mirror of
https://github.com/mozilla/gecko-dev.git
synced 2024-11-23 04:41:11 +00:00
a79a09ba6d
Add a ToTArray version that works with LinkedList. This is much like what we do for other containers, but without walking the list twice. Differential Revision: https://phabricator.services.mozilla.com/D225001
757 lines
22 KiB
C++
757 lines
22 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
/* A type-safe doubly-linked list class. */
|
|
|
|
/*
|
|
* The classes LinkedList<T> and LinkedListElement<T> together form a
|
|
* convenient, type-safe doubly-linked list implementation.
|
|
*
|
|
* The class T which will be inserted into the linked list must inherit from
|
|
* LinkedListElement<T>. A given object may be in only one linked list at a
|
|
* time.
|
|
*
|
|
* A LinkedListElement automatically removes itself from the list upon
|
|
* destruction, and a LinkedList will fatally assert in debug builds if it's
|
|
* non-empty when it's destructed.
|
|
*
|
|
* For example, you might use LinkedList in a simple observer list class as
|
|
* follows.
|
|
*
|
|
* class Observer : public LinkedListElement<Observer>
|
|
* {
|
|
* public:
|
|
* void observe(char* aTopic) { ... }
|
|
* };
|
|
*
|
|
* class ObserverContainer
|
|
* {
|
|
* private:
|
|
* LinkedList<Observer> list;
|
|
*
|
|
* public:
|
|
* void addObserver(Observer* aObserver)
|
|
* {
|
|
* // Will assert if |aObserver| is part of another list.
|
|
* list.insertBack(aObserver);
|
|
* }
|
|
*
|
|
* void removeObserver(Observer* aObserver)
|
|
* {
|
|
* // Will assert if |aObserver| is not part of some list.
|
|
* aObserver.remove();
|
|
* // Or, will assert if |aObserver| is not part of |list| specifically.
|
|
* // aObserver.removeFrom(list);
|
|
* }
|
|
*
|
|
* void notifyObservers(char* aTopic)
|
|
* {
|
|
* for (Observer* o = list.getFirst(); o != nullptr; o = o->getNext()) {
|
|
* o->observe(aTopic);
|
|
* }
|
|
* }
|
|
* };
|
|
*
|
|
* Additionally, the class AutoCleanLinkedList<T> is a LinkedList<T> that will
|
|
* remove and delete each element still within itself upon destruction. Note
|
|
* that because each element is deleted, elements must have been allocated
|
|
* using |new|.
|
|
*/
|
|
|
|
#ifndef mozilla_LinkedList_h
|
|
#define mozilla_LinkedList_h
|
|
|
|
#include <algorithm>
|
|
#include <utility>
|
|
|
|
#include "mozilla/Assertions.h"
|
|
#include "mozilla/Attributes.h"
|
|
#include "mozilla/MemoryReporting.h"
|
|
#include "mozilla/RefPtr.h"
|
|
|
|
#ifdef __cplusplus
|
|
|
|
namespace mozilla {
|
|
|
|
template <typename T>
|
|
class LinkedListElement;
|
|
|
|
namespace detail {
|
|
|
|
/**
|
|
* LinkedList supports refcounted elements using this adapter class. Clients
|
|
* using LinkedList<RefPtr<T>> will get a data structure that holds a strong
|
|
* reference to T as long as T is in the list.
|
|
*/
|
|
template <typename T>
|
|
struct LinkedListElementTraits {
|
|
typedef T* RawType;
|
|
typedef const T* ConstRawType;
|
|
typedef T* ClientType;
|
|
typedef const T* ConstClientType;
|
|
|
|
// These static methods are called when an element is added to or removed from
|
|
// a linked list. It can be used to keep track ownership in lists that are
|
|
// supposed to own their elements. If elements are transferred from one list
|
|
// to another, no enter or exit calls happen since the elements still belong
|
|
// to a list.
|
|
static void enterList(LinkedListElement<T>* elt) {}
|
|
static void exitList(LinkedListElement<T>* elt) {}
|
|
|
|
// This method is called when AutoCleanLinkedList cleans itself
|
|
// during destruction. It can be used to call delete on elements if
|
|
// the list is the sole owner.
|
|
static void cleanElement(LinkedListElement<T>* elt) { delete elt->asT(); }
|
|
};
|
|
|
|
template <typename T>
|
|
struct LinkedListElementTraits<RefPtr<T>> {
|
|
typedef T* RawType;
|
|
typedef const T* ConstRawType;
|
|
typedef RefPtr<T> ClientType;
|
|
typedef RefPtr<const T> ConstClientType;
|
|
|
|
static void enterList(LinkedListElement<RefPtr<T>>* elt) {
|
|
elt->asT()->AddRef();
|
|
}
|
|
static void exitList(LinkedListElement<RefPtr<T>>* elt) {
|
|
elt->asT()->Release();
|
|
}
|
|
static void cleanElement(LinkedListElement<RefPtr<T>>* elt) {}
|
|
};
|
|
|
|
} /* namespace detail */
|
|
|
|
template <typename T>
|
|
class LinkedList;
|
|
|
|
template <typename T>
|
|
class LinkedListElement {
|
|
typedef typename detail::LinkedListElementTraits<T> Traits;
|
|
typedef typename Traits::RawType RawType;
|
|
typedef typename Traits::ConstRawType ConstRawType;
|
|
typedef typename Traits::ClientType ClientType;
|
|
typedef typename Traits::ConstClientType ConstClientType;
|
|
|
|
/*
|
|
* It's convenient that we return nullptr when getNext() or getPrevious()
|
|
* hits the end of the list, but doing so costs an extra word of storage in
|
|
* each linked list node (to keep track of whether |this| is the sentinel
|
|
* node) and a branch on this value in getNext/getPrevious.
|
|
*
|
|
* We could get rid of the extra word of storage by shoving the "is
|
|
* sentinel" bit into one of the pointers, although this would, of course,
|
|
* have performance implications of its own.
|
|
*
|
|
* But the goal here isn't to win an award for the fastest or slimmest
|
|
* linked list; rather, we want a *convenient* linked list. So we won't
|
|
* waste time guessing which micro-optimization strategy is best.
|
|
*
|
|
*
|
|
* Speaking of unnecessary work, it's worth addressing here why we wrote
|
|
* mozilla::LinkedList in the first place, instead of using stl::list.
|
|
*
|
|
* The key difference between mozilla::LinkedList and stl::list is that
|
|
* mozilla::LinkedList stores the mPrev/mNext pointers in the object itself,
|
|
* while stl::list stores the mPrev/mNext pointers in a list element which
|
|
* itself points to the object being stored.
|
|
*
|
|
* mozilla::LinkedList's approach makes it harder to store an object in more
|
|
* than one list. But the upside is that you can call next() / prev() /
|
|
* remove() directly on the object. With stl::list, you'd need to store a
|
|
* pointer to its iterator in the object in order to accomplish this. Not
|
|
* only would this waste space, but you'd have to remember to update that
|
|
* pointer every time you added or removed the object from a list.
|
|
*
|
|
* In-place, constant-time removal is a killer feature of doubly-linked
|
|
* lists, and supporting this painlessly was a key design criterion.
|
|
*/
|
|
|
|
private:
|
|
LinkedListElement* mNext;
|
|
LinkedListElement* mPrev;
|
|
const bool mIsSentinel;
|
|
|
|
public:
|
|
LinkedListElement() : mNext(this), mPrev(this), mIsSentinel(false) {}
|
|
|
|
/*
|
|
* Moves |aOther| into |*this|. If |aOther| is already in a list, then
|
|
* |aOther| is removed from the list and replaced by |*this|.
|
|
*/
|
|
LinkedListElement(LinkedListElement<T>&& aOther)
|
|
: mIsSentinel(aOther.mIsSentinel) {
|
|
adjustLinkForMove(std::move(aOther));
|
|
}
|
|
|
|
LinkedListElement& operator=(LinkedListElement<T>&& aOther) {
|
|
MOZ_ASSERT(mIsSentinel == aOther.mIsSentinel, "Mismatch NodeKind!");
|
|
MOZ_ASSERT(!isInList(),
|
|
"Assigning to an element in a list messes up that list!");
|
|
adjustLinkForMove(std::move(aOther));
|
|
return *this;
|
|
}
|
|
|
|
~LinkedListElement() {
|
|
if (!mIsSentinel && isInList()) {
|
|
remove();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Get the next element in the list, or nullptr if this is the last element
|
|
* in the list.
|
|
*/
|
|
RawType getNext() { return mNext->asT(); }
|
|
ConstRawType getNext() const { return mNext->asT(); }
|
|
|
|
/*
|
|
* Get the previous element in the list, or nullptr if this is the first
|
|
* element in the list.
|
|
*/
|
|
RawType getPrevious() { return mPrev->asT(); }
|
|
ConstRawType getPrevious() const { return mPrev->asT(); }
|
|
|
|
/*
|
|
* Insert aElem after this element in the list. |this| must be part of a
|
|
* linked list when you call setNext(); otherwise, this method will assert.
|
|
*/
|
|
void setNext(RawType aElem) {
|
|
MOZ_ASSERT(isInList());
|
|
setNextUnsafe(aElem);
|
|
}
|
|
|
|
/*
|
|
* Insert aElem before this element in the list. |this| must be part of a
|
|
* linked list when you call setPrevious(); otherwise, this method will
|
|
* assert.
|
|
*/
|
|
void setPrevious(RawType aElem) {
|
|
MOZ_ASSERT(isInList());
|
|
setPreviousUnsafe(aElem);
|
|
}
|
|
|
|
/*
|
|
* Remove this element from the list which contains it. If this element is
|
|
* not currently part of a linked list, this method asserts.
|
|
*/
|
|
void remove() {
|
|
MOZ_ASSERT(isInList());
|
|
|
|
mPrev->mNext = mNext;
|
|
mNext->mPrev = mPrev;
|
|
mNext = this;
|
|
mPrev = this;
|
|
|
|
Traits::exitList(this);
|
|
}
|
|
|
|
/*
|
|
* Remove this element from the list containing it. Returns a pointer to the
|
|
* element that follows this element (before it was removed). This method
|
|
* asserts if the element does not belong to a list. Note: In a refcounted
|
|
* list, |this| may be destroyed.
|
|
*/
|
|
RawType removeAndGetNext() {
|
|
RawType r = getNext();
|
|
remove();
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
* Remove this element from the list containing it. Returns a pointer to the
|
|
* previous element in the containing list (before the removal). This method
|
|
* asserts if the element does not belong to a list. Note: In a refcounted
|
|
* list, |this| may be destroyed.
|
|
*/
|
|
RawType removeAndGetPrevious() {
|
|
RawType r = getPrevious();
|
|
remove();
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
* Identical to remove(), but also asserts in debug builds that this element
|
|
* is in aList.
|
|
*/
|
|
void removeFrom(const LinkedList<T>& aList) {
|
|
aList.assertContains(asT());
|
|
remove();
|
|
}
|
|
|
|
/*
|
|
* Return true if |this| part is of a linked list, and false otherwise.
|
|
*/
|
|
bool isInList() const {
|
|
MOZ_ASSERT((mNext == this) == (mPrev == this));
|
|
return mNext != this;
|
|
}
|
|
|
|
private:
|
|
friend class LinkedList<T>;
|
|
friend struct detail::LinkedListElementTraits<T>;
|
|
|
|
enum class NodeKind { Normal, Sentinel };
|
|
|
|
explicit LinkedListElement(NodeKind nodeKind)
|
|
: mNext(this), mPrev(this), mIsSentinel(nodeKind == NodeKind::Sentinel) {}
|
|
|
|
/*
|
|
* Return |this| cast to T* if we're a normal node, or return nullptr if
|
|
* we're a sentinel node.
|
|
*/
|
|
RawType asT() { return mIsSentinel ? nullptr : static_cast<RawType>(this); }
|
|
ConstRawType asT() const {
|
|
return mIsSentinel ? nullptr : static_cast<ConstRawType>(this);
|
|
}
|
|
|
|
/*
|
|
* Insert aElem after this element, but don't check that this element is in
|
|
* the list. This is called by LinkedList::insertFront().
|
|
*/
|
|
void setNextUnsafe(RawType aElem) {
|
|
LinkedListElement* listElem = static_cast<LinkedListElement*>(aElem);
|
|
MOZ_RELEASE_ASSERT(!listElem->isInList());
|
|
|
|
listElem->mNext = this->mNext;
|
|
listElem->mPrev = this;
|
|
this->mNext->mPrev = listElem;
|
|
this->mNext = listElem;
|
|
|
|
Traits::enterList(aElem);
|
|
}
|
|
|
|
/*
|
|
* Insert aElem before this element, but don't check that this element is in
|
|
* the list. This is called by LinkedList::insertBack().
|
|
*/
|
|
void setPreviousUnsafe(RawType aElem) {
|
|
LinkedListElement<T>* listElem = static_cast<LinkedListElement<T>*>(aElem);
|
|
MOZ_RELEASE_ASSERT(!listElem->isInList());
|
|
|
|
listElem->mNext = this;
|
|
listElem->mPrev = this->mPrev;
|
|
this->mPrev->mNext = listElem;
|
|
this->mPrev = listElem;
|
|
|
|
Traits::enterList(aElem);
|
|
}
|
|
|
|
/*
|
|
* Transfers the elements [aBegin, aEnd) before the "this" list element.
|
|
*/
|
|
void transferBeforeUnsafe(LinkedListElement<T>& aBegin,
|
|
LinkedListElement<T>& aEnd) {
|
|
MOZ_RELEASE_ASSERT(!aBegin.mIsSentinel);
|
|
if (!aBegin.isInList() || !aEnd.isInList()) {
|
|
return;
|
|
}
|
|
|
|
auto otherPrev = aBegin.mPrev;
|
|
|
|
aBegin.mPrev = this->mPrev;
|
|
this->mPrev->mNext = &aBegin;
|
|
this->mPrev = aEnd.mPrev;
|
|
aEnd.mPrev->mNext = this;
|
|
|
|
// Patch the gap in the source list
|
|
otherPrev->mNext = &aEnd;
|
|
aEnd.mPrev = otherPrev;
|
|
}
|
|
|
|
/*
|
|
* Adjust mNext and mPrev for implementing move constructor and move
|
|
* assignment.
|
|
*/
|
|
void adjustLinkForMove(LinkedListElement<T>&& aOther) {
|
|
if (!aOther.isInList()) {
|
|
mNext = this;
|
|
mPrev = this;
|
|
return;
|
|
}
|
|
|
|
if (!mIsSentinel) {
|
|
Traits::enterList(this);
|
|
}
|
|
|
|
MOZ_ASSERT(aOther.mNext->mPrev == &aOther);
|
|
MOZ_ASSERT(aOther.mPrev->mNext == &aOther);
|
|
|
|
/*
|
|
* Initialize |this| with |aOther|'s mPrev/mNext pointers, and adjust those
|
|
* element to point to this one.
|
|
*/
|
|
mNext = aOther.mNext;
|
|
mPrev = aOther.mPrev;
|
|
|
|
mNext->mPrev = this;
|
|
mPrev->mNext = this;
|
|
|
|
/*
|
|
* Adjust |aOther| so it doesn't think it's in a list. This makes it
|
|
* safely destructable.
|
|
*/
|
|
aOther.mNext = &aOther;
|
|
aOther.mPrev = &aOther;
|
|
|
|
if (!mIsSentinel) {
|
|
Traits::exitList(&aOther);
|
|
}
|
|
}
|
|
|
|
LinkedListElement& operator=(const LinkedListElement<T>& aOther) = delete;
|
|
LinkedListElement(const LinkedListElement<T>& aOther) = delete;
|
|
};
|
|
|
|
template <typename T>
|
|
class LinkedList {
|
|
private:
|
|
using Traits = typename detail::LinkedListElementTraits<T>;
|
|
using RawType = typename Traits::RawType;
|
|
using ConstRawType = typename Traits::ConstRawType;
|
|
using ClientType = typename Traits::ClientType;
|
|
using ConstClientType = typename Traits::ConstClientType;
|
|
using ElementType = LinkedListElement<T>*;
|
|
using ConstElementType = const LinkedListElement<T>*;
|
|
|
|
LinkedListElement<T> sentinel;
|
|
|
|
public:
|
|
template <typename Type, typename Element>
|
|
class Iterator {
|
|
Type mCurrent;
|
|
|
|
public:
|
|
using iterator_category = std::forward_iterator_tag;
|
|
using value_type = T;
|
|
using difference_type = std::ptrdiff_t;
|
|
using pointer = T*;
|
|
using reference = T&;
|
|
|
|
explicit Iterator(Type aCurrent) : mCurrent(aCurrent) {}
|
|
|
|
Type operator*() const { return mCurrent; }
|
|
|
|
const Iterator& operator++() {
|
|
mCurrent = static_cast<Element>(mCurrent)->getNext();
|
|
return *this;
|
|
}
|
|
|
|
bool operator!=(const Iterator& aOther) const {
|
|
return mCurrent != aOther.mCurrent;
|
|
}
|
|
};
|
|
|
|
using const_iterator = Iterator<ConstRawType, ConstElementType>;
|
|
using iterator = Iterator<RawType, ElementType>;
|
|
|
|
LinkedList() : sentinel(LinkedListElement<T>::NodeKind::Sentinel) {}
|
|
|
|
LinkedList(LinkedList<T>&& aOther) : sentinel(std::move(aOther.sentinel)) {}
|
|
|
|
LinkedList& operator=(LinkedList<T>&& aOther) {
|
|
MOZ_ASSERT(isEmpty(),
|
|
"Assigning to a non-empty list leaks elements in that list!");
|
|
sentinel = std::move(aOther.sentinel);
|
|
return *this;
|
|
}
|
|
|
|
~LinkedList() {
|
|
# ifdef DEBUG
|
|
if (!isEmpty()) {
|
|
MOZ_CRASH_UNSAFE_PRINTF(
|
|
"%s has a buggy user: "
|
|
"it should have removed all this list's elements before "
|
|
"the list's destruction",
|
|
__PRETTY_FUNCTION__);
|
|
}
|
|
# endif
|
|
}
|
|
|
|
/*
|
|
* Add aElem to the front of the list.
|
|
*/
|
|
void insertFront(RawType aElem) {
|
|
/* Bypass setNext()'s this->isInList() assertion. */
|
|
sentinel.setNextUnsafe(aElem);
|
|
}
|
|
|
|
/*
|
|
* Add aElem to the back of the list.
|
|
*/
|
|
void insertBack(RawType aElem) { sentinel.setPreviousUnsafe(aElem); }
|
|
|
|
/*
|
|
* Move all elements from another list to the back
|
|
*/
|
|
void extendBack(LinkedList<T>&& aOther) {
|
|
MOZ_RELEASE_ASSERT(this != &aOther);
|
|
if (aOther.isEmpty()) {
|
|
return;
|
|
}
|
|
sentinel.transferBeforeUnsafe(**aOther.begin(), aOther.sentinel);
|
|
}
|
|
|
|
/*
|
|
* Move elements from another list to the specified position
|
|
*/
|
|
void splice(size_t aDestinationPos, LinkedList<T>& aListFrom,
|
|
size_t aSourceStart, size_t aSourceLen) {
|
|
MOZ_RELEASE_ASSERT(this != &aListFrom);
|
|
if (aListFrom.isEmpty() || !aSourceLen) {
|
|
return;
|
|
}
|
|
|
|
const auto safeForward = [](LinkedList<T>& aList,
|
|
LinkedListElement<T>& aBegin,
|
|
size_t aPos) -> LinkedListElement<T>& {
|
|
auto* iter = &aBegin;
|
|
for (size_t i = 0; i < aPos; ++i, (iter = iter->mNext)) {
|
|
if (iter->mIsSentinel) {
|
|
break;
|
|
}
|
|
}
|
|
return *iter;
|
|
};
|
|
|
|
auto& sourceBegin =
|
|
safeForward(aListFrom, *aListFrom.sentinel.mNext, aSourceStart);
|
|
if (sourceBegin.mIsSentinel) {
|
|
return;
|
|
}
|
|
auto& sourceEnd = safeForward(aListFrom, sourceBegin, aSourceLen);
|
|
auto& destination = safeForward(*this, *sentinel.mNext, aDestinationPos);
|
|
|
|
destination.transferBeforeUnsafe(sourceBegin, sourceEnd);
|
|
}
|
|
|
|
/*
|
|
* Get the first element of the list, or nullptr if the list is empty.
|
|
*/
|
|
RawType getFirst() { return sentinel.getNext(); }
|
|
ConstRawType getFirst() const { return sentinel.getNext(); }
|
|
|
|
/*
|
|
* Get the last element of the list, or nullptr if the list is empty.
|
|
*/
|
|
RawType getLast() { return sentinel.getPrevious(); }
|
|
ConstRawType getLast() const { return sentinel.getPrevious(); }
|
|
|
|
/*
|
|
* Get and remove the first element of the list. If the list is empty,
|
|
* return nullptr.
|
|
*/
|
|
ClientType popFirst() {
|
|
ClientType ret = sentinel.getNext();
|
|
if (ret) {
|
|
static_cast<LinkedListElement<T>*>(RawType(ret))->remove();
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Get and remove the last element of the list. If the list is empty,
|
|
* return nullptr.
|
|
*/
|
|
ClientType popLast() {
|
|
ClientType ret = sentinel.getPrevious();
|
|
if (ret) {
|
|
static_cast<LinkedListElement<T>*>(RawType(ret))->remove();
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Return true if the list is empty, or false otherwise.
|
|
*/
|
|
bool isEmpty() const { return !sentinel.isInList(); }
|
|
|
|
/**
|
|
* Returns whether the given element is in the list.
|
|
*/
|
|
bool contains(ConstRawType aElm) const {
|
|
return std::find(begin(), end(), aElm) != end();
|
|
}
|
|
|
|
/*
|
|
* Remove all the elements from the list.
|
|
*
|
|
* This runs in time linear to the list's length, because we have to mark
|
|
* each element as not in the list.
|
|
*/
|
|
void clear() {
|
|
while (popFirst()) {
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Return the length of elements in the list.
|
|
*/
|
|
size_t length() const { return std::distance(begin(), end()); }
|
|
|
|
/*
|
|
* Allow range-based iteration:
|
|
*
|
|
* for (MyElementType* elt : myList) { ... }
|
|
*/
|
|
Iterator<RawType, ElementType> begin() {
|
|
return Iterator<RawType, ElementType>(getFirst());
|
|
}
|
|
Iterator<ConstRawType, ConstElementType> begin() const {
|
|
return Iterator<ConstRawType, ConstElementType>(getFirst());
|
|
}
|
|
Iterator<RawType, ElementType> end() {
|
|
return Iterator<RawType, ElementType>(nullptr);
|
|
}
|
|
Iterator<ConstRawType, ConstElementType> end() const {
|
|
return Iterator<ConstRawType, ConstElementType>(nullptr);
|
|
}
|
|
|
|
/*
|
|
* Measures the memory consumption of the list excluding |this|. Note that
|
|
* it only measures the list elements themselves. If the list elements
|
|
* contain pointers to other memory blocks, those blocks must be measured
|
|
* separately during a subsequent iteration over the list.
|
|
*/
|
|
size_t sizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const {
|
|
size_t n = 0;
|
|
ConstRawType t = getFirst();
|
|
while (t) {
|
|
n += aMallocSizeOf(t);
|
|
t = static_cast<const LinkedListElement<T>*>(t)->getNext();
|
|
}
|
|
return n;
|
|
}
|
|
|
|
/*
|
|
* Like sizeOfExcludingThis(), but measures |this| as well.
|
|
*/
|
|
size_t sizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const {
|
|
return aMallocSizeOf(this) + sizeOfExcludingThis(aMallocSizeOf);
|
|
}
|
|
|
|
/*
|
|
* In a debug build, make sure that the list is sane (no cycles, consistent
|
|
* mNext/mPrev pointers, only one sentinel). Has no effect in release builds.
|
|
*/
|
|
void debugAssertIsSane() const {
|
|
# ifdef DEBUG
|
|
const LinkedListElement<T>* slow;
|
|
const LinkedListElement<T>* fast1;
|
|
const LinkedListElement<T>* fast2;
|
|
|
|
/*
|
|
* Check for cycles in the forward singly-linked list using the
|
|
* tortoise/hare algorithm.
|
|
*/
|
|
for (slow = sentinel.mNext, fast1 = sentinel.mNext->mNext,
|
|
fast2 = sentinel.mNext->mNext->mNext;
|
|
slow != &sentinel && fast1 != &sentinel && fast2 != &sentinel;
|
|
slow = slow->mNext, fast1 = fast2->mNext, fast2 = fast1->mNext) {
|
|
MOZ_ASSERT(slow != fast1);
|
|
MOZ_ASSERT(slow != fast2);
|
|
}
|
|
|
|
/* Check for cycles in the backward singly-linked list. */
|
|
for (slow = sentinel.mPrev, fast1 = sentinel.mPrev->mPrev,
|
|
fast2 = sentinel.mPrev->mPrev->mPrev;
|
|
slow != &sentinel && fast1 != &sentinel && fast2 != &sentinel;
|
|
slow = slow->mPrev, fast1 = fast2->mPrev, fast2 = fast1->mPrev) {
|
|
MOZ_ASSERT(slow != fast1);
|
|
MOZ_ASSERT(slow != fast2);
|
|
}
|
|
|
|
/*
|
|
* Check that |sentinel| is the only node in the list with
|
|
* mIsSentinel == true.
|
|
*/
|
|
for (const LinkedListElement<T>* elem = sentinel.mNext; elem != &sentinel;
|
|
elem = elem->mNext) {
|
|
MOZ_ASSERT(!elem->mIsSentinel);
|
|
}
|
|
|
|
/* Check that the mNext/mPrev pointers match up. */
|
|
const LinkedListElement<T>* prev = &sentinel;
|
|
const LinkedListElement<T>* cur = sentinel.mNext;
|
|
do {
|
|
MOZ_ASSERT(cur->mPrev == prev);
|
|
MOZ_ASSERT(prev->mNext == cur);
|
|
|
|
prev = cur;
|
|
cur = cur->mNext;
|
|
} while (cur != &sentinel);
|
|
# endif /* ifdef DEBUG */
|
|
}
|
|
|
|
private:
|
|
friend class LinkedListElement<T>;
|
|
|
|
void assertContains(const RawType aValue) const {
|
|
# ifdef DEBUG
|
|
for (ConstRawType elem = getFirst(); elem; elem = elem->getNext()) {
|
|
if (elem == aValue) {
|
|
return;
|
|
}
|
|
}
|
|
MOZ_CRASH("element wasn't found in this list!");
|
|
# endif
|
|
}
|
|
|
|
LinkedList& operator=(const LinkedList<T>& aOther) = delete;
|
|
LinkedList(const LinkedList<T>& aOther) = delete;
|
|
};
|
|
|
|
template <typename T>
|
|
size_t RangeSizeEstimate(const LinkedList<T>&) {
|
|
return 0;
|
|
}
|
|
|
|
template <typename T>
|
|
inline void ImplCycleCollectionUnlink(LinkedList<RefPtr<T>>& aField) {
|
|
aField.clear();
|
|
}
|
|
|
|
template <typename T>
|
|
inline void ImplCycleCollectionTraverse(
|
|
nsCycleCollectionTraversalCallback& aCallback,
|
|
LinkedList<RefPtr<T>>& aField, const char* aName, uint32_t aFlags = 0) {
|
|
typedef typename detail::LinkedListElementTraits<T> Traits;
|
|
typedef typename Traits::RawType RawType;
|
|
for (RawType element : aField) {
|
|
// RefPtr is stored as a raw pointer in LinkedList.
|
|
// So instead of creating a new RefPtr from the raw
|
|
// pointer (which is not allowed), we simply call
|
|
// CycleCollectionNoteChild against the raw pointer
|
|
CycleCollectionNoteChild(aCallback, element, aName, aFlags);
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
class AutoCleanLinkedList : public LinkedList<T> {
|
|
private:
|
|
using Traits = detail::LinkedListElementTraits<T>;
|
|
using ClientType = typename detail::LinkedListElementTraits<T>::ClientType;
|
|
|
|
public:
|
|
AutoCleanLinkedList() = default;
|
|
AutoCleanLinkedList(AutoCleanLinkedList&&) = default;
|
|
~AutoCleanLinkedList() { clear(); }
|
|
|
|
AutoCleanLinkedList& operator=(AutoCleanLinkedList&& aOther) = default;
|
|
|
|
void clear() {
|
|
while (ClientType element = this->popFirst()) {
|
|
Traits::cleanElement(element);
|
|
}
|
|
}
|
|
};
|
|
|
|
} /* namespace mozilla */
|
|
|
|
#endif /* __cplusplus */
|
|
|
|
#endif /* mozilla_LinkedList_h */
|