gecko-dev/mozglue/misc/Printf.cpp
serge-sans-paille 87f3a025e7 Bug 1850569 - Make it easier for the compiler to analyze mozilla::PrintfTarget::fill_n r=emilio
By coupling the state of `signwidth` and `sign`, we provide enough
information to the compiler for it to get rid of an extra mov as a
result of `-ftrivial-auto-var-init`.

Differential Revision: https://phabricator.services.mozilla.com/D187047
2023-08-29 19:33:46 +00:00

1102 lines
27 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/*
* Portable safe sprintf code.
*
* Author: Kipp E.B. Hickman
*/
#include "double-conversion/double-to-string.h"
#include "mozilla/AllocPolicy.h"
#include "mozilla/Printf.h"
#include "mozilla/UniquePtrExtensions.h"
#include "mozilla/Vector.h"
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#if defined(XP_WIN)
# include <windows.h>
#endif
using double_conversion::DoubleToStringConverter;
using DTSC = DoubleToStringConverter;
/*
* Numbered Argument State
*/
struct NumArgState {
int type; // type of the current ap
va_list ap; // point to the corresponding position on ap
};
using NumArgStateVector =
mozilla::Vector<NumArgState, 20, mozilla::MallocAllocPolicy>;
// For values up to and including TYPE_DOUBLE, the lowest bit indicates
// whether the type is signed (0) or unsigned (1).
#define TYPE_SHORT 0
#define TYPE_USHORT 1
#define TYPE_INTN 2
#define TYPE_UINTN 3
#define TYPE_LONG 4
#define TYPE_ULONG 5
#define TYPE_LONGLONG 6
#define TYPE_ULONGLONG 7
#define TYPE_DOUBLE 8
#define TYPE_STRING 9
#define TYPE_INTSTR 10
#define TYPE_POINTER 11
#if defined(XP_WIN)
# define TYPE_WSTRING 12
#endif
#define TYPE_SCHAR 14
#define TYPE_UCHAR 15
#define TYPE_UNKNOWN 20
#define FLAG_LEFT 0x1
#define FLAG_SIGNED 0x2
#define FLAG_SPACED 0x4
#define FLAG_ZEROS 0x8
#define FLAG_NEG 0x10
static const char hex[] = "0123456789abcdef";
static const char HEX[] = "0123456789ABCDEF";
// Fill into the buffer using the data in src
bool mozilla::PrintfTarget::fill2(const char* src, int srclen, int width,
int flags) {
char space = ' ';
width -= srclen;
if (width > 0 && (flags & FLAG_LEFT) == 0) { // Right adjusting
if (flags & FLAG_ZEROS) {
space = '0';
}
while (--width >= 0) {
if (!emit(&space, 1)) {
return false;
}
}
}
// Copy out the source data
if (!emit(src, srclen)) {
return false;
}
if (width > 0 && (flags & FLAG_LEFT) != 0) { // Left adjusting
while (--width >= 0) {
if (!emit(&space, 1)) {
return false;
}
}
}
return true;
}
/*
* Fill a number. The order is: optional-sign zero-filling conversion-digits
*/
bool mozilla::PrintfTarget::fill_n(const char* src, int srclen, int width,
int prec, int type, int flags) {
int zerowidth = 0;
int precwidth = 0;
int leftspaces = 0;
int rightspaces = 0;
int cvtwidth;
char sign = 0;
if ((type & 1) == 0) {
if (flags & FLAG_NEG) {
sign = '-';
} else if (flags & FLAG_SIGNED) {
sign = '+';
} else if (flags & FLAG_SPACED) {
sign = ' ';
}
}
cvtwidth = (sign ? 1 : 0) + srclen;
if (prec > 0 && (type != TYPE_DOUBLE)) {
if (prec > srclen) {
precwidth = prec - srclen; // Need zero filling
cvtwidth += precwidth;
}
}
if ((flags & FLAG_ZEROS) && ((type == TYPE_DOUBLE) || (prec < 0))) {
if (width > cvtwidth) {
zerowidth = width - cvtwidth; // Zero filling
cvtwidth += zerowidth;
}
}
if (flags & FLAG_LEFT) {
if (width > cvtwidth) {
// Space filling on the right (i.e. left adjusting)
rightspaces = width - cvtwidth;
}
} else {
if (width > cvtwidth) {
// Space filling on the left (i.e. right adjusting)
leftspaces = width - cvtwidth;
}
}
while (--leftspaces >= 0) {
if (!emit(" ", 1)) {
return false;
}
}
if (sign) {
if (!emit(&sign, 1)) {
return false;
}
}
while (--precwidth >= 0) {
if (!emit("0", 1)) {
return false;
}
}
while (--zerowidth >= 0) {
if (!emit("0", 1)) {
return false;
}
}
if (!emit(src, uint32_t(srclen))) {
return false;
}
while (--rightspaces >= 0) {
if (!emit(" ", 1)) {
return false;
}
}
return true;
}
// All that the cvt_* functions care about as far as the TYPE_* constants is
// that the low bit is set to indicate unsigned, or unset to indicate signed.
// So we don't try to hard to ensure that the passed TYPE_* constant lines
// up with the actual size of the number being printed here. The main printf
// code, below, does have to care so that the correct bits are extracted from
// the varargs list.
bool mozilla::PrintfTarget::appendIntDec(int32_t num) {
int flags = 0;
long n = num;
if (n < 0) {
n = -n;
flags |= FLAG_NEG;
}
return cvt_l(n, -1, -1, 10, TYPE_INTN, flags, hex);
}
bool mozilla::PrintfTarget::appendIntDec(uint32_t num) {
return cvt_l(num, -1, -1, 10, TYPE_UINTN, 0, hex);
}
bool mozilla::PrintfTarget::appendIntOct(uint32_t num) {
return cvt_l(num, -1, -1, 8, TYPE_UINTN, 0, hex);
}
bool mozilla::PrintfTarget::appendIntHex(uint32_t num) {
return cvt_l(num, -1, -1, 16, TYPE_UINTN, 0, hex);
}
bool mozilla::PrintfTarget::appendIntDec(int64_t num) {
int flags = 0;
if (num < 0) {
num = -num;
flags |= FLAG_NEG;
}
return cvt_ll(num, -1, -1, 10, TYPE_INTN, flags, hex);
}
bool mozilla::PrintfTarget::appendIntDec(uint64_t num) {
return cvt_ll(num, -1, -1, 10, TYPE_UINTN, 0, hex);
}
bool mozilla::PrintfTarget::appendIntOct(uint64_t num) {
return cvt_ll(num, -1, -1, 8, TYPE_UINTN, 0, hex);
}
bool mozilla::PrintfTarget::appendIntHex(uint64_t num) {
return cvt_ll(num, -1, -1, 16, TYPE_UINTN, 0, hex);
}
/* Convert a long into its printable form. */
bool mozilla::PrintfTarget::cvt_l(long num, int width, int prec, int radix,
int type, int flags, const char* hexp) {
char cvtbuf[100];
char* cvt;
int digits;
// according to the man page this needs to happen
if ((prec == 0) && (num == 0)) {
return fill_n("", 0, width, prec, type, flags);
}
// Converting decimal is a little tricky. In the unsigned case we
// need to stop when we hit 10 digits. In the signed case, we can
// stop when the number is zero.
cvt = cvtbuf + sizeof(cvtbuf);
digits = 0;
while (num) {
int digit = (((unsigned long)num) % radix) & 0xF;
*--cvt = hexp[digit];
digits++;
num = (long)(((unsigned long)num) / radix);
}
if (digits == 0) {
*--cvt = '0';
digits++;
}
// Now that we have the number converted without its sign, deal with
// the sign and zero padding.
return fill_n(cvt, digits, width, prec, type, flags);
}
/* Convert a 64-bit integer into its printable form. */
bool mozilla::PrintfTarget::cvt_ll(int64_t num, int width, int prec, int radix,
int type, int flags, const char* hexp) {
// According to the man page, this needs to happen.
if (prec == 0 && num == 0) {
return fill_n("", 0, width, prec, type, flags);
}
// Converting decimal is a little tricky. In the unsigned case we
// need to stop when we hit 10 digits. In the signed case, we can
// stop when the number is zero.
int64_t rad = int64_t(radix);
char cvtbuf[100];
char* cvt = cvtbuf + sizeof(cvtbuf);
int digits = 0;
while (num != 0) {
int64_t quot = uint64_t(num) / rad;
int64_t rem = uint64_t(num) % rad;
int32_t digit = int32_t(rem);
*--cvt = hexp[digit & 0xf];
digits++;
num = quot;
}
if (digits == 0) {
*--cvt = '0';
digits++;
}
// Now that we have the number converted without its sign, deal with
// the sign and zero padding.
return fill_n(cvt, digits, width, prec, type, flags);
}
template <size_t N>
constexpr static size_t lengthof(const char (&)[N]) {
return N - 1;
}
// Longest possible output from ToFixed for positive numbers:
// [0-9]{kMaxFixedDigitsBeforePoint}\.[0-9]{kMaxFixedDigitsAfterPoint}?
constexpr int FIXED_MAX_CHARS =
DTSC::kMaxFixedDigitsBeforePoint + 1 + DTSC::kMaxFixedDigitsAfterPoint;
// Longest possible output from ToExponential:
// [1-9]\.[0-9]{kMaxExponentialDigits}e[+-][0-9]{1,3}
// (std::numeric_limits<double>::max() has exponent 308).
constexpr int EXPONENTIAL_MAX_CHARS =
lengthof("1.") + DTSC::kMaxExponentialDigits + lengthof("e+999");
// Longest possible output from ToPrecise:
// [0-9\.]{kMaxPrecisionDigits+1} or
// [1-9]\.[0-9]{kMaxPrecisionDigits-1}e[+-][0-9]{1,3}
constexpr int PRECISE_MAX_CHARS =
lengthof("1.") + DTSC::kMaxPrecisionDigits - 1 + lengthof("e+999");
constexpr int DTSC_MAX_CHARS =
std::max({FIXED_MAX_CHARS, EXPONENTIAL_MAX_CHARS, PRECISE_MAX_CHARS});
/*
* Convert a double precision floating point number into its printable
* form.
*/
bool mozilla::PrintfTarget::cvt_f(double d, char c, int width, int prec,
int flags) {
bool lower = islower(c);
const char* inf = lower ? "inf" : "INF";
const char* nan = lower ? "nan" : "NAN";
char e = lower ? 'e' : 'E';
DoubleToStringConverter converter(DTSC::UNIQUE_ZERO | DTSC::NO_TRAILING_ZERO |
DTSC::EMIT_POSITIVE_EXPONENT_SIGN,
inf, nan, e, 0, 0, 4, 0, 2);
// Longest of the above cases, plus space for a terminal nul character.
char buf[DTSC_MAX_CHARS + 1];
double_conversion::StringBuilder builder(buf, sizeof(buf));
bool success = false;
if (std::signbit(d)) {
d = std::abs(d);
flags |= FLAG_NEG;
}
if (!std::isfinite(d)) {
flags &= ~FLAG_ZEROS;
}
// "If the precision is missing, it shall be taken as 6."
if (prec < 0) {
prec = 6;
}
switch (c) {
case 'e':
case 'E':
success = converter.ToExponential(d, prec, &builder);
break;
case 'f':
case 'F':
success = converter.ToFixed(d, prec, &builder);
break;
case 'g':
case 'G':
// "If an explicit precision is zero, it shall be taken as 1."
success = converter.ToPrecision(d, prec ? prec : 1, &builder);
break;
}
if (!success) {
return false;
}
int len = builder.position();
char* cvt = builder.Finalize();
return fill_n(cvt, len, width, prec, TYPE_DOUBLE, flags);
}
/*
* Convert a string into its printable form. "width" is the output
* width. "prec" is the maximum number of characters of "s" to output,
* where -1 means until NUL.
*/
bool mozilla::PrintfTarget::cvt_s(const char* s, int width, int prec,
int flags) {
if (prec == 0) {
return true;
}
if (!s) {
s = "(null)";
}
// Limit string length by precision value
int slen = int(strlen(s));
if (0 < prec && prec < slen) {
slen = prec;
}
// and away we go
return fill2(s, slen, width, flags);
}
/*
* BuildArgArray stands for Numbered Argument list Sprintf
* for example,
* fmp = "%4$i, %2$d, %3s, %1d";
* the number must start from 1, and no gap among them
*/
static bool BuildArgArray(const char* fmt, va_list ap, NumArgStateVector& nas) {
size_t number = 0, cn = 0, i;
const char* p;
char c;
// First pass:
// Detemine how many legal % I have got, then allocate space.
p = fmt;
i = 0;
while ((c = *p++) != 0) {
if (c != '%') {
continue;
}
if ((c = *p++) == '%') { // skip %% case
continue;
}
while (c != 0) {
if (c > '9' || c < '0') {
if (c == '$') { // numbered argument case
if (i > 0) {
MOZ_CRASH("Bad format string");
}
number++;
} else { // non-numbered argument case
if (number > 0) {
MOZ_CRASH("Bad format string");
}
i = 1;
}
break;
}
c = *p++;
}
}
if (number == 0) {
return true;
}
// Only allow a limited number of arguments.
MOZ_RELEASE_ASSERT(number <= 20);
if (!nas.growByUninitialized(number)) {
return false;
}
for (i = 0; i < number; i++) {
nas[i].type = TYPE_UNKNOWN;
}
// Second pass:
// Set nas[].type.
p = fmt;
while ((c = *p++) != 0) {
if (c != '%') {
continue;
}
c = *p++;
if (c == '%') {
continue;
}
cn = 0;
while (c && c != '$') { // should improve error check later
cn = cn * 10 + c - '0';
c = *p++;
}
if (!c || cn < 1 || cn > number) {
MOZ_CRASH("Bad format string");
}
// nas[cn] starts from 0, and make sure nas[cn].type is not assigned.
cn--;
if (nas[cn].type != TYPE_UNKNOWN) {
continue;
}
c = *p++;
// flags
while ((c == '-') || (c == '+') || (c == ' ') || (c == '0')) {
c = *p++;
}
// width
if (c == '*') {
// not supported feature, for the argument is not numbered
MOZ_CRASH("Bad format string");
}
while ((c >= '0') && (c <= '9')) {
c = *p++;
}
// precision
if (c == '.') {
c = *p++;
if (c == '*') {
// not supported feature, for the argument is not numbered
MOZ_CRASH("Bad format string");
}
while ((c >= '0') && (c <= '9')) {
c = *p++;
}
}
// size
nas[cn].type = TYPE_INTN;
if (c == 'h') {
nas[cn].type = TYPE_SHORT;
c = *p++;
if (c == 'h') {
nas[cn].type = TYPE_SCHAR;
c = *p++;
}
} else if (c == 'L') {
nas[cn].type = TYPE_LONGLONG;
c = *p++;
} else if (c == 'l') {
nas[cn].type = TYPE_LONG;
c = *p++;
if (c == 'l') {
nas[cn].type = TYPE_LONGLONG;
c = *p++;
}
} else if (c == 'z' || c == 'I') {
static_assert(sizeof(size_t) == sizeof(int) ||
sizeof(size_t) == sizeof(long) ||
sizeof(size_t) == sizeof(long long),
"size_t is not one of the expected sizes");
nas[cn].type = sizeof(size_t) == sizeof(int) ? TYPE_INTN
: sizeof(size_t) == sizeof(long) ? TYPE_LONG
: TYPE_LONGLONG;
c = *p++;
} else if (c == 't') {
static_assert(sizeof(ptrdiff_t) == sizeof(int) ||
sizeof(ptrdiff_t) == sizeof(long) ||
sizeof(ptrdiff_t) == sizeof(long long),
"ptrdiff_t is not one of the expected sizes");
nas[cn].type = sizeof(ptrdiff_t) == sizeof(int) ? TYPE_INTN
: sizeof(ptrdiff_t) == sizeof(long) ? TYPE_LONG
: TYPE_LONGLONG;
c = *p++;
} else if (c == 'j') {
static_assert(sizeof(intmax_t) == sizeof(int) ||
sizeof(intmax_t) == sizeof(long) ||
sizeof(intmax_t) == sizeof(long long),
"intmax_t is not one of the expected sizes");
nas[cn].type = sizeof(intmax_t) == sizeof(int) ? TYPE_INTN
: sizeof(intmax_t) == sizeof(long) ? TYPE_LONG
: TYPE_LONGLONG;
c = *p++;
}
// format
switch (c) {
case 'd':
case 'c':
case 'i':
break;
case 'o':
case 'u':
case 'x':
case 'X':
// Mark as unsigned type.
nas[cn].type |= 1;
break;
case 'e':
case 'E':
case 'f':
case 'F':
case 'g':
case 'G':
nas[cn].type = TYPE_DOUBLE;
break;
case 'p':
nas[cn].type = TYPE_POINTER;
break;
case 'S':
#if defined(XP_WIN)
nas[cn].type = TYPE_WSTRING;
#else
MOZ_ASSERT(0);
nas[cn].type = TYPE_UNKNOWN;
#endif
break;
case 's':
#if defined(XP_WIN)
if (nas[cn].type == TYPE_LONG) {
nas[cn].type = TYPE_WSTRING;
break;
}
#endif
// Other type sizes are not supported here.
MOZ_ASSERT(nas[cn].type == TYPE_INTN);
nas[cn].type = TYPE_STRING;
break;
case 'n':
nas[cn].type = TYPE_INTSTR;
break;
default:
MOZ_ASSERT(0);
nas[cn].type = TYPE_UNKNOWN;
break;
}
// get a legal para.
if (nas[cn].type == TYPE_UNKNOWN) {
MOZ_CRASH("Bad format string");
}
}
// Third pass:
// Fill nas[].ap.
cn = 0;
while (cn < number) {
// A TYPE_UNKNOWN here means that the format asked for a
// positional argument without specifying the meaning of some
// earlier argument.
MOZ_ASSERT(nas[cn].type != TYPE_UNKNOWN);
va_copy(nas[cn].ap, ap);
switch (nas[cn].type) {
case TYPE_SCHAR:
case TYPE_UCHAR:
case TYPE_SHORT:
case TYPE_USHORT:
case TYPE_INTN:
case TYPE_UINTN:
(void)va_arg(ap, int);
break;
case TYPE_LONG:
(void)va_arg(ap, long);
break;
case TYPE_ULONG:
(void)va_arg(ap, unsigned long);
break;
case TYPE_LONGLONG:
(void)va_arg(ap, long long);
break;
case TYPE_ULONGLONG:
(void)va_arg(ap, unsigned long long);
break;
case TYPE_STRING:
(void)va_arg(ap, char*);
break;
case TYPE_INTSTR:
(void)va_arg(ap, int*);
break;
case TYPE_DOUBLE:
(void)va_arg(ap, double);
break;
case TYPE_POINTER:
(void)va_arg(ap, void*);
break;
#if defined(XP_WIN)
case TYPE_WSTRING:
(void)va_arg(ap, wchar_t*);
break;
#endif
default:
MOZ_CRASH();
}
cn++;
}
return true;
}
mozilla::PrintfTarget::PrintfTarget() : mEmitted(0) {}
bool mozilla::PrintfTarget::vprint(const char* fmt, va_list ap) {
char c;
int flags, width, prec, radix, type;
union {
char ch;
int i;
long l;
long long ll;
double d;
const char* s;
int* ip;
void* p;
#if defined(XP_WIN)
const wchar_t* ws;
#endif
} u{};
const char* hexp;
int i;
// Build an argument array, IF the fmt is numbered argument
// list style, to contain the Numbered Argument list pointers.
NumArgStateVector nas;
if (!BuildArgArray(fmt, ap, nas)) {
// the fmt contains error Numbered Argument format, jliu@netscape.com
MOZ_CRASH("Bad format string");
}
while ((c = *fmt++) != 0) {
if (c != '%') {
if (!emit(fmt - 1, 1)) {
return false;
}
continue;
}
// Gobble up the % format string. Hopefully we have handled all
// of the strange cases!
flags = 0;
c = *fmt++;
if (c == '%') {
// quoting a % with %%
if (!emit(fmt - 1, 1)) {
return false;
}
continue;
}
if (!nas.empty()) {
// the fmt contains the Numbered Arguments feature
i = 0;
while (c && c != '$') { // should improve error check later
i = (i * 10) + (c - '0');
c = *fmt++;
}
if (nas[i - 1].type == TYPE_UNKNOWN) {
MOZ_CRASH("Bad format string");
}
ap = nas[i - 1].ap;
c = *fmt++;
}
// Examine optional flags. Note that we do not implement the
// '#' flag of sprintf(). The ANSI C spec. of the '#' flag is
// somewhat ambiguous and not ideal, which is perhaps why
// the various sprintf() implementations are inconsistent
// on this feature.
while ((c == '-') || (c == '+') || (c == ' ') || (c == '0')) {
if (c == '-') {
flags |= FLAG_LEFT;
}
if (c == '+') {
flags |= FLAG_SIGNED;
}
if (c == ' ') {
flags |= FLAG_SPACED;
}
if (c == '0') {
flags |= FLAG_ZEROS;
}
c = *fmt++;
}
if (flags & FLAG_SIGNED) {
flags &= ~FLAG_SPACED;
}
if (flags & FLAG_LEFT) {
flags &= ~FLAG_ZEROS;
}
// width
if (c == '*') {
c = *fmt++;
width = va_arg(ap, int);
if (width < 0) {
width = -width;
flags |= FLAG_LEFT;
flags &= ~FLAG_ZEROS;
}
} else {
width = 0;
while ((c >= '0') && (c <= '9')) {
width = (width * 10) + (c - '0');
c = *fmt++;
}
}
// precision
prec = -1;
if (c == '.') {
c = *fmt++;
if (c == '*') {
c = *fmt++;
prec = va_arg(ap, int);
} else {
prec = 0;
while ((c >= '0') && (c <= '9')) {
prec = (prec * 10) + (c - '0');
c = *fmt++;
}
}
}
// size
type = TYPE_INTN;
if (c == 'h') {
type = TYPE_SHORT;
c = *fmt++;
if (c == 'h') {
type = TYPE_SCHAR;
c = *fmt++;
}
} else if (c == 'L') {
type = TYPE_LONGLONG;
c = *fmt++;
} else if (c == 'l') {
type = TYPE_LONG;
c = *fmt++;
if (c == 'l') {
type = TYPE_LONGLONG;
c = *fmt++;
}
} else if (c == 'z' || c == 'I') {
static_assert(sizeof(size_t) == sizeof(int) ||
sizeof(size_t) == sizeof(long) ||
sizeof(size_t) == sizeof(long long),
"size_t is not one of the expected sizes");
type = sizeof(size_t) == sizeof(int) ? TYPE_INTN
: sizeof(size_t) == sizeof(long) ? TYPE_LONG
: TYPE_LONGLONG;
c = *fmt++;
} else if (c == 't') {
static_assert(sizeof(ptrdiff_t) == sizeof(int) ||
sizeof(ptrdiff_t) == sizeof(long) ||
sizeof(ptrdiff_t) == sizeof(long long),
"ptrdiff_t is not one of the expected sizes");
type = sizeof(ptrdiff_t) == sizeof(int) ? TYPE_INTN
: sizeof(ptrdiff_t) == sizeof(long) ? TYPE_LONG
: TYPE_LONGLONG;
c = *fmt++;
} else if (c == 'j') {
static_assert(sizeof(intmax_t) == sizeof(int) ||
sizeof(intmax_t) == sizeof(long) ||
sizeof(intmax_t) == sizeof(long long),
"intmax_t is not one of the expected sizes");
type = sizeof(intmax_t) == sizeof(int) ? TYPE_INTN
: sizeof(intmax_t) == sizeof(long) ? TYPE_LONG
: TYPE_LONGLONG;
c = *fmt++;
}
// format
hexp = hex;
switch (c) {
case 'd':
case 'i': // decimal/integer
radix = 10;
goto fetch_and_convert;
case 'o': // octal
radix = 8;
type |= 1;
goto fetch_and_convert;
case 'u': // unsigned decimal
radix = 10;
type |= 1;
goto fetch_and_convert;
case 'x': // unsigned hex
radix = 16;
type |= 1;
goto fetch_and_convert;
case 'X': // unsigned HEX
radix = 16;
hexp = HEX;
type |= 1;
goto fetch_and_convert;
fetch_and_convert:
switch (type) {
case TYPE_SCHAR:
u.l = (signed char)va_arg(ap, int);
if (u.l < 0) {
u.l = -u.l;
flags |= FLAG_NEG;
}
goto do_long;
case TYPE_UCHAR:
u.l = (unsigned char)va_arg(ap, unsigned int);
goto do_long;
case TYPE_SHORT:
u.l = (short)va_arg(ap, int);
if (u.l < 0) {
u.l = -u.l;
flags |= FLAG_NEG;
}
goto do_long;
case TYPE_USHORT:
u.l = (unsigned short)va_arg(ap, unsigned int);
goto do_long;
case TYPE_INTN:
u.l = va_arg(ap, int);
if (u.l < 0) {
u.l = -u.l;
flags |= FLAG_NEG;
}
goto do_long;
case TYPE_UINTN:
u.l = (long)va_arg(ap, unsigned int);
goto do_long;
case TYPE_LONG:
u.l = va_arg(ap, long);
if (u.l < 0) {
u.l = -u.l;
flags |= FLAG_NEG;
}
goto do_long;
case TYPE_ULONG:
u.l = (long)va_arg(ap, unsigned long);
do_long:
if (!cvt_l(u.l, width, prec, radix, type, flags, hexp)) {
return false;
}
break;
case TYPE_LONGLONG:
u.ll = va_arg(ap, long long);
if (u.ll < 0) {
u.ll = -u.ll;
flags |= FLAG_NEG;
}
goto do_longlong;
case TYPE_POINTER:
u.ll = (uintptr_t)va_arg(ap, void*);
goto do_longlong;
case TYPE_ULONGLONG:
u.ll = va_arg(ap, unsigned long long);
do_longlong:
if (!cvt_ll(u.ll, width, prec, radix, type, flags, hexp)) {
return false;
}
break;
}
break;
case 'e':
case 'E':
case 'f':
case 'F':
case 'g':
case 'G':
u.d = va_arg(ap, double);
if (!cvt_f(u.d, c, width, prec, flags)) {
return false;
}
break;
case 'c':
if ((flags & FLAG_LEFT) == 0) {
while (width-- > 1) {
if (!emit(" ", 1)) {
return false;
}
}
}
switch (type) {
case TYPE_SHORT:
case TYPE_INTN:
u.ch = va_arg(ap, int);
if (!emit(&u.ch, 1)) {
return false;
}
break;
}
if (flags & FLAG_LEFT) {
while (width-- > 1) {
if (!emit(" ", 1)) {
return false;
}
}
}
break;
case 'p':
type = TYPE_POINTER;
radix = 16;
goto fetch_and_convert;
case 's':
if (type == TYPE_INTN) {
u.s = va_arg(ap, const char*);
if (!cvt_s(u.s, width, prec, flags)) {
return false;
}
break;
}
MOZ_ASSERT(type == TYPE_LONG);
[[fallthrough]];
case 'S':
#if defined(XP_WIN)
{
u.ws = va_arg(ap, const wchar_t*);
int rv = WideCharToMultiByte(CP_ACP, 0, u.ws, -1, NULL, 0, NULL, NULL);
if (rv == 0 && GetLastError() == ERROR_NO_UNICODE_TRANSLATION) {
if (!cvt_s("<unicode errors in string>", width, prec, flags)) {
return false;
}
} else {
if (rv == 0) {
rv = 1;
}
UniqueFreePtr<char[]> buf((char*)malloc(rv));
WideCharToMultiByte(CP_ACP, 0, u.ws, -1, buf.get(), rv, NULL, NULL);
buf[rv - 1] = '\0';
if (!cvt_s(buf.get(), width, prec, flags)) {
return false;
}
}
}
#else
// Not supported here.
MOZ_ASSERT(0);
#endif
break;
case 'n':
u.ip = va_arg(ap, int*);
if (u.ip) {
*u.ip = mEmitted;
}
break;
default:
// Not a % token after all... skip it
if (!emit("%", 1)) {
return false;
}
if (!emit(fmt - 1, 1)) {
return false;
}
}
}
return true;
}
/************************************************************************/
bool mozilla::PrintfTarget::print(const char* format, ...) {
va_list ap;
va_start(ap, format);
bool result = vprint(format, ap);
va_end(ap);
return result;
}
#undef TYPE_SHORT
#undef TYPE_USHORT
#undef TYPE_INTN
#undef TYPE_UINTN
#undef TYPE_LONG
#undef TYPE_ULONG
#undef TYPE_LONGLONG
#undef TYPE_ULONGLONG
#undef TYPE_STRING
#undef TYPE_DOUBLE
#undef TYPE_INTSTR
#undef TYPE_POINTER
#undef TYPE_WSTRING
#undef TYPE_UNKNOWN
#undef TYPE_SCHAR
#undef TYPE_UCHAR
#undef FLAG_LEFT
#undef FLAG_SIGNED
#undef FLAG_SPACED
#undef FLAG_ZEROS
#undef FLAG_NEG