mirror of
https://github.com/mozilla/gecko-dev.git
synced 2024-11-23 04:41:11 +00:00
1a73086b23
Differential Revision: https://phabricator.services.mozilla.com/D222213
1176 lines
36 KiB
C
1176 lines
36 KiB
C
/*
|
|
* jchuff.c
|
|
*
|
|
* This file was part of the Independent JPEG Group's software:
|
|
* Copyright (C) 1991-1997, Thomas G. Lane.
|
|
* Lossless JPEG Modifications:
|
|
* Copyright (C) 1999, Ken Murchison.
|
|
* libjpeg-turbo Modifications:
|
|
* Copyright (C) 2009-2011, 2014-2016, 2018-2024, D. R. Commander.
|
|
* Copyright (C) 2015, Matthieu Darbois.
|
|
* Copyright (C) 2018, Matthias Räncker.
|
|
* Copyright (C) 2020, Arm Limited.
|
|
* Copyright (C) 2022, Felix Hanau.
|
|
* For conditions of distribution and use, see the accompanying README.ijg
|
|
* file.
|
|
*
|
|
* This file contains Huffman entropy encoding routines.
|
|
*
|
|
* Much of the complexity here has to do with supporting output suspension.
|
|
* If the data destination module demands suspension, we want to be able to
|
|
* back up to the start of the current MCU. To do this, we copy state
|
|
* variables into local working storage, and update them back to the
|
|
* permanent JPEG objects only upon successful completion of an MCU.
|
|
*
|
|
* NOTE: All referenced figures are from
|
|
* Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
|
|
*/
|
|
|
|
#define JPEG_INTERNALS
|
|
#include "jinclude.h"
|
|
#include "jpeglib.h"
|
|
#ifdef WITH_SIMD
|
|
#include "jsimd.h"
|
|
#else
|
|
#include "jchuff.h" /* Declarations shared with jc*huff.c */
|
|
#endif
|
|
#include <limits.h>
|
|
#include "jpeg_nbits.h"
|
|
|
|
|
|
/* Expanded entropy encoder object for Huffman encoding.
|
|
*
|
|
* The savable_state subrecord contains fields that change within an MCU,
|
|
* but must not be updated permanently until we complete the MCU.
|
|
*/
|
|
|
|
#if defined(__x86_64__) && defined(__ILP32__)
|
|
typedef unsigned long long bit_buf_type;
|
|
#else
|
|
typedef size_t bit_buf_type;
|
|
#endif
|
|
|
|
/* NOTE: The more optimal Huffman encoding algorithm is only used by the
|
|
* intrinsics implementation of the Arm Neon SIMD extensions, which is why we
|
|
* retain the old Huffman encoder behavior when using the GAS implementation.
|
|
*/
|
|
#if defined(WITH_SIMD) && !(defined(__arm__) || defined(__aarch64__) || \
|
|
defined(_M_ARM) || defined(_M_ARM64))
|
|
typedef unsigned long long simd_bit_buf_type;
|
|
#else
|
|
typedef bit_buf_type simd_bit_buf_type;
|
|
#endif
|
|
|
|
#if (defined(SIZEOF_SIZE_T) && SIZEOF_SIZE_T == 8) || defined(_WIN64) || \
|
|
(defined(__x86_64__) && defined(__ILP32__))
|
|
#define BIT_BUF_SIZE 64
|
|
#elif (defined(SIZEOF_SIZE_T) && SIZEOF_SIZE_T == 4) || defined(_WIN32)
|
|
#define BIT_BUF_SIZE 32
|
|
#else
|
|
#error Cannot determine word size
|
|
#endif
|
|
#define SIMD_BIT_BUF_SIZE (sizeof(simd_bit_buf_type) * 8)
|
|
|
|
typedef struct {
|
|
union {
|
|
bit_buf_type c;
|
|
#ifdef WITH_SIMD
|
|
simd_bit_buf_type simd;
|
|
#endif
|
|
} put_buffer; /* current bit accumulation buffer */
|
|
int free_bits; /* # of bits available in it */
|
|
/* (Neon GAS: # of bits now in it) */
|
|
int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
|
|
} savable_state;
|
|
|
|
typedef struct {
|
|
struct jpeg_entropy_encoder pub; /* public fields */
|
|
|
|
savable_state saved; /* Bit buffer & DC state at start of MCU */
|
|
|
|
/* These fields are NOT loaded into local working state. */
|
|
unsigned int restarts_to_go; /* MCUs left in this restart interval */
|
|
int next_restart_num; /* next restart number to write (0-7) */
|
|
|
|
/* Pointers to derived tables (these workspaces have image lifespan) */
|
|
c_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
|
|
c_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
|
|
|
|
#ifdef ENTROPY_OPT_SUPPORTED /* Statistics tables for optimization */
|
|
long *dc_count_ptrs[NUM_HUFF_TBLS];
|
|
long *ac_count_ptrs[NUM_HUFF_TBLS];
|
|
#endif
|
|
|
|
#ifdef WITH_SIMD
|
|
int simd;
|
|
#endif
|
|
} huff_entropy_encoder;
|
|
|
|
typedef huff_entropy_encoder *huff_entropy_ptr;
|
|
|
|
/* Working state while writing an MCU.
|
|
* This struct contains all the fields that are needed by subroutines.
|
|
*/
|
|
|
|
typedef struct {
|
|
JOCTET *next_output_byte; /* => next byte to write in buffer */
|
|
size_t free_in_buffer; /* # of byte spaces remaining in buffer */
|
|
savable_state cur; /* Current bit buffer & DC state */
|
|
j_compress_ptr cinfo; /* dump_buffer needs access to this */
|
|
#ifdef WITH_SIMD
|
|
int simd;
|
|
#endif
|
|
} working_state;
|
|
|
|
|
|
/* Forward declarations */
|
|
METHODDEF(boolean) encode_mcu_huff(j_compress_ptr cinfo, JBLOCKROW *MCU_data);
|
|
METHODDEF(void) finish_pass_huff(j_compress_ptr cinfo);
|
|
#ifdef ENTROPY_OPT_SUPPORTED
|
|
METHODDEF(boolean) encode_mcu_gather(j_compress_ptr cinfo,
|
|
JBLOCKROW *MCU_data);
|
|
METHODDEF(void) finish_pass_gather(j_compress_ptr cinfo);
|
|
#endif
|
|
|
|
|
|
/*
|
|
* Initialize for a Huffman-compressed scan.
|
|
* If gather_statistics is TRUE, we do not output anything during the scan,
|
|
* just count the Huffman symbols used and generate Huffman code tables.
|
|
*/
|
|
|
|
METHODDEF(void)
|
|
start_pass_huff(j_compress_ptr cinfo, boolean gather_statistics)
|
|
{
|
|
huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
|
|
int ci, dctbl, actbl;
|
|
jpeg_component_info *compptr;
|
|
|
|
if (gather_statistics) {
|
|
#ifdef ENTROPY_OPT_SUPPORTED
|
|
entropy->pub.encode_mcu = encode_mcu_gather;
|
|
entropy->pub.finish_pass = finish_pass_gather;
|
|
#else
|
|
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
|
#endif
|
|
} else {
|
|
entropy->pub.encode_mcu = encode_mcu_huff;
|
|
entropy->pub.finish_pass = finish_pass_huff;
|
|
}
|
|
|
|
#ifdef WITH_SIMD
|
|
entropy->simd = jsimd_can_huff_encode_one_block();
|
|
#endif
|
|
|
|
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
|
compptr = cinfo->cur_comp_info[ci];
|
|
dctbl = compptr->dc_tbl_no;
|
|
actbl = compptr->ac_tbl_no;
|
|
if (gather_statistics) {
|
|
#ifdef ENTROPY_OPT_SUPPORTED
|
|
/* Check for invalid table indexes */
|
|
/* (make_c_derived_tbl does this in the other path) */
|
|
if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS)
|
|
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl);
|
|
if (actbl < 0 || actbl >= NUM_HUFF_TBLS)
|
|
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl);
|
|
/* Allocate and zero the statistics tables */
|
|
/* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
|
|
if (entropy->dc_count_ptrs[dctbl] == NULL)
|
|
entropy->dc_count_ptrs[dctbl] = (long *)
|
|
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
|
257 * sizeof(long));
|
|
memset(entropy->dc_count_ptrs[dctbl], 0, 257 * sizeof(long));
|
|
if (entropy->ac_count_ptrs[actbl] == NULL)
|
|
entropy->ac_count_ptrs[actbl] = (long *)
|
|
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
|
257 * sizeof(long));
|
|
memset(entropy->ac_count_ptrs[actbl], 0, 257 * sizeof(long));
|
|
#endif
|
|
} else {
|
|
/* Compute derived values for Huffman tables */
|
|
/* We may do this more than once for a table, but it's not expensive */
|
|
jpeg_make_c_derived_tbl(cinfo, TRUE, dctbl,
|
|
&entropy->dc_derived_tbls[dctbl]);
|
|
jpeg_make_c_derived_tbl(cinfo, FALSE, actbl,
|
|
&entropy->ac_derived_tbls[actbl]);
|
|
}
|
|
/* Initialize DC predictions to 0 */
|
|
entropy->saved.last_dc_val[ci] = 0;
|
|
}
|
|
|
|
/* Initialize bit buffer to empty */
|
|
#ifdef WITH_SIMD
|
|
if (entropy->simd) {
|
|
entropy->saved.put_buffer.simd = 0;
|
|
#if defined(__aarch64__) && !defined(NEON_INTRINSICS)
|
|
entropy->saved.free_bits = 0;
|
|
#else
|
|
entropy->saved.free_bits = SIMD_BIT_BUF_SIZE;
|
|
#endif
|
|
} else
|
|
#endif
|
|
{
|
|
entropy->saved.put_buffer.c = 0;
|
|
entropy->saved.free_bits = BIT_BUF_SIZE;
|
|
}
|
|
|
|
/* Initialize restart stuff */
|
|
entropy->restarts_to_go = cinfo->restart_interval;
|
|
entropy->next_restart_num = 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Compute the derived values for a Huffman table.
|
|
* This routine also performs some validation checks on the table.
|
|
*
|
|
* Note this is also used by jcphuff.c and jclhuff.c.
|
|
*/
|
|
|
|
GLOBAL(void)
|
|
jpeg_make_c_derived_tbl(j_compress_ptr cinfo, boolean isDC, int tblno,
|
|
c_derived_tbl **pdtbl)
|
|
{
|
|
JHUFF_TBL *htbl;
|
|
c_derived_tbl *dtbl;
|
|
int p, i, l, lastp, si, maxsymbol;
|
|
char huffsize[257];
|
|
unsigned int huffcode[257];
|
|
unsigned int code;
|
|
|
|
/* Note that huffsize[] and huffcode[] are filled in code-length order,
|
|
* paralleling the order of the symbols themselves in htbl->huffval[].
|
|
*/
|
|
|
|
/* Find the input Huffman table */
|
|
if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
|
|
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
|
|
htbl =
|
|
isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
|
|
if (htbl == NULL)
|
|
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
|
|
|
|
/* Allocate a workspace if we haven't already done so. */
|
|
if (*pdtbl == NULL)
|
|
*pdtbl = (c_derived_tbl *)
|
|
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
|
sizeof(c_derived_tbl));
|
|
dtbl = *pdtbl;
|
|
|
|
/* Figure C.1: make table of Huffman code length for each symbol */
|
|
|
|
p = 0;
|
|
for (l = 1; l <= 16; l++) {
|
|
i = (int)htbl->bits[l];
|
|
if (i < 0 || p + i > 256) /* protect against table overrun */
|
|
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
|
|
while (i--)
|
|
huffsize[p++] = (char)l;
|
|
}
|
|
huffsize[p] = 0;
|
|
lastp = p;
|
|
|
|
/* Figure C.2: generate the codes themselves */
|
|
/* We also validate that the counts represent a legal Huffman code tree. */
|
|
|
|
code = 0;
|
|
si = huffsize[0];
|
|
p = 0;
|
|
while (huffsize[p]) {
|
|
while (((int)huffsize[p]) == si) {
|
|
huffcode[p++] = code;
|
|
code++;
|
|
}
|
|
/* code is now 1 more than the last code used for codelength si; but
|
|
* it must still fit in si bits, since no code is allowed to be all ones.
|
|
*/
|
|
if (((JLONG)code) >= (((JLONG)1) << si))
|
|
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
|
|
code <<= 1;
|
|
si++;
|
|
}
|
|
|
|
/* Figure C.3: generate encoding tables */
|
|
/* These are code and size indexed by symbol value */
|
|
|
|
/* Set all codeless symbols to have code length 0;
|
|
* this lets us detect duplicate VAL entries here, and later
|
|
* allows emit_bits to detect any attempt to emit such symbols.
|
|
*/
|
|
memset(dtbl->ehufco, 0, sizeof(dtbl->ehufco));
|
|
memset(dtbl->ehufsi, 0, sizeof(dtbl->ehufsi));
|
|
|
|
/* This is also a convenient place to check for out-of-range and duplicated
|
|
* VAL entries. We allow 0..255 for AC symbols but only 0..15 for DC in
|
|
* lossy mode and 0..16 for DC in lossless mode. (We could constrain them
|
|
* further based on data depth and mode, but this seems enough.)
|
|
*/
|
|
maxsymbol = isDC ? (cinfo->master->lossless ? 16 : 15) : 255;
|
|
|
|
for (p = 0; p < lastp; p++) {
|
|
i = htbl->huffval[p];
|
|
if (i < 0 || i > maxsymbol || dtbl->ehufsi[i])
|
|
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
|
|
dtbl->ehufco[i] = huffcode[p];
|
|
dtbl->ehufsi[i] = huffsize[p];
|
|
}
|
|
}
|
|
|
|
|
|
/* Outputting bytes to the file */
|
|
|
|
/* Emit a byte, taking 'action' if must suspend. */
|
|
#define emit_byte(state, val, action) { \
|
|
*(state)->next_output_byte++ = (JOCTET)(val); \
|
|
if (--(state)->free_in_buffer == 0) \
|
|
if (!dump_buffer(state)) \
|
|
{ action; } \
|
|
}
|
|
|
|
|
|
LOCAL(boolean)
|
|
dump_buffer(working_state *state)
|
|
/* Empty the output buffer; return TRUE if successful, FALSE if must suspend */
|
|
{
|
|
struct jpeg_destination_mgr *dest = state->cinfo->dest;
|
|
|
|
if (!(*dest->empty_output_buffer) (state->cinfo))
|
|
return FALSE;
|
|
/* After a successful buffer dump, must reset buffer pointers */
|
|
state->next_output_byte = dest->next_output_byte;
|
|
state->free_in_buffer = dest->free_in_buffer;
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/* Outputting bits to the file */
|
|
|
|
/* Output byte b and, speculatively, an additional 0 byte. 0xFF must be
|
|
* encoded as 0xFF 0x00, so the output buffer pointer is advanced by 2 if the
|
|
* byte is 0xFF. Otherwise, the output buffer pointer is advanced by 1, and
|
|
* the speculative 0 byte will be overwritten by the next byte.
|
|
*/
|
|
#define EMIT_BYTE(b) { \
|
|
buffer[0] = (JOCTET)(b); \
|
|
buffer[1] = 0; \
|
|
buffer -= -2 + ((JOCTET)(b) < 0xFF); \
|
|
}
|
|
|
|
/* Output the entire bit buffer. If there are no 0xFF bytes in it, then write
|
|
* directly to the output buffer. Otherwise, use the EMIT_BYTE() macro to
|
|
* encode 0xFF as 0xFF 0x00.
|
|
*/
|
|
#if BIT_BUF_SIZE == 64
|
|
|
|
#define FLUSH() { \
|
|
if (put_buffer & 0x8080808080808080 & ~(put_buffer + 0x0101010101010101)) { \
|
|
EMIT_BYTE(put_buffer >> 56) \
|
|
EMIT_BYTE(put_buffer >> 48) \
|
|
EMIT_BYTE(put_buffer >> 40) \
|
|
EMIT_BYTE(put_buffer >> 32) \
|
|
EMIT_BYTE(put_buffer >> 24) \
|
|
EMIT_BYTE(put_buffer >> 16) \
|
|
EMIT_BYTE(put_buffer >> 8) \
|
|
EMIT_BYTE(put_buffer ) \
|
|
} else { \
|
|
buffer[0] = (JOCTET)(put_buffer >> 56); \
|
|
buffer[1] = (JOCTET)(put_buffer >> 48); \
|
|
buffer[2] = (JOCTET)(put_buffer >> 40); \
|
|
buffer[3] = (JOCTET)(put_buffer >> 32); \
|
|
buffer[4] = (JOCTET)(put_buffer >> 24); \
|
|
buffer[5] = (JOCTET)(put_buffer >> 16); \
|
|
buffer[6] = (JOCTET)(put_buffer >> 8); \
|
|
buffer[7] = (JOCTET)(put_buffer); \
|
|
buffer += 8; \
|
|
} \
|
|
}
|
|
|
|
#else
|
|
|
|
#define FLUSH() { \
|
|
if (put_buffer & 0x80808080 & ~(put_buffer + 0x01010101)) { \
|
|
EMIT_BYTE(put_buffer >> 24) \
|
|
EMIT_BYTE(put_buffer >> 16) \
|
|
EMIT_BYTE(put_buffer >> 8) \
|
|
EMIT_BYTE(put_buffer ) \
|
|
} else { \
|
|
buffer[0] = (JOCTET)(put_buffer >> 24); \
|
|
buffer[1] = (JOCTET)(put_buffer >> 16); \
|
|
buffer[2] = (JOCTET)(put_buffer >> 8); \
|
|
buffer[3] = (JOCTET)(put_buffer); \
|
|
buffer += 4; \
|
|
} \
|
|
}
|
|
|
|
#endif
|
|
|
|
/* Fill the bit buffer to capacity with the leading bits from code, then output
|
|
* the bit buffer and put the remaining bits from code into the bit buffer.
|
|
*/
|
|
#define PUT_AND_FLUSH(code, size) { \
|
|
put_buffer = (put_buffer << (size + free_bits)) | (code >> -free_bits); \
|
|
FLUSH() \
|
|
free_bits += BIT_BUF_SIZE; \
|
|
put_buffer = code; \
|
|
}
|
|
|
|
/* Insert code into the bit buffer and output the bit buffer if needed.
|
|
* NOTE: We can't flush with free_bits == 0, since the left shift in
|
|
* PUT_AND_FLUSH() would have undefined behavior.
|
|
*/
|
|
#define PUT_BITS(code, size) { \
|
|
free_bits -= size; \
|
|
if (free_bits < 0) \
|
|
PUT_AND_FLUSH(code, size) \
|
|
else \
|
|
put_buffer = (put_buffer << size) | code; \
|
|
}
|
|
|
|
#define PUT_CODE(code, size) { \
|
|
temp &= (((JLONG)1) << nbits) - 1; \
|
|
temp |= code << nbits; \
|
|
nbits += size; \
|
|
PUT_BITS(temp, nbits) \
|
|
}
|
|
|
|
|
|
/* Although it is exceedingly rare, it is possible for a Huffman-encoded
|
|
* coefficient block to be larger than the 128-byte unencoded block. For each
|
|
* of the 64 coefficients, PUT_BITS is invoked twice, and each invocation can
|
|
* theoretically store 16 bits (for a maximum of 2048 bits or 256 bytes per
|
|
* encoded block.) If, for instance, one artificially sets the AC
|
|
* coefficients to alternating values of 32767 and -32768 (using the JPEG
|
|
* scanning order-- 1, 8, 16, etc.), then this will produce an encoded block
|
|
* larger than 200 bytes.
|
|
*/
|
|
#define BUFSIZE (DCTSIZE2 * 8)
|
|
|
|
#define LOAD_BUFFER() { \
|
|
if (state->free_in_buffer < BUFSIZE) { \
|
|
localbuf = 1; \
|
|
buffer = _buffer; \
|
|
} else \
|
|
buffer = state->next_output_byte; \
|
|
}
|
|
|
|
#define STORE_BUFFER() { \
|
|
if (localbuf) { \
|
|
size_t bytes, bytestocopy; \
|
|
bytes = buffer - _buffer; \
|
|
buffer = _buffer; \
|
|
while (bytes > 0) { \
|
|
bytestocopy = MIN(bytes, state->free_in_buffer); \
|
|
memcpy(state->next_output_byte, buffer, bytestocopy); \
|
|
state->next_output_byte += bytestocopy; \
|
|
buffer += bytestocopy; \
|
|
state->free_in_buffer -= bytestocopy; \
|
|
if (state->free_in_buffer == 0) \
|
|
if (!dump_buffer(state)) return FALSE; \
|
|
bytes -= bytestocopy; \
|
|
} \
|
|
} else { \
|
|
state->free_in_buffer -= (buffer - state->next_output_byte); \
|
|
state->next_output_byte = buffer; \
|
|
} \
|
|
}
|
|
|
|
|
|
LOCAL(boolean)
|
|
flush_bits(working_state *state)
|
|
{
|
|
JOCTET _buffer[BUFSIZE], *buffer, temp;
|
|
simd_bit_buf_type put_buffer; int put_bits;
|
|
int localbuf = 0;
|
|
|
|
#ifdef WITH_SIMD
|
|
if (state->simd) {
|
|
#if defined(__aarch64__) && !defined(NEON_INTRINSICS)
|
|
put_bits = state->cur.free_bits;
|
|
#else
|
|
put_bits = SIMD_BIT_BUF_SIZE - state->cur.free_bits;
|
|
#endif
|
|
put_buffer = state->cur.put_buffer.simd;
|
|
} else
|
|
#endif
|
|
{
|
|
put_bits = BIT_BUF_SIZE - state->cur.free_bits;
|
|
put_buffer = state->cur.put_buffer.c;
|
|
}
|
|
|
|
LOAD_BUFFER()
|
|
|
|
while (put_bits >= 8) {
|
|
put_bits -= 8;
|
|
temp = (JOCTET)(put_buffer >> put_bits);
|
|
EMIT_BYTE(temp)
|
|
}
|
|
if (put_bits) {
|
|
/* fill partial byte with ones */
|
|
temp = (JOCTET)((put_buffer << (8 - put_bits)) | (0xFF >> put_bits));
|
|
EMIT_BYTE(temp)
|
|
}
|
|
|
|
#ifdef WITH_SIMD
|
|
if (state->simd) { /* and reset bit buffer to empty */
|
|
state->cur.put_buffer.simd = 0;
|
|
#if defined(__aarch64__) && !defined(NEON_INTRINSICS)
|
|
state->cur.free_bits = 0;
|
|
#else
|
|
state->cur.free_bits = SIMD_BIT_BUF_SIZE;
|
|
#endif
|
|
} else
|
|
#endif
|
|
{
|
|
state->cur.put_buffer.c = 0;
|
|
state->cur.free_bits = BIT_BUF_SIZE;
|
|
}
|
|
STORE_BUFFER()
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
#ifdef WITH_SIMD
|
|
|
|
/* Encode a single block's worth of coefficients */
|
|
|
|
LOCAL(boolean)
|
|
encode_one_block_simd(working_state *state, JCOEFPTR block, int last_dc_val,
|
|
c_derived_tbl *dctbl, c_derived_tbl *actbl)
|
|
{
|
|
JOCTET _buffer[BUFSIZE], *buffer;
|
|
int localbuf = 0;
|
|
|
|
#ifdef ZERO_BUFFERS
|
|
memset(_buffer, 0, sizeof(_buffer));
|
|
#endif
|
|
|
|
LOAD_BUFFER()
|
|
|
|
buffer = jsimd_huff_encode_one_block(state, buffer, block, last_dc_val,
|
|
dctbl, actbl);
|
|
|
|
STORE_BUFFER()
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
#endif
|
|
|
|
LOCAL(boolean)
|
|
encode_one_block(working_state *state, JCOEFPTR block, int last_dc_val,
|
|
c_derived_tbl *dctbl, c_derived_tbl *actbl)
|
|
{
|
|
int temp, nbits, free_bits;
|
|
bit_buf_type put_buffer;
|
|
JOCTET _buffer[BUFSIZE], *buffer;
|
|
int localbuf = 0;
|
|
int max_coef_bits = state->cinfo->data_precision + 2;
|
|
|
|
free_bits = state->cur.free_bits;
|
|
put_buffer = state->cur.put_buffer.c;
|
|
LOAD_BUFFER()
|
|
|
|
/* Encode the DC coefficient difference per section F.1.2.1 */
|
|
|
|
temp = block[0] - last_dc_val;
|
|
|
|
/* This is a well-known technique for obtaining the absolute value without a
|
|
* branch. It is derived from an assembly language technique presented in
|
|
* "How to Optimize for the Pentium Processors", Copyright (c) 1996, 1997 by
|
|
* Agner Fog. This code assumes we are on a two's complement machine.
|
|
*/
|
|
nbits = temp >> (CHAR_BIT * sizeof(int) - 1);
|
|
temp += nbits;
|
|
nbits ^= temp;
|
|
|
|
/* Find the number of bits needed for the magnitude of the coefficient */
|
|
nbits = JPEG_NBITS(nbits);
|
|
/* Check for out-of-range coefficient values.
|
|
* Since we're encoding a difference, the range limit is twice as much.
|
|
*/
|
|
if (nbits > max_coef_bits + 1)
|
|
ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
|
|
|
|
/* Emit the Huffman-coded symbol for the number of bits.
|
|
* Emit that number of bits of the value, if positive,
|
|
* or the complement of its magnitude, if negative.
|
|
*/
|
|
PUT_CODE(dctbl->ehufco[nbits], dctbl->ehufsi[nbits])
|
|
|
|
/* Encode the AC coefficients per section F.1.2.2 */
|
|
|
|
{
|
|
int r = 0; /* r = run length of zeros */
|
|
|
|
/* Manually unroll the k loop to eliminate the counter variable. This
|
|
* improves performance greatly on systems with a limited number of
|
|
* registers (such as x86.)
|
|
*/
|
|
#define kloop(jpeg_natural_order_of_k) { \
|
|
if ((temp = block[jpeg_natural_order_of_k]) == 0) { \
|
|
r += 16; \
|
|
} else { \
|
|
/* Branch-less absolute value, bitwise complement, etc., same as above */ \
|
|
nbits = temp >> (CHAR_BIT * sizeof(int) - 1); \
|
|
temp += nbits; \
|
|
nbits ^= temp; \
|
|
nbits = JPEG_NBITS_NONZERO(nbits); \
|
|
/* Check for out-of-range coefficient values */ \
|
|
if (nbits > max_coef_bits) \
|
|
ERREXIT(state->cinfo, JERR_BAD_DCT_COEF); \
|
|
/* if run length > 15, must emit special run-length-16 codes (0xF0) */ \
|
|
while (r >= 16 * 16) { \
|
|
r -= 16 * 16; \
|
|
PUT_BITS(actbl->ehufco[0xf0], actbl->ehufsi[0xf0]) \
|
|
} \
|
|
/* Emit Huffman symbol for run length / number of bits */ \
|
|
r += nbits; \
|
|
PUT_CODE(actbl->ehufco[r], actbl->ehufsi[r]) \
|
|
r = 0; \
|
|
} \
|
|
}
|
|
|
|
/* One iteration for each value in jpeg_natural_order[] */
|
|
kloop(1); kloop(8); kloop(16); kloop(9); kloop(2); kloop(3);
|
|
kloop(10); kloop(17); kloop(24); kloop(32); kloop(25); kloop(18);
|
|
kloop(11); kloop(4); kloop(5); kloop(12); kloop(19); kloop(26);
|
|
kloop(33); kloop(40); kloop(48); kloop(41); kloop(34); kloop(27);
|
|
kloop(20); kloop(13); kloop(6); kloop(7); kloop(14); kloop(21);
|
|
kloop(28); kloop(35); kloop(42); kloop(49); kloop(56); kloop(57);
|
|
kloop(50); kloop(43); kloop(36); kloop(29); kloop(22); kloop(15);
|
|
kloop(23); kloop(30); kloop(37); kloop(44); kloop(51); kloop(58);
|
|
kloop(59); kloop(52); kloop(45); kloop(38); kloop(31); kloop(39);
|
|
kloop(46); kloop(53); kloop(60); kloop(61); kloop(54); kloop(47);
|
|
kloop(55); kloop(62); kloop(63);
|
|
|
|
/* If the last coef(s) were zero, emit an end-of-block code */
|
|
if (r > 0) {
|
|
PUT_BITS(actbl->ehufco[0], actbl->ehufsi[0])
|
|
}
|
|
}
|
|
|
|
state->cur.put_buffer.c = put_buffer;
|
|
state->cur.free_bits = free_bits;
|
|
STORE_BUFFER()
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/*
|
|
* Emit a restart marker & resynchronize predictions.
|
|
*/
|
|
|
|
LOCAL(boolean)
|
|
emit_restart(working_state *state, int restart_num)
|
|
{
|
|
int ci;
|
|
|
|
if (!flush_bits(state))
|
|
return FALSE;
|
|
|
|
emit_byte(state, 0xFF, return FALSE);
|
|
emit_byte(state, JPEG_RST0 + restart_num, return FALSE);
|
|
|
|
/* Re-initialize DC predictions to 0 */
|
|
for (ci = 0; ci < state->cinfo->comps_in_scan; ci++)
|
|
state->cur.last_dc_val[ci] = 0;
|
|
|
|
/* The restart counter is not updated until we successfully write the MCU. */
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/*
|
|
* Encode and output one MCU's worth of Huffman-compressed coefficients.
|
|
*/
|
|
|
|
METHODDEF(boolean)
|
|
encode_mcu_huff(j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
|
{
|
|
huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
|
|
working_state state;
|
|
int blkn, ci;
|
|
jpeg_component_info *compptr;
|
|
|
|
/* Load up working state */
|
|
state.next_output_byte = cinfo->dest->next_output_byte;
|
|
state.free_in_buffer = cinfo->dest->free_in_buffer;
|
|
state.cur = entropy->saved;
|
|
state.cinfo = cinfo;
|
|
#ifdef WITH_SIMD
|
|
state.simd = entropy->simd;
|
|
#endif
|
|
|
|
/* Emit restart marker if needed */
|
|
if (cinfo->restart_interval) {
|
|
if (entropy->restarts_to_go == 0)
|
|
if (!emit_restart(&state, entropy->next_restart_num))
|
|
return FALSE;
|
|
}
|
|
|
|
/* Encode the MCU data blocks */
|
|
#ifdef WITH_SIMD
|
|
if (entropy->simd) {
|
|
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
|
ci = cinfo->MCU_membership[blkn];
|
|
compptr = cinfo->cur_comp_info[ci];
|
|
if (!encode_one_block_simd(&state,
|
|
MCU_data[blkn][0], state.cur.last_dc_val[ci],
|
|
entropy->dc_derived_tbls[compptr->dc_tbl_no],
|
|
entropy->ac_derived_tbls[compptr->ac_tbl_no]))
|
|
return FALSE;
|
|
/* Update last_dc_val */
|
|
state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
|
|
}
|
|
} else
|
|
#endif
|
|
{
|
|
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
|
ci = cinfo->MCU_membership[blkn];
|
|
compptr = cinfo->cur_comp_info[ci];
|
|
if (!encode_one_block(&state,
|
|
MCU_data[blkn][0], state.cur.last_dc_val[ci],
|
|
entropy->dc_derived_tbls[compptr->dc_tbl_no],
|
|
entropy->ac_derived_tbls[compptr->ac_tbl_no]))
|
|
return FALSE;
|
|
/* Update last_dc_val */
|
|
state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
|
|
}
|
|
}
|
|
|
|
/* Completed MCU, so update state */
|
|
cinfo->dest->next_output_byte = state.next_output_byte;
|
|
cinfo->dest->free_in_buffer = state.free_in_buffer;
|
|
entropy->saved = state.cur;
|
|
|
|
/* Update restart-interval state too */
|
|
if (cinfo->restart_interval) {
|
|
if (entropy->restarts_to_go == 0) {
|
|
entropy->restarts_to_go = cinfo->restart_interval;
|
|
entropy->next_restart_num++;
|
|
entropy->next_restart_num &= 7;
|
|
}
|
|
entropy->restarts_to_go--;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/*
|
|
* Finish up at the end of a Huffman-compressed scan.
|
|
*/
|
|
|
|
METHODDEF(void)
|
|
finish_pass_huff(j_compress_ptr cinfo)
|
|
{
|
|
huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
|
|
working_state state;
|
|
|
|
/* Load up working state ... flush_bits needs it */
|
|
state.next_output_byte = cinfo->dest->next_output_byte;
|
|
state.free_in_buffer = cinfo->dest->free_in_buffer;
|
|
state.cur = entropy->saved;
|
|
state.cinfo = cinfo;
|
|
#ifdef WITH_SIMD
|
|
state.simd = entropy->simd;
|
|
#endif
|
|
|
|
/* Flush out the last data */
|
|
if (!flush_bits(&state))
|
|
ERREXIT(cinfo, JERR_CANT_SUSPEND);
|
|
|
|
/* Update state */
|
|
cinfo->dest->next_output_byte = state.next_output_byte;
|
|
cinfo->dest->free_in_buffer = state.free_in_buffer;
|
|
entropy->saved = state.cur;
|
|
}
|
|
|
|
|
|
/*
|
|
* Huffman coding optimization.
|
|
*
|
|
* We first scan the supplied data and count the number of uses of each symbol
|
|
* that is to be Huffman-coded. (This process MUST agree with the code above.)
|
|
* Then we build a Huffman coding tree for the observed counts.
|
|
* Symbols which are not needed at all for the particular image are not
|
|
* assigned any code, which saves space in the DHT marker as well as in
|
|
* the compressed data.
|
|
*/
|
|
|
|
#ifdef ENTROPY_OPT_SUPPORTED
|
|
|
|
|
|
/* Process a single block's worth of coefficients */
|
|
|
|
LOCAL(void)
|
|
htest_one_block(j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val,
|
|
long dc_counts[], long ac_counts[])
|
|
{
|
|
register int temp;
|
|
register int nbits;
|
|
register int k, r;
|
|
int max_coef_bits = cinfo->data_precision + 2;
|
|
|
|
/* Encode the DC coefficient difference per section F.1.2.1 */
|
|
|
|
temp = block[0] - last_dc_val;
|
|
if (temp < 0)
|
|
temp = -temp;
|
|
|
|
/* Find the number of bits needed for the magnitude of the coefficient */
|
|
nbits = 0;
|
|
while (temp) {
|
|
nbits++;
|
|
temp >>= 1;
|
|
}
|
|
/* Check for out-of-range coefficient values.
|
|
* Since we're encoding a difference, the range limit is twice as much.
|
|
*/
|
|
if (nbits > max_coef_bits + 1)
|
|
ERREXIT(cinfo, JERR_BAD_DCT_COEF);
|
|
|
|
/* Count the Huffman symbol for the number of bits */
|
|
dc_counts[nbits]++;
|
|
|
|
/* Encode the AC coefficients per section F.1.2.2 */
|
|
|
|
r = 0; /* r = run length of zeros */
|
|
|
|
for (k = 1; k < DCTSIZE2; k++) {
|
|
if ((temp = block[jpeg_natural_order[k]]) == 0) {
|
|
r++;
|
|
} else {
|
|
/* if run length > 15, must emit special run-length-16 codes (0xF0) */
|
|
while (r > 15) {
|
|
ac_counts[0xF0]++;
|
|
r -= 16;
|
|
}
|
|
|
|
/* Find the number of bits needed for the magnitude of the coefficient */
|
|
if (temp < 0)
|
|
temp = -temp;
|
|
|
|
/* Find the number of bits needed for the magnitude of the coefficient */
|
|
nbits = 1; /* there must be at least one 1 bit */
|
|
while ((temp >>= 1))
|
|
nbits++;
|
|
/* Check for out-of-range coefficient values */
|
|
if (nbits > max_coef_bits)
|
|
ERREXIT(cinfo, JERR_BAD_DCT_COEF);
|
|
|
|
/* Count Huffman symbol for run length / number of bits */
|
|
ac_counts[(r << 4) + nbits]++;
|
|
|
|
r = 0;
|
|
}
|
|
}
|
|
|
|
/* If the last coef(s) were zero, emit an end-of-block code */
|
|
if (r > 0)
|
|
ac_counts[0]++;
|
|
}
|
|
|
|
|
|
/*
|
|
* Trial-encode one MCU's worth of Huffman-compressed coefficients.
|
|
* No data is actually output, so no suspension return is possible.
|
|
*/
|
|
|
|
METHODDEF(boolean)
|
|
encode_mcu_gather(j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
|
{
|
|
huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
|
|
int blkn, ci;
|
|
jpeg_component_info *compptr;
|
|
|
|
/* Take care of restart intervals if needed */
|
|
if (cinfo->restart_interval) {
|
|
if (entropy->restarts_to_go == 0) {
|
|
/* Re-initialize DC predictions to 0 */
|
|
for (ci = 0; ci < cinfo->comps_in_scan; ci++)
|
|
entropy->saved.last_dc_val[ci] = 0;
|
|
/* Update restart state */
|
|
entropy->restarts_to_go = cinfo->restart_interval;
|
|
}
|
|
entropy->restarts_to_go--;
|
|
}
|
|
|
|
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
|
ci = cinfo->MCU_membership[blkn];
|
|
compptr = cinfo->cur_comp_info[ci];
|
|
htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci],
|
|
entropy->dc_count_ptrs[compptr->dc_tbl_no],
|
|
entropy->ac_count_ptrs[compptr->ac_tbl_no]);
|
|
entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0];
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/*
|
|
* Generate the best Huffman code table for the given counts, fill htbl.
|
|
* Note this is also used by jcphuff.c and jclhuff.c.
|
|
*
|
|
* The JPEG standard requires that no symbol be assigned a codeword of all
|
|
* one bits (so that padding bits added at the end of a compressed segment
|
|
* can't look like a valid code). Because of the canonical ordering of
|
|
* codewords, this just means that there must be an unused slot in the
|
|
* longest codeword length category. Annex K (Clause K.2) of
|
|
* Rec. ITU-T T.81 (1992) | ISO/IEC 10918-1:1994 suggests reserving such a slot
|
|
* by pretending that symbol 256 is a valid symbol with count 1. In theory
|
|
* that's not optimal; giving it count zero but including it in the symbol set
|
|
* anyway should give a better Huffman code. But the theoretically better code
|
|
* actually seems to come out worse in practice, because it produces more
|
|
* all-ones bytes (which incur stuffed zero bytes in the final file). In any
|
|
* case the difference is tiny.
|
|
*
|
|
* The JPEG standard requires Huffman codes to be no more than 16 bits long.
|
|
* If some symbols have a very small but nonzero probability, the Huffman tree
|
|
* must be adjusted to meet the code length restriction. We currently use
|
|
* the adjustment method suggested in JPEG section K.2. This method is *not*
|
|
* optimal; it may not choose the best possible limited-length code. But
|
|
* typically only very-low-frequency symbols will be given less-than-optimal
|
|
* lengths, so the code is almost optimal. Experimental comparisons against
|
|
* an optimal limited-length-code algorithm indicate that the difference is
|
|
* microscopic --- usually less than a hundredth of a percent of total size.
|
|
* So the extra complexity of an optimal algorithm doesn't seem worthwhile.
|
|
*/
|
|
|
|
GLOBAL(void)
|
|
jpeg_gen_optimal_table(j_compress_ptr cinfo, JHUFF_TBL *htbl, long freq[])
|
|
{
|
|
#define MAX_CLEN 32 /* assumed maximum initial code length */
|
|
UINT8 bits[MAX_CLEN + 1]; /* bits[k] = # of symbols with code length k */
|
|
int bit_pos[MAX_CLEN + 1]; /* # of symbols with smaller code length */
|
|
int codesize[257]; /* codesize[k] = code length of symbol k */
|
|
int nz_index[257]; /* index of nonzero symbol in the original freq
|
|
array */
|
|
int others[257]; /* next symbol in current branch of tree */
|
|
int c1, c2;
|
|
int p, i, j;
|
|
int num_nz_symbols;
|
|
long v, v2;
|
|
|
|
/* This algorithm is explained in section K.2 of the JPEG standard */
|
|
|
|
memset(bits, 0, sizeof(bits));
|
|
memset(codesize, 0, sizeof(codesize));
|
|
for (i = 0; i < 257; i++)
|
|
others[i] = -1; /* init links to empty */
|
|
|
|
freq[256] = 1; /* make sure 256 has a nonzero count */
|
|
/* Including the pseudo-symbol 256 in the Huffman procedure guarantees
|
|
* that no real symbol is given code-value of all ones, because 256
|
|
* will be placed last in the largest codeword category.
|
|
*/
|
|
|
|
/* Group nonzero frequencies together so we can more easily find the
|
|
* smallest.
|
|
*/
|
|
num_nz_symbols = 0;
|
|
for (i = 0; i < 257; i++) {
|
|
if (freq[i]) {
|
|
nz_index[num_nz_symbols] = i;
|
|
freq[num_nz_symbols] = freq[i];
|
|
num_nz_symbols++;
|
|
}
|
|
}
|
|
|
|
/* Huffman's basic algorithm to assign optimal code lengths to symbols */
|
|
|
|
for (;;) {
|
|
/* Find the two smallest nonzero frequencies; set c1, c2 = their symbols */
|
|
/* In case of ties, take the larger symbol number. Since we have grouped
|
|
* the nonzero symbols together, checking for zero symbols is not
|
|
* necessary.
|
|
*/
|
|
c1 = -1;
|
|
c2 = -1;
|
|
v = 1000000000L;
|
|
v2 = 1000000000L;
|
|
for (i = 0; i < num_nz_symbols; i++) {
|
|
if (freq[i] <= v2) {
|
|
if (freq[i] <= v) {
|
|
c2 = c1;
|
|
v2 = v;
|
|
v = freq[i];
|
|
c1 = i;
|
|
} else {
|
|
v2 = freq[i];
|
|
c2 = i;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Done if we've merged everything into one frequency */
|
|
if (c2 < 0)
|
|
break;
|
|
|
|
/* Else merge the two counts/trees */
|
|
freq[c1] += freq[c2];
|
|
/* Set the frequency to a very high value instead of zero, so we don't have
|
|
* to check for zero values.
|
|
*/
|
|
freq[c2] = 1000000001L;
|
|
|
|
/* Increment the codesize of everything in c1's tree branch */
|
|
codesize[c1]++;
|
|
while (others[c1] >= 0) {
|
|
c1 = others[c1];
|
|
codesize[c1]++;
|
|
}
|
|
|
|
others[c1] = c2; /* chain c2 onto c1's tree branch */
|
|
|
|
/* Increment the codesize of everything in c2's tree branch */
|
|
codesize[c2]++;
|
|
while (others[c2] >= 0) {
|
|
c2 = others[c2];
|
|
codesize[c2]++;
|
|
}
|
|
}
|
|
|
|
/* Now count the number of symbols of each code length */
|
|
for (i = 0; i < num_nz_symbols; i++) {
|
|
/* The JPEG standard seems to think that this can't happen, */
|
|
/* but I'm paranoid... */
|
|
if (codesize[i] > MAX_CLEN)
|
|
ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW);
|
|
|
|
bits[codesize[i]]++;
|
|
}
|
|
|
|
/* Count the number of symbols with a length smaller than i bits, so we can
|
|
* construct the symbol table more efficiently. Note that this includes the
|
|
* pseudo-symbol 256, but since it is the last symbol, it will not affect the
|
|
* table.
|
|
*/
|
|
p = 0;
|
|
for (i = 1; i <= MAX_CLEN; i++) {
|
|
bit_pos[i] = p;
|
|
p += bits[i];
|
|
}
|
|
|
|
/* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
|
|
* Huffman procedure assigned any such lengths, we must adjust the coding.
|
|
* Here is what Rec. ITU-T T.81 | ISO/IEC 10918-1 says about how this next
|
|
* bit works: Since symbols are paired for the longest Huffman code, the
|
|
* symbols are removed from this length category two at a time. The prefix
|
|
* for the pair (which is one bit shorter) is allocated to one of the pair;
|
|
* then, skipping the BITS entry for that prefix length, a code word from the
|
|
* next shortest nonzero BITS entry is converted into a prefix for two code
|
|
* words one bit longer.
|
|
*/
|
|
|
|
for (i = MAX_CLEN; i > 16; i--) {
|
|
while (bits[i] > 0) {
|
|
j = i - 2; /* find length of new prefix to be used */
|
|
while (bits[j] == 0)
|
|
j--;
|
|
|
|
bits[i] -= 2; /* remove two symbols */
|
|
bits[i - 1]++; /* one goes in this length */
|
|
bits[j + 1] += 2; /* two new symbols in this length */
|
|
bits[j]--; /* symbol of this length is now a prefix */
|
|
}
|
|
}
|
|
|
|
/* Remove the count for the pseudo-symbol 256 from the largest codelength */
|
|
while (bits[i] == 0) /* find largest codelength still in use */
|
|
i--;
|
|
bits[i]--;
|
|
|
|
/* Return final symbol counts (only for lengths 0..16) */
|
|
memcpy(htbl->bits, bits, sizeof(htbl->bits));
|
|
|
|
/* Return a list of the symbols sorted by code length */
|
|
/* It's not real clear to me why we don't need to consider the codelength
|
|
* changes made above, but Rec. ITU-T T.81 | ISO/IEC 10918-1 seems to think
|
|
* this works.
|
|
*/
|
|
for (i = 0; i < num_nz_symbols - 1; i++) {
|
|
htbl->huffval[bit_pos[codesize[i]]] = (UINT8)nz_index[i];
|
|
bit_pos[codesize[i]]++;
|
|
}
|
|
|
|
/* Set sent_table FALSE so updated table will be written to JPEG file. */
|
|
htbl->sent_table = FALSE;
|
|
}
|
|
|
|
|
|
/*
|
|
* Finish up a statistics-gathering pass and create the new Huffman tables.
|
|
*/
|
|
|
|
METHODDEF(void)
|
|
finish_pass_gather(j_compress_ptr cinfo)
|
|
{
|
|
huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
|
|
int ci, dctbl, actbl;
|
|
jpeg_component_info *compptr;
|
|
JHUFF_TBL **htblptr;
|
|
boolean did_dc[NUM_HUFF_TBLS];
|
|
boolean did_ac[NUM_HUFF_TBLS];
|
|
|
|
/* It's important not to apply jpeg_gen_optimal_table more than once
|
|
* per table, because it clobbers the input frequency counts!
|
|
*/
|
|
memset(did_dc, 0, sizeof(did_dc));
|
|
memset(did_ac, 0, sizeof(did_ac));
|
|
|
|
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
|
compptr = cinfo->cur_comp_info[ci];
|
|
dctbl = compptr->dc_tbl_no;
|
|
actbl = compptr->ac_tbl_no;
|
|
if (!did_dc[dctbl]) {
|
|
htblptr = &cinfo->dc_huff_tbl_ptrs[dctbl];
|
|
if (*htblptr == NULL)
|
|
*htblptr = jpeg_alloc_huff_table((j_common_ptr)cinfo);
|
|
jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[dctbl]);
|
|
did_dc[dctbl] = TRUE;
|
|
}
|
|
if (!did_ac[actbl]) {
|
|
htblptr = &cinfo->ac_huff_tbl_ptrs[actbl];
|
|
if (*htblptr == NULL)
|
|
*htblptr = jpeg_alloc_huff_table((j_common_ptr)cinfo);
|
|
jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[actbl]);
|
|
did_ac[actbl] = TRUE;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
#endif /* ENTROPY_OPT_SUPPORTED */
|
|
|
|
|
|
/*
|
|
* Module initialization routine for Huffman entropy encoding.
|
|
*/
|
|
|
|
GLOBAL(void)
|
|
jinit_huff_encoder(j_compress_ptr cinfo)
|
|
{
|
|
huff_entropy_ptr entropy;
|
|
int i;
|
|
|
|
entropy = (huff_entropy_ptr)
|
|
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
|
sizeof(huff_entropy_encoder));
|
|
cinfo->entropy = (struct jpeg_entropy_encoder *)entropy;
|
|
entropy->pub.start_pass = start_pass_huff;
|
|
|
|
/* Mark tables unallocated */
|
|
for (i = 0; i < NUM_HUFF_TBLS; i++) {
|
|
entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
|
|
#ifdef ENTROPY_OPT_SUPPORTED
|
|
entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL;
|
|
#endif
|
|
}
|
|
}
|