL_VERTEX_SHADER))
//, mYuvUploads_YSize(0, 0)
//, mYuvUploads_UVSize(0, 0)
{
mGL->fGenBuffers(1, &mQuadVBO);
{
const ScopedBindArrayBuffer bindVBO(mGL, mQuadVBO);
const float quadData[] = {0, 0, 1, 0, 0, 1, 1, 1};
const HeapCopyOfStackArray<float> heapQuadData(quadData);
mGL->fBufferData(LOCAL_GL_ARRAY_BUFFER, heapQuadData.ByteLength(),
heapQuadData.Data(), LOCAL_GL_STATIC_DRAW);
if (mGL->IsSupported(GLFeature::vertex_array_object)) {
const auto prev = mGL->GetIntAs<GLuint>(LOCAL_GL_VERTEX_ARRAY_BINDING);
mGL->fGenVertexArrays(1, &mQuadVAO);
mGL->fBindVertexArray(mQuadVAO);
mGL->fEnableVertexAttribArray(0);
mGL->fVertexAttribPointer(0, 2, LOCAL_GL_FLOAT, false, 0, 0);
mGL->fBindVertexArray(prev);
}
}
// --
const auto glslVersion = mGL->ShadingLanguageVersion();
if (mGL->IsGLES()) {
// If you run into problems on old android devices, it might be because some
// devices have OES_EGL_image_external but not OES_EGL_image_external_essl3.
// We could just use 100 in that particular case, but then we lose out on
// e.g. sampler3D. Let's just try 300 for now, and if we get regressions
// we'll add an essl100 fallback.
if (glslVersion >= 300) {
mDrawBlitProg_VersionLine = nsCString("#version 300 es\n");
} else {
mDrawBlitProg_VersionLine = nsCString("#version 100\n");
}
} else if (glslVersion >= 130) {
mDrawBlitProg_VersionLine = nsPrintfCString("#version %u\n", glslVersion);
}
const char kVertSource[] =
"\
#if __VERSION__ >= 130 \n\
#define ATTRIBUTE in \n\
#define VARYING out \n\
#else \n\
#define ATTRIBUTE attribute \n\
#define VARYING varying \n\
#endif \n\
\n\
ATTRIBUTE vec2 aVert; // [0.0-1.0] \n\
\n\
uniform mat3 uDestMatrix; \n\
uniform mat3 uTexMatrix0; \n\
uniform mat3 uTexMatrix1; \n\
\n\
VARYING vec2 vTexCoord0; \n\
VARYING vec2 vTexCoord1; \n\
\n\
void main(void) \n\
{ \n\
vec2 destPos = (uDestMatrix * vec3(aVert, 1.0)).xy; \n\
gl_Position = vec4(destPos * 2.0 - 1.0, 0.0, 1.0); \n\
\n\
vTexCoord0 = (uTexMatrix0 * vec3(aVert, 1.0)).xy; \n\
vTexCoord1 = (uTexMatrix1 * vec3(aVert, 1.0)).xy; \n\
} \n\
";
const char* const parts[] = {mDrawBlitProg_VersionLine.get(), kVertSource};
mGL->fShaderSource(mDrawBlitProg_VertShader, std::size(parts), parts,
nullptr);
mGL->fCompileShader(mDrawBlitProg_VertShader);
}
GLBlitHelper::~GLBlitHelper() {
mDrawBlitProgs.clear();
if (!mGL->MakeCurrent()) return;
mGL->fDeleteShader(mDrawBlitProg_VertShader);
mGL->fDeleteBuffers(1, &mQuadVBO);
if (mQuadVAO) {
mGL->fDeleteVertexArrays(1, &mQuadVAO);
}
}
// --
const DrawBlitProg& GLBlitHelper::GetDrawBlitProg(
const DrawBlitProg::Key& key) const {
auto& ret = mDrawBlitProgs[key];
if (!ret) {
ret = CreateDrawBlitProg(key);
}
return *ret;
}
std::unique_ptr<const DrawBlitProg> GLBlitHelper::CreateDrawBlitProg(
const DrawBlitProg::Key& key) const {
const auto precisionPref = StaticPrefs::gfx_blithelper_precision();
const char* precision;
switch (precisionPref) {
case 0:
precision = "lowp";
break;
case 1:
precision = "mediump";
break;
default:
if (precisionPref != 2) {
NS_WARNING("gfx.blithelper.precision clamped to 2.");
}
precision = "MAXP";
break;
}
nsPrintfCString precisionLine("\n#define PRECISION %s\n", precision);
// -
const ScopedShader fs(mGL, LOCAL_GL_FRAGMENT_SHADER);
std::vector<const char*> parts;
{
parts.push_back(mDrawBlitProg_VersionLine.get());
parts.push_back(kFragPreprocHeader);
if (key.fragHeader) {
parts.push_back(key.fragHeader);
}
parts.push_back(precisionLine.BeginReading());
parts.push_back(kFragDeclHeader);
for (const auto& part : key.fragParts) {
if (part) {
parts.push_back(part);
}
}
parts.push_back(kFragBody);
}
const auto PrintFragSource = [&]() {
printf_stderr("Frag source:\n");
int i = 0;
for (const auto& part : parts) {
printf_stderr("// parts[%i]:\n%s\n", i, part);
i += 1;
}
};
if (gfxEnv::MOZ_DUMP_GLBLITHELPER()) {
PrintFragSource();
}
mGL->fShaderSource(fs, AssertedCast<GLint>(parts.size()), parts.data(),
nullptr);
mGL->fCompileShader(fs);
const auto prog = mGL->fCreateProgram();
mGL->fAttachShader(prog, mDrawBlitProg_VertShader);
mGL->fAttachShader(prog, fs);
mGL->fBindAttribLocation(prog, 0, "aVert");
mGL->fLinkProgram(prog);
GLenum status = 0;
mGL->fGetProgramiv(prog, LOCAL_GL_LINK_STATUS, (GLint*)&status);
if (status == LOCAL_GL_TRUE || mGL->CheckContextLost()) {
const SaveRestoreCurrentProgram oldProg(mGL);
mGL->fUseProgram(prog);
const char* samplerNames[] = {"uTex0", "uTex1", "uTex2"};
for (int i = 0; i < 3; i++) {
const auto loc = mGL->fGetUniformLocation(prog, samplerNames[i]);
if (loc == -1) continue;
mGL->fUniform1i(loc, i);
}
return std::make_unique<DrawBlitProg>(this, prog);
}
GLuint progLogLen = 0;
mGL->fGetProgramiv(prog, LOCAL_GL_INFO_LOG_LENGTH, (GLint*)&progLogLen);
const UniquePtr<char[]> progLog(new char[progLogLen + 1]);
mGL->fGetProgramInfoLog(prog, progLogLen, nullptr, progLog.get());
progLog[progLogLen] = 0;
const auto& vs = mDrawBlitProg_VertShader;
GLuint vsLogLen = 0;
mGL->fGetShaderiv(vs, LOCAL_GL_INFO_LOG_LENGTH, (GLint*)&vsLogLen);
const UniquePtr<char[]> vsLog(new char[vsLogLen + 1]);
mGL->fGetShaderInfoLog(vs, vsLogLen, nullptr, vsLog.get());
vsLog[vsLogLen] = 0;
GLuint fsLogLen = 0;
mGL->fGetShaderiv(fs, LOCAL_GL_INFO_LOG_LENGTH, (GLint*)&fsLogLen);
const UniquePtr<char[]> fsLog(new char[fsLogLen + 1]);
mGL->fGetShaderInfoLog(fs, fsLogLen, nullptr, fsLog.get());
fsLog[fsLogLen] = 0;
const auto logs =
std::string("DrawBlitProg link failed:\n") + "progLog: " + progLog.get() +
"\n" + "vsLog: " + vsLog.get() + "\n" + "fsLog: " + fsLog.get() + "\n";
gfxCriticalError() << logs;
PrintFragSource();
MOZ_CRASH("DrawBlitProg link failed");
}
// -----------------------------------------------------------------------------
#ifdef XP_MACOSX
static RefPtr<MacIOSurface> LookupSurface(
const layers::SurfaceDescriptorMacIOSurface& sd) {
return MacIOSurface::LookupSurface(sd.surfaceId(), !sd.isOpaque(),
sd.yUVColorSpace());
}
#endif
bool GLBlitHelper::BlitSdToFramebuffer(const layers::SurfaceDescriptor& asd,
const gfx::IntSize& destSize,
const OriginPos destOrigin) {
const auto sdType = asd.type();
switch (sdType) {
case layers::SurfaceDescriptor::TSurfaceDescriptorBuffer: {
const auto& sd = asd.get_SurfaceDescriptorBuffer();
const auto yuvData = PlanarYCbCrData::From(sd);
if (!yuvData) {
gfxCriticalNote << "[GLBlitHelper::BlitSdToFramebuffer] "
"PlanarYCbCrData::From failed";
return false;
}
return BlitPlanarYCbCr(*yuvData, destSize, destOrigin);
}
#ifdef XP_WIN
case layers::SurfaceDescriptor::TSurfaceDescriptorD3D10: {
const auto& sd = asd.get_SurfaceDescriptorD3D10();
return BlitDescriptor(sd, destSize, destOrigin);
}
case layers::SurfaceDescriptor::TSurfaceDescriptorDXGIYCbCr: {
const auto& sd = asd.get_SurfaceDescriptorDXGIYCbCr();
return BlitDescriptor(sd, destSize, destOrigin);
}
#endif
#ifdef XP_MACOSX
case layers::SurfaceDescriptor::TSurfaceDescriptorMacIOSurface: {
const auto& sd = asd.get_SurfaceDescriptorMacIOSurface();
const auto surf = LookupSurface(sd);
if (!surf) {
NS_WARNING("LookupSurface(MacIOSurface) failed");
// Sometimes that frame for our handle gone already. That's life, for
// now.
return false;
}
return BlitImage(surf, destSize, destOrigin);
}
#endif
#ifdef MOZ_WIDGET_ANDROID
case layers::SurfaceDescriptor::TSurfaceTextureDescriptor: {
const auto& sd = asd.get_SurfaceTextureDescriptor();
auto surfaceTexture = java::GeckoSurfaceTexture::Lookup(sd.handle());
return Blit(surfaceTexture, destSize, destOrigin);
}
#endif
#ifdef MOZ_WIDGET_GTK
case layers::SurfaceDescriptor::TSurfaceDescriptorDMABuf: {
const auto& sd = asd.get_SurfaceDescriptorDMABuf();
RefPtr<DMABufSurface> surface = DMABufSurface::CreateDMABufSurface(sd);
return Blit(surface, destSize, destOrigin);
}
#endif
default:
return false;
}
}
bool GLBlitHelper::BlitImageToFramebuffer(layers::Image* const srcImage,
const gfx::IntSize& destSize,
const OriginPos destOrigin) {
switch (srcImage->GetFormat()) {
case ImageFormat::PLANAR_YCBCR: {
const auto srcImage2 = static_cast<PlanarYCbCrImage*>(srcImage);
const auto data = srcImage2->GetData();
return BlitPlanarYCbCr(*data, destSize, destOrigin);
}
case ImageFormat::SURFACE_TEXTURE: {
#ifdef MOZ_WIDGET_ANDROID
auto* image = srcImage->AsSurfaceTextureImage();
MOZ_ASSERT(image);
auto surfaceTexture =
java::GeckoSurfaceTexture::Lookup(image->GetHandle());
return Blit(surfaceTexture, destSize, destOrigin);
#else
MOZ_ASSERT(false);
return false;
#endif
}
case ImageFormat::MAC_IOSURFACE:
#ifdef XP_MACOSX
return BlitImage(srcImage->AsMacIOSurfaceImage(), destSize, destOrigin);
#else
MOZ_ASSERT(false);
return false;
#endif
case ImageFormat::GPU_VIDEO:
return BlitImage(static_cast<layers::GPUVideoImage*>(srcImage), destSize,
destOrigin);
#ifdef XP_WIN
case ImageFormat::D3D11_SHARE_HANDLE_TEXTURE:
return BlitImage(static_cast<layers::D3D11ShareHandleImage*>(srcImage),
destSize, destOrigin);
case ImageFormat::D3D11_TEXTURE_IMF_SAMPLE:
return BlitImage(
static_cast<layers::D3D11TextureIMFSampleImage*>(srcImage), destSize,
destOrigin);
case ImageFormat::D3D9_RGB32_TEXTURE:
return false; // todo
case ImageFormat::DCOMP_SURFACE:
return false;
#else
case ImageFormat::D3D11_SHARE_HANDLE_TEXTURE:
case ImageFormat::D3D11_TEXTURE_IMF_SAMPLE:
case ImageFormat::D3D9_RGB32_TEXTURE:
case ImageFormat::DCOMP_SURFACE:
MOZ_ASSERT(false);
return false;
#endif
case ImageFormat::DMABUF:
#ifdef MOZ_WIDGET_GTK
return BlitImage(static_cast<layers::DMABUFSurfaceImage*>(srcImage),
destSize, destOrigin);
#else
return false;
#endif
case ImageFormat::MOZ2D_SURFACE:
case ImageFormat::NV_IMAGE:
case ImageFormat::OVERLAY_IMAGE:
case ImageFormat::SHARED_RGB:
case ImageFormat::TEXTURE_WRAPPER:
return false; // todo
}
return false;
}
// -------------------------------------
#ifdef MOZ_WIDGET_ANDROID
bool GLBlitHelper::Blit(const java::GeckoSurfaceTexture::Ref& surfaceTexture,
const gfx::IntSize& destSize,
const OriginPos destOrigin) const {
if (!surfaceTexture) {
return false;
}
const ScopedBindTextureUnit boundTU(mGL, LOCAL_GL_TEXTURE0);
if (!surfaceTexture->IsAttachedToGLContext((int64_t)mGL)) {
GLuint tex;
mGL->MakeCurrent();
mGL->fGenTextures(1, &tex);
if (NS_FAILED(surfaceTexture->AttachToGLContext((int64_t)mGL, tex))) {
mGL->fDeleteTextures(1, &tex);
return false;
}
}
const ScopedBindTexture savedTex(mGL, surfaceTexture->GetTexName(),
LOCAL_GL_TEXTURE_EXTERNAL);
surfaceTexture->UpdateTexImage();
gfx::Matrix4x4 transform;
const auto surf = java::sdk::SurfaceTexture::LocalRef::From(surfaceTexture);
gl::AndroidSurfaceTexture::GetTransformMatrix(surf, &transform);
// SurfaceTexture transforms should always be 2D
MOZ_DIAGNOSTIC_ASSERT(transform.Is2D());
const auto transform3 = MatrixToMat3(transform.As2D());
const auto srcOrigin = OriginPos::TopLeft;
const bool yFlip = (srcOrigin != destOrigin);
const auto& prog = GetDrawBlitProg(
{kFragHeader_TexExt, {kFragSample_OnePlane, kFragConvert_None}});
const DrawBlitProg::BaseArgs baseArgs = {transform3, yFlip, destSize,
Nothing()};
prog.Draw(baseArgs, nullptr);
if (surfaceTexture->IsSingleBuffer()) {
surfaceTexture->ReleaseTexImage();
}
return true;
}
#endif
// -------------------------------------
bool GuessDivisors(const gfx::IntSize& ySize, const gfx::IntSize& uvSize,
gfx::IntSize* const out_divisors) {
const gfx::IntSize divisors((ySize.width == uvSize.width) ? 1 : 2,
(ySize.height == uvSize.height) ? 1 : 2);
if (uvSize.width * divisors.width != ySize.width ||
uvSize.height * divisors.height != ySize.height) {
return false;
}
*out_divisors = divisors;
return true;
}
bool GLBlitHelper::BlitPlanarYCbCr(const PlanarYCbCrData& yuvData,
const gfx::IntSize& destSize,
const OriginPos destOrigin) {
const auto& prog = GetDrawBlitProg(
{kFragHeader_Tex2D, {kFragSample_ThreePlane, kFragConvert_ColorMatrix}});
if (!mYuvUploads[0]) {
mGL->fGenTextures(3, mYuvUploads);
const ScopedBindTexture bindTex(mGL, mYuvUploads[0]);
mGL->TexParams_SetClampNoMips();
mGL->fBindTexture(LOCAL_GL_TEXTURE_2D, mYuvUploads[1]);
mGL->TexParams_SetClampNoMips();
mGL->fBindTexture(LOCAL_GL_TEXTURE_2D, mYuvUploads[2]);
mGL->TexParams_SetClampNoMips();
}
// --
auto ySize = yuvData.YDataSize();
auto cbcrSize = yuvData.CbCrDataSize();
if (yuvData.mYSkip || yuvData.mCbSkip || yuvData.mCrSkip || ySize.width < 0 ||
ySize.height < 0 || cbcrSize.width < 0 || cbcrSize.height < 0 ||
yuvData.mYStride < 0 || yuvData.mCbCrStride < 0) {
gfxCriticalError() << "Unusual PlanarYCbCrData: " << yuvData.mYSkip << ","
<< yuvData.mCbSkip << "," << yuvData.mCrSkip << ", "
<< ySize.width << "," << ySize.height << ", "
<< cbcrSize.width << "," << cbcrSize.height << ", "
<< yuvData.mYStride << "," << yuvData.mCbCrStride;
return false;
}
gfx::IntSize divisors;
switch (yuvData.mChromaSubsampling) {
case gfx::ChromaSubsampling::FULL:
divisors = gfx::IntSize(1, 1);
break;
case gfx::ChromaSubsampling::HALF_WIDTH:
divisors = gfx::IntSize(2, 1);
break;
case gfx::ChromaSubsampling::HALF_WIDTH_AND_HEIGHT:
divisors = gfx::IntSize(2, 2);
break;
default:
gfxCriticalError() << "Unknown chroma subsampling:"
<< int(yuvData.mChromaSubsampling);
return false;
}
// --
// RED textures aren't valid in GLES2, and ALPHA textures are not valid in
// desktop GL Core Profiles. So use R8 textures on GL3.0+ and GLES3.0+, but
// LUMINANCE/LUMINANCE/UNSIGNED_BYTE otherwise.
GLenum internalFormat;
GLenum unpackFormat;
if (mGL->IsAtLeast(gl::ContextProfile::OpenGLCore, 300) ||
mGL->IsAtLeast(gl::ContextProfile::OpenGLES, 300)) {
internalFormat = LOCAL_GL_R8;
unpackFormat = LOCAL_GL_RED;
} else {
internalFormat = LOCAL_GL_LUMINANCE;
unpackFormat = LOCAL_GL_LUMINANCE;
}
// --
const ScopedSaveMultiTex saveTex(mGL, 3, LOCAL_GL_TEXTURE_2D);
const ResetUnpackState reset(mGL);
const gfx::IntSize yTexSize(yuvData.mYStride, yuvData.YDataSize().height);
const gfx::IntSize uvTexSize(yuvData.mCbCrStride,
yuvData.CbCrDataSize().height);
if (yTexSize != mYuvUploads_YSize || uvTexSize != mYuvUploads_UVSize) {
mYuvUploads_YSize = yTexSize;
mYuvUploads_UVSize = uvTexSize;
mGL->fActiveTexture(LOCAL_GL_TEXTURE0);
mGL->fBindTexture(LOCAL_GL_TEXTURE_2D, mYuvUploads[0]);
mGL->fTexImage2D(LOCAL_GL_TEXTURE_2D, 0, internalFormat, yTexSize.width,
yTexSize.height, 0, unpackFormat, LOCAL_GL_UNSIGNED_BYTE,
nullptr);
for (int i = 1; i < 3; i++) {
mGL->fActiveTexture(LOCAL_GL_TEXTURE0 + i);
mGL->fBindTexture(LOCAL_GL_TEXTURE_2D, mYuvUploads[i]);
mGL->fTexImage2D(LOCAL_GL_TEXTURE_2D, 0, internalFormat, uvTexSize.width,
uvTexSize.height, 0, unpackFormat,
LOCAL_GL_UNSIGNED_BYTE, nullptr);
}
}
// --
mGL->fActiveTexture(LOCAL_GL_TEXTURE0);
mGL->fBindTexture(LOCAL_GL_TEXTURE_2D, mYuvUploads[0]);
mGL->fTexSubImage2D(LOCAL_GL_TEXTURE_2D, 0, 0, 0, yTexSize.width,
yTexSize.height, unpackFormat, LOCAL_GL_UNSIGNED_BYTE,
yuvData.mYChannel);
mGL->fActiveTexture(LOCAL_GL_TEXTURE1);
mGL->fBindTexture(LOCAL_GL_TEXTURE_2D, mYuvUploads[1]);
mGL->fTexSubImage2D(LOCAL_GL_TEXTURE_2D, 0, 0, 0, uvTexSize.width,
uvTexSize.height, unpackFormat, LOCAL_GL_UNSIGNED_BYTE,
yuvData.mCbChannel);
mGL->fActiveTexture(LOCAL_GL_TEXTURE2);
mGL->fBindTexture(LOCAL_GL_TEXTURE_2D, mYuvUploads[2]);
mGL->fTexSubImage2D(LOCAL_GL_TEXTURE_2D, 0, 0, 0, uvTexSize.width,
uvTexSize.height, unpackFormat, LOCAL_GL_UNSIGNED_BYTE,
yuvData.mCrChannel);
// --
const auto& clipRect = yuvData.mPictureRect;
const auto srcOrigin = OriginPos::BottomLeft;
const bool yFlip = (destOrigin != srcOrigin);
const DrawBlitProg::BaseArgs baseArgs = {SubRectMat3(clipRect, yTexSize),
yFlip, destSize, Nothing()};
const DrawBlitProg::YUVArgs yuvArgs = {
SubRectMat3(clipRect, uvTexSize, divisors), Some(yuvData.mYUVColorSpace)};
prog.Draw(baseArgs, &yuvArgs);
return true;
}
// -------------------------------------
#ifdef XP_MACOSX
bool GLBlitHelper::BlitImage(layers::MacIOSurfaceImage* const srcImage,
const gfx::IntSize& destSize,
const OriginPos destOrigin) const {
return BlitImage(srcImage->GetSurface(), destSize, destOrigin);
}
static std::string IntAsAscii(const int x) {
std::string str;
str.reserve(6);
auto u = static_cast<unsigned int>(x);
while (u) {
str.insert(str.begin(), u & 0xff);
u >>= 8;
}
str.insert(str.begin(), '\'');
str.push_back('\'');
return str;
}
bool GLBlitHelper::BlitImage(MacIOSurface* const iosurf,
const gfx::IntSize& destSize,
const OriginPos destOrigin) const {
if (!iosurf) {
gfxCriticalError() << "Null MacIOSurface for GLBlitHelper::BlitImage";
return false;
}
if (mGL->GetContextType() != GLContextType::CGL) {
MOZ_ASSERT(false);
return false;
}
const auto& srcOrigin = OriginPos::BottomLeft;
DrawBlitProg::BaseArgs baseArgs;
baseArgs.yFlip = (destOrigin != srcOrigin);
baseArgs.destSize = destSize;
// TODO: The colorspace is known by the IOSurface, why override it?
// See GetYUVColorSpace/GetFullRange()
DrawBlitProg::YUVArgs yuvArgs;
yuvArgs.colorSpaceForMatrix = Some(iosurf->GetYUVColorSpace());
const DrawBlitProg::YUVArgs* pYuvArgs = nullptr;
auto planes = iosurf->GetPlaneCount();
if (!planes) {
planes = 1; // Bad API. No cookie.
}
const GLenum texTarget = LOCAL_GL_TEXTURE_RECTANGLE;
const ScopedSaveMultiTex saveTex(mGL, planes, texTarget);
const ScopedTexture tex0(mGL);
const ScopedTexture tex1(mGL);
const ScopedTexture tex2(mGL);
const GLuint texs[3] = {tex0, tex1, tex2};
const auto pixelFormat = iosurf->GetPixelFormat();
if (mGL->ShouldSpew()) {
const auto formatStr = IntAsAscii(pixelFormat);
printf_stderr("iosurf format: %s (0x%08x)\n", formatStr.c_str(),
pixelFormat);
}
const char* fragSample;
switch (planes) {
case 1:
switch (pixelFormat) {
case kCVPixelFormatType_24RGB:
case kCVPixelFormatType_24BGR:
case kCVPixelFormatType_32ARGB:
case kCVPixelFormatType_32BGRA:
case kCVPixelFormatType_32ABGR:
case kCVPixelFormatType_32RGBA:
case kCVPixelFormatType_64ARGB:
case kCVPixelFormatType_48RGB:
fragSample = kFragSample_OnePlane;
break;
case kCVPixelFormatType_422YpCbCr8:
case kCVPixelFormatType_422YpCbCr8_yuvs:
fragSample = kFragSample_OnePlane_YUV_via_GBR;
pYuvArgs = &yuvArgs;
break;
default: {
std::string str;
if (pixelFormat <= 0xff) {
str = std::to_string(pixelFormat);
} else {
str = IntAsAscii(pixelFormat);
}
gfxCriticalError() << "Unhandled kCVPixelFormatType_*: " << str;
// Probably YUV though
fragSample = kFragSample_OnePlane_YUV_via_GBR;
pYuvArgs = &yuvArgs;
break;
}
}
break;
case 2:
fragSample = kFragSample_TwoPlane;
pYuvArgs = &yuvArgs;
break;
case 3:
fragSample = kFragSample_ThreePlane;
pYuvArgs = &yuvArgs;
break;
default:
gfxCriticalError() << "Unexpected plane count: " << planes;
return false;
}
for (uint32_t p = 0; p < planes; p++) {
mGL->fActiveTexture(LOCAL_GL_TEXTURE0 + p);
mGL->fBindTexture(texTarget, texs[p]);
mGL->TexParams_SetClampNoMips(texTarget);
if (!iosurf->BindTexImage(mGL, p)) {
return false;
}
if (p == 0) {
const auto width = iosurf->GetDevicePixelWidth(p);
const auto height = iosurf->GetDevicePixelHeight(p);
baseArgs.texMatrix0 = SubRectMat3(0, 0, width, height);
yuvArgs.texMatrix1 = SubRectMat3(0, 0, width / 2.0, height / 2.0);
}
}
const auto& prog = GetDrawBlitProg({
kFragHeader_Tex2DRect,
{fragSample, kFragConvert_ColorMatrix},
});
prog.Draw(baseArgs, pYuvArgs);
return true;
}
#endif
// -----------------------------------------------------------------------------
void GLBlitHelper::DrawBlitTextureToFramebuffer(const GLuint srcTex,
const gfx::IntSize& srcSize,
const gfx::IntSize& destSize,
const GLenum srcTarget,
const bool srcIsBGRA) const {
const char* fragHeader = nullptr;
Mat3 texMatrix0;
switch (srcTarget) {
case LOCAL_GL_TEXTURE_2D:
fragHeader = kFragHeader_Tex2D;
texMatrix0 = Mat3::I();
break;
case LOCAL_GL_TEXTURE_RECTANGLE_ARB:
fragHeader = kFragHeader_Tex2DRect;
texMatrix0 = SubRectMat3(0, 0, srcSize.width, srcSize.height);
break;
default:
gfxCriticalError() << "Unexpected srcTarget: " << srcTarget;
return;
}
const auto fragConvert = srcIsBGRA ? kFragConvert_BGR : kFragConvert_None;
const auto& prog = GetDrawBlitProg({
fragHeader,
{kFragSample_OnePlane, fragConvert},
});
const ScopedSaveMultiTex saveTex(mGL, 1, srcTarget);
mGL->fActiveTexture(LOCAL_GL_TEXTURE0);
mGL->fBindTexture(srcTarget, srcTex);
const bool yFlip = false;
const DrawBlitProg::BaseArgs baseArgs = {texMatrix0, yFlip, destSize,
Nothing()};
prog.Draw(baseArgs);
}
// -----------------------------------------------------------------------------
void GLBlitHelper::BlitFramebuffer(const gfx::IntRect& srcRect,
const gfx::IntRect& destRect,
GLuint filter) const {
MOZ_ASSERT(mGL->IsSupported(GLFeature::framebuffer_blit));
const ScopedGLState scissor(mGL, LOCAL_GL_SCISSOR_TEST, false);
mGL->fBlitFramebuffer(srcRect.x, srcRect.y, srcRect.XMost(), srcRect.YMost(),
destRect.x, destRect.y, destRect.XMost(),
destRect.YMost(), LOCAL_GL_COLOR_BUFFER_BIT, filter);
}
// --
void GLBlitHelper::BlitFramebufferToFramebuffer(const GLuint srcFB,
const GLuint destFB,
const gfx::IntRect& srcRect,
const gfx::IntRect& destRect,
GLuint filter) const {
MOZ_ASSERT(mGL->IsSupported(GLFeature::framebuffer_blit));
MOZ_GL_ASSERT(mGL, !srcFB || mGL->fIsFramebuffer(srcFB));
MOZ_GL_ASSERT(mGL, !destFB || mGL->fIsFramebuffer(destFB));
const ScopedBindFramebuffer boundFB(mGL);
mGL->fBindFramebuffer(LOCAL_GL_READ_FRAMEBUFFER, srcFB);
mGL->fBindFramebuffer(LOCAL_GL_DRAW_FRAMEBUFFER, destFB);
BlitFramebuffer(srcRect, destRect, filter);
}
void GLBlitHelper::BlitTextureToFramebuffer(GLuint srcTex,
const gfx::IntSize& srcSize,
const gfx::IntSize& destSize,
GLenum srcTarget) const {
MOZ_GL_ASSERT(mGL, mGL->fIsTexture(srcTex));
if (mGL->IsSupported(GLFeature::framebuffer_blit)) {
const ScopedFramebufferForTexture srcWrapper(mGL, srcTex, srcTarget);
const ScopedBindFramebuffer bindFB(mGL);
mGL->fBindFramebuffer(LOCAL_GL_READ_FRAMEBUFFER, srcWrapper.FB());
BlitFramebuffer(gfx::IntRect({}, srcSize), gfx::IntRect({}, destSize));
return;
}
DrawBlitTextureToFramebuffer(srcTex, srcSize, destSize, srcTarget);
}
void GLBlitHelper::BlitFramebufferToTexture(GLuint destTex,
const gfx::IntSize& srcSize,
const gfx::IntSize& destSize,
GLenum destTarget) const {
MOZ_GL_ASSERT(mGL, mGL->fIsTexture(destTex));
if (mGL->IsSupported(GLFeature::framebuffer_blit)) {
const ScopedFramebufferForTexture destWrapper(mGL, destTex, destTarget);
const ScopedBindFramebuffer bindFB(mGL);
mGL->fBindFramebuffer(LOCAL_GL_DRAW_FRAMEBUFFER, destWrapper.FB());
BlitFramebuffer(gfx::IntRect({}, srcSize), gfx::IntRect({}, destSize));
return;
}
ScopedBindTexture autoTex(mGL, destTex, destTarget);
ScopedGLState scissor(mGL, LOCAL_GL_SCISSOR_TEST, false);
mGL->fCopyTexSubImage2D(destTarget, 0, 0, 0, 0, 0, srcSize.width,
srcSize.height);
}
void GLBlitHelper::BlitTextureToTexture(GLuint srcTex, GLuint destTex,
const gfx::IntSize& srcSize,
const gfx::IntSize& destSize,
GLenum srcTarget,
GLenum destTarget) const {
MOZ_GL_ASSERT(mGL, mGL->fIsTexture(srcTex));
MOZ_GL_ASSERT(mGL, mGL->fIsTexture(destTex));
// Start down the CopyTexSubImage path, not the DrawBlit path.
const ScopedFramebufferForTexture srcWrapper(mGL, srcTex, srcTarget);
const ScopedBindFramebuffer bindFB(mGL, srcWrapper.FB());
BlitFramebufferToTexture(destTex, srcSize, destSize, destTarget);
}
// -------------------------------------
bool GLBlitHelper::BlitImage(layers::GPUVideoImage* const srcImage,
const gfx::IntSize& destSize,
const OriginPos destOrigin) const {
const auto& data = srcImage->GetData();
if (!data) return false;
const auto& desc = data->SD();
MOZ_ASSERT(
desc.type() ==
layers::SurfaceDescriptorGPUVideo::TSurfaceDescriptorRemoteDecoder);
const auto& subdescUnion =
desc.get_SurfaceDescriptorRemoteDecoder().subdesc();
switch (subdescUnion.type()) {
#ifdef MOZ_WIDGET_GTK
case layers::RemoteDecoderVideoSubDescriptor::TSurfaceDescriptorDMABuf: {
const auto& subdesc = subdescUnion.get_SurfaceDescriptorDMABuf();
RefPtr<DMABufSurface> surface =
DMABufSurface::CreateDMABufSurface(subdesc);
return Blit(surface, destSize, destOrigin);
}
#endif
#ifdef XP_WIN
case layers::RemoteDecoderVideoSubDescriptor::TSurfaceDescriptorD3D10: {
const auto& subdesc = subdescUnion.get_SurfaceDescriptorD3D10();
return BlitDescriptor(subdesc, destSize, destOrigin);
}
case layers::RemoteDecoderVideoSubDescriptor::TSurfaceDescriptorDXGIYCbCr: {
const auto& subdesc = subdescUnion.get_SurfaceDescriptorDXGIYCbCr();
return BlitDescriptor(subdesc, destSize, destOrigin);
}
#endif
#ifdef XP_MACOSX
case layers::RemoteDecoderVideoSubDescriptor::
TSurfaceDescriptorMacIOSurface: {
const auto& subdesc = subdescUnion.get_SurfaceDescriptorMacIOSurface();
RefPtr<MacIOSurface> surface = MacIOSurface::LookupSurface(
subdesc.surfaceId(), !subdesc.isOpaque(), subdesc.yUVColorSpace());
MOZ_ASSERT(surface);
if (!surface) {
return false;
}
return BlitImage(surface, destSize, destOrigin);
}
#endif
case layers::RemoteDecoderVideoSubDescriptor::Tnull_t:
// This GPUVideoImage isn't directly readable outside the GPU process.
// Abort.
return false;
default:
gfxCriticalError() << "Unhandled subdesc type: "
<< uint32_t(subdescUnion.type());
return false;
}
}
// -------------------------------------
#ifdef MOZ_WIDGET_GTK
bool GLBlitHelper::Blit(DMABufSurface* surface, const gfx::IntSize& destSize,
OriginPos destOrigin) const {
const auto& srcOrigin = OriginPos::BottomLeft;
DrawBlitProg::BaseArgs baseArgs;
baseArgs.yFlip = (destOrigin != srcOrigin);
baseArgs.destSize = destSize;
// TODO: The colorspace is known by the DMABUFSurface, why override it?
// See GetYUVColorSpace/GetFullRange()
DrawBlitProg::YUVArgs yuvArgs;
yuvArgs.colorSpaceForMatrix = Some(surface->GetYUVColorSpace());
const DrawBlitProg::YUVArgs* pYuvArgs = nullptr;
const auto planes = surface->GetTextureCount();
// -
// Ensure textures for all planes have been created.
const bool createTextures = [&]() {
for (int i = 0; i < planes; i++) {
if (!surface->GetTexture(i)) {
return true;
}
}
return false;
}();
bool didCreateTexture = false;
auto releaseTextures = mozilla::MakeScopeExit([&] {
if (didCreateTexture) {
surface->ReleaseTextures();
}
});
if (createTextures) {
for (int i = 0; i < planes; i++) {
if (surface->GetTexture(i)) {
continue;
}
if (!surface->CreateTexture(mGL, i)) {
LOGDMABUF(("GLBlitHelper::Blit(): Failed to create DMABuf textures."));
return false;
}
didCreateTexture = true;
}
}
// -
const GLenum texTarget = LOCAL_GL_TEXTURE_2D;
const ScopedSaveMultiTex saveTex(mGL, planes, texTarget);
const auto pixelFormat = surface->GetSurfaceType();
const char* fragSample;
auto fragConvert = kFragConvert_None;
switch (pixelFormat) {
case DMABufSurface::SURFACE_RGBA:
fragSample = kFragSample_OnePlane;
break;
case DMABufSurface::SURFACE_NV12:
fragSample = kFragSample_TwoPlane;
pYuvArgs = &yuvArgs;
fragConvert = kFragConvert_ColorMatrix;
break;
case DMABufSurface::SURFACE_YUV420:
fragSample = kFragSample_ThreePlane;
pYuvArgs = &yuvArgs;
fragConvert = kFragConvert_ColorMatrix;
break;
default:
gfxCriticalError() << "Unexpected pixel format: " << pixelFormat;
return false;
}
for (const auto p : IntegerRange(planes)) {
mGL->fActiveTexture(LOCAL_GL_TEXTURE0 + p);
mGL->fBindTexture(texTarget, surface->GetTexture(p));
mGL->TexParams_SetClampNoMips(texTarget);
}
// We support only NV12/YUV420 formats only with 1/2 texture scale.
// We don't set cliprect as DMABus textures are created without padding.
baseArgs.texMatrix0 = SubRectMat3(0, 0, 1, 1);
yuvArgs.texMatrix1 = SubRectMat3(0, 0, 1, 1);
const auto& prog =
GetDrawBlitProg({kFragHeader_Tex2D, {fragSample, fragConvert}});
prog.Draw(baseArgs, pYuvArgs);
return true;
}
bool GLBlitHelper::BlitImage(layers::DMABUFSurfaceImage* srcImage,
const gfx::IntSize& destSize,
OriginPos destOrigin) const {
DMABufSurface* surface = srcImage->GetSurface();
if (!surface) {
gfxCriticalError() << "Null DMABUFSurface for GLBlitHelper::BlitImage";
return false;
}
return Blit(surface, destSize, destOrigin);
}
#endif
// -
template <size_t N>
static void PushUnorm(uint32_t* const out, const float inVal) {
const uint32_t mask = (1 << N) - 1;
auto fval = inVal;
fval = std::clamp(fval, 0.0f, 1.0f);
fval *= mask;
fval = roundf(fval);
auto ival = static_cast<uint32_t>(fval);
ival &= mask;
*out <<= N;
*out |= ival;
}
static uint32_t toRgb10A2(const color::vec4& val) {
// R in LSB
uint32_t ret = 0;
PushUnorm<2>(&ret, val.w());
PushUnorm<10>(&ret, val.z());
PushUnorm<10>(&ret, val.y());
PushUnorm<10>(&ret, val.x());
return ret;
}
// -
color::ColorspaceDesc ToColorspaceDesc(const gfx::YUVRangedColorSpace cs) {
switch (cs) {
case gfx::YUVRangedColorSpace::BT601_Narrow:
return {
.chrom = color::Chromaticities::Rec601_525_Ntsc(),
.tf = color::PiecewiseGammaDesc::Rec709(),
.yuv =
color::YuvDesc{
.yCoeffs = color::YuvLumaCoeffs::Rec709(),
.ycbcr = color::YcbcrDesc::Narrow8(),
},
};
case gfx::YUVRangedColorSpace::BT601_Full:
return {
.chrom = color::Chromaticities::Rec601_525_Ntsc(),
.tf = color::PiecewiseGammaDesc::Rec709(),
.yuv =
color::YuvDesc{
.yCoeffs = color::YuvLumaCoeffs::Rec709(),
.ycbcr = color::YcbcrDesc::Full8(),
},
};
case gfx::YUVRangedColorSpace::BT709_Narrow:
return {
.chrom = color::Chromaticities::Rec709(),
.tf = color::PiecewiseGammaDesc::Rec709(),
.yuv =
color::YuvDesc{
.yCoeffs = color::YuvLumaCoeffs::Rec709(),
.ycbcr = color::YcbcrDesc::Narrow8(),
},
};
case gfx::YUVRangedColorSpace::BT709_Full:
return {
.chrom = color::Chromaticities::Rec709(),
.tf = color::PiecewiseGammaDesc::Rec709(),
.yuv =
color::YuvDesc{
.yCoeffs = color::YuvLumaCoeffs::Rec709(),
.ycbcr = color::YcbcrDesc::Full8(),
},
};
case gfx::YUVRangedColorSpace::BT2020_Narrow:
return {
.chrom = color::Chromaticities::Rec2020(),
.tf = color::PiecewiseGammaDesc::Rec2020_12bit(),
.yuv =
color::YuvDesc{
.yCoeffs = color::YuvLumaCoeffs::Rec709(),
.ycbcr = color::YcbcrDesc::Narrow8(),
},
};
case gfx::YUVRangedColorSpace::BT2020_Full:
return {
.chrom = color::Chromaticities::Rec2020(),
.tf = color::PiecewiseGammaDesc::Rec2020_12bit(),
.yuv =
color::YuvDesc{
.yCoeffs = color::YuvLumaCoeffs::Rec2020(),
.ycbcr = color::YcbcrDesc::Full8(),
},
};
case gfx::YUVRangedColorSpace::GbrIdentity:
return {
.chrom = color::Chromaticities::Rec709(),
.tf = color::PiecewiseGammaDesc::Rec709(),
.yuv =
color::YuvDesc{
.yCoeffs = color::YuvLumaCoeffs::Gbr(),
.ycbcr = color::YcbcrDesc::Full8(),
},
};
}
MOZ_CRASH("Bad YUVRangedColorSpace.");
}
} // namespace gl
namespace gfx {
color::ColorProfileDesc QueryOutputColorProfile();
} // namespace gfx
namespace gl {
// -
/* static */
std::optional<color::ColorProfileDesc> GLBlitHelper::ToColorProfileDesc(
const gfx::ColorSpace2 cspace) {
color::ColorspaceDesc cspaceDesc;
switch (cspace) {
case gfx::ColorSpace2::Display:
if (kIsWindows) {
#ifdef XP_WIN
return gfx::QueryOutputColorProfile();
#endif
}
return {};
case gfx::ColorSpace2::SRGB:
cspaceDesc = {.chrom = color::Chromaticities::Srgb(),
.tf = color::PiecewiseGammaDesc::Srgb()};
break;
case gfx::ColorSpace2::DISPLAY_P3:
cspaceDesc = {.chrom = color::Chromaticities::DisplayP3(),
.tf = color::PiecewiseGammaDesc::DisplayP3()};
break;
case gfx::ColorSpace2::BT601_525: // aka smpte170m NTSC
cspaceDesc = {.chrom = color::Chromaticities::Rec601_525_Ntsc(),
.tf = color::PiecewiseGammaDesc::Rec709()};
break;
case gfx::ColorSpace2::BT709: // Same gamut as SRGB, but different gamma.
cspaceDesc = {.chrom = color::Chromaticities::Rec709(),
.tf = color::PiecewiseGammaDesc::Rec709()};
break;
case gfx::ColorSpace2::BT2020:
cspaceDesc = {.chrom = color::Chromaticities::Rec2020(),
.tf = color::PiecewiseGammaDesc::Rec2020_12bit()};
break;
}
const auto profileDesc = color::ColorProfileDesc::From(cspaceDesc);
return profileDesc;
}
// -
// For std::visit
template <class... Ts>
struct overloaded : Ts... {
using Ts::operator()...;
};
// explicit deduction guide (not needed as of C++20)
template <class... Ts>
overloaded(Ts...) -> overloaded<Ts...>;
// -
template <typename C, typename K>
inline auto MaybeFind(C& container, const K& key)
-> decltype(&(container.find(key)->second)) {
const auto itr = container.find(key);
if (itr == container.end()) return nullptr;
return &(itr->second);
}
// -
std::shared_ptr<gl::Texture> GLBlitHelper::GetColorLutTex(
const ColorLutKey& request) const {
if (const auto found = MaybeFind(mColorLutTexMap, request)) {
return *found; // Might be *Some(nullptr) -> nullptr!
}
return mColorLutTexMap[request] = [&]() -> std::shared_ptr<gl::Texture> {
auto& gl = *mGL;
const auto tex = std::make_shared<gl::Texture>(gl);
// -
const std::optional<color::ColorProfileDesc> srcProfile =
std::visit(overloaded{
[&](const gfx::ColorSpace2& cs)
-> std::optional<color::ColorProfileDesc> {
MOZ_ASSERT(cs != request.dst);
const auto cpd = ToColorProfileDesc(cs);
return cpd;
},
[&](const gfx::YUVRangedColorSpace& cs)
-> std::optional<color::ColorProfileDesc> {
const auto csd = ToColorspaceDesc(cs);
const auto cpd = color::ColorProfileDesc::From(csd);
return cpd;
},
},
request.src);
MOZ_ASSERT(srcProfile);
const auto dstProfile = ToColorProfileDesc(request.dst);
if (kIsWindows) {
MOZ_ASSERT(dstProfile);
}
if (!srcProfile || !dstProfile) return nullptr;
const auto conversion = color::ColorProfileConversionDesc::From({
.src = *srcProfile,
.dst = *dstProfile,
});
// -
const auto minLutSize = color::ivec3{2};
const auto maxLutSize = color::ivec3{256};
auto lutSize = minLutSize;
const bool isYcbcr =
(conversion.srcRgbFromSrcYuv != color::mat4::Identity());
if (isYcbcr) {
lutSize.x(int(StaticPrefs::gfx_blithelper_lut_size_ycbcr_y()));
lutSize.y(int(StaticPrefs::gfx_blithelper_lut_size_ycbcr_cb()));
lutSize.z(int(StaticPrefs::gfx_blithelper_lut_size_ycbcr_cr()));
} else {
lutSize.x(int(StaticPrefs::gfx_blithelper_lut_size_rgb_r()));
lutSize.y(int(StaticPrefs::gfx_blithelper_lut_size_rgb_g()));
lutSize.z(int(StaticPrefs::gfx_blithelper_lut_size_rgb_b()));
}
lutSize = clamp(lutSize, minLutSize, maxLutSize);
const auto lut = [&]() {
auto lut = color::Lut3::Create(lutSize);
lut.SetMap(
[&](const color::vec3& src) { return conversion.DstFromSrc(src); });
return lut;
}();
const auto& size = lut.size;
// -
constexpr GLenum target = LOCAL_GL_TEXTURE_3D;
const auto bind = gl::ScopedBindTexture(&gl, tex->name, target);
gl.fTexParameteri(target, LOCAL_GL_TEXTURE_WRAP_S, LOCAL_GL_CLAMP_TO_EDGE);
gl.fTexParameteri(target, LOCAL_GL_TEXTURE_WRAP_T, LOCAL_GL_CLAMP_TO_EDGE);
gl.fTexParameteri(target, LOCAL_GL_TEXTURE_WRAP_R, LOCAL_GL_CLAMP_TO_EDGE);
gl.fTexParameteri(target, LOCAL_GL_TEXTURE_MAG_FILTER, LOCAL_GL_LINEAR);
gl.fTexParameteri(target, LOCAL_GL_TEXTURE_MIN_FILTER, LOCAL_GL_LINEAR);
bool useFloat16 = true;
if (useFloat16) {
// Use rgba16f, which we can thankfully upload as rgba32f
static_assert(sizeof(color::vec4) == sizeof(float) * 4);
std::vector<color::vec4> uploadData;
uploadData.reserve(lut.data.size());
for (const auto& src : lut.data) {
const auto dst = color::vec4{src, 1};
uploadData.push_back(dst);
}
gl.fTexStorage3D(target, 1, LOCAL_GL_RGBA16F, size.x(), size.y(),
size.z());
gl.fTexSubImage3D(target, 0, 0, 0, 0, size.x(), size.y(), size.z(),
LOCAL_GL_RGBA, LOCAL_GL_FLOAT, uploadData.data());
} else {
// Use Rgb10A2
std::vector<uint32_t> uploadData;
uploadData.reserve(lut.data.size());
for (const auto& src : lut.data) {
const auto dst = toRgb10A2({src, 1});
uploadData.push_back(dst);
}
gl.fTexStorage3D(target, 1, LOCAL_GL_RGB10_A2, size.x(), size.y(),
size.z());
gl.fTexSubImage3D(target, 0, 0, 0, 0, size.x(), size.y(), size.z(),
LOCAL_GL_RGBA, LOCAL_GL_UNSIGNED_INT_2_10_10_10_REV,
uploadData.data());
}
return tex;
}();
}
} // namespace gl
} // namespace mozilla