gecko-dev/gfx/ipc/GPUProcessHost.cpp
Nika Layzell c3974e5fe9 Bug 1440207 - Part 3a: Migrate GeckoChildProcessHost callers to use ChildProcessArgs, r=ipc-reviewers,necko-reviewers,media-playback-reviewers,aosmond,mccr8
This patch implements the majority of the public interface for the new IPC
handle passing design.

The rough design is an expansion of `geckoargs` to allow passing
`UniqueFileHandle` arguments to child processes. This replaces the existing
extra options array to make the list of files explicit.

This currently just replaces things which were already passed this way on the
command line from outside of GeckoChildProcessHost. Note that this does not
migrate callers which were not already passing file handles using geckoargs,
and does not implement the actual OS-level support for passing arguments this
way.

Differential Revision: https://phabricator.services.mozilla.com/D221371
2024-10-01 22:21:47 +00:00

261 lines
7.3 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "GPUProcessHost.h"
#include "chrome/common/process_watcher.h"
#include "gfxPlatform.h"
#include "mozilla/dom/ContentParent.h"
#include "mozilla/gfx/GPUChild.h"
#include "mozilla/gfx/Logging.h"
#include "mozilla/layers/SynchronousTask.h"
#include "mozilla/Preferences.h"
#include "mozilla/StaticPrefs_layers.h"
#include "VRGPUChild.h"
#include "mozilla/ipc/ProcessUtils.h"
#ifdef MOZ_WIDGET_ANDROID
# include "mozilla/java/GeckoProcessManagerWrappers.h"
#endif
namespace mozilla {
namespace gfx {
using namespace ipc;
GPUProcessHost::GPUProcessHost(Listener* aListener)
: GeckoChildProcessHost(GeckoProcessType_GPU),
mListener(aListener),
mTaskFactory(this),
mLaunchPhase(LaunchPhase::Unlaunched),
mProcessToken(0),
mShutdownRequested(false),
mChannelClosed(false) {
MOZ_COUNT_CTOR(GPUProcessHost);
}
GPUProcessHost::~GPUProcessHost() { MOZ_COUNT_DTOR(GPUProcessHost); }
bool GPUProcessHost::Launch(geckoargs::ChildProcessArgs aExtraOpts) {
MOZ_ASSERT(mLaunchPhase == LaunchPhase::Unlaunched);
MOZ_ASSERT(!mGPUChild);
MOZ_ASSERT(!gfxPlatform::IsHeadless());
mPrefSerializer = MakeUnique<ipc::SharedPreferenceSerializer>();
if (!mPrefSerializer->SerializeToSharedMemory(GeckoProcessType_GPU,
/* remoteType */ ""_ns)) {
return false;
}
mPrefSerializer->AddSharedPrefCmdLineArgs(*this, aExtraOpts);
#if defined(XP_WIN) && defined(MOZ_SANDBOX)
mSandboxLevel = Preferences::GetInt("security.sandbox.gpu.level");
#endif
mLaunchPhase = LaunchPhase::Waiting;
mLaunchTime = TimeStamp::Now();
if (!GeckoChildProcessHost::AsyncLaunch(std::move(aExtraOpts))) {
mLaunchPhase = LaunchPhase::Complete;
mPrefSerializer = nullptr;
return false;
}
return true;
}
bool GPUProcessHost::WaitForLaunch() {
if (mLaunchPhase == LaunchPhase::Complete) {
return !!mGPUChild;
}
int32_t timeoutMs =
StaticPrefs::layers_gpu_process_startup_timeout_ms_AtStartup();
// If one of the following environment variables are set we can effectively
// ignore the timeout - as we can guarantee the compositor process will be
// terminated
if (PR_GetEnv("MOZ_DEBUG_CHILD_PROCESS") ||
PR_GetEnv("MOZ_DEBUG_CHILD_PAUSE")) {
timeoutMs = 0;
}
// Our caller expects the connection to be finished after we return, so we
// immediately set up the IPDL actor and fire callbacks. The IO thread will
// still dispatch a notification to the main thread - we'll just ignore it.
bool result = GeckoChildProcessHost::WaitUntilConnected(timeoutMs);
InitAfterConnect(result);
return result;
}
void GPUProcessHost::OnChannelConnected(base::ProcessId peer_pid) {
MOZ_ASSERT(!NS_IsMainThread());
GeckoChildProcessHost::OnChannelConnected(peer_pid);
// Post a task to the main thread. Take the lock because mTaskFactory is not
// thread-safe.
RefPtr<Runnable> runnable;
{
MonitorAutoLock lock(mMonitor);
runnable =
mTaskFactory.NewRunnableMethod(&GPUProcessHost::OnChannelConnectedTask);
}
NS_DispatchToMainThread(runnable);
}
void GPUProcessHost::OnChannelConnectedTask() {
if (mLaunchPhase == LaunchPhase::Waiting) {
InitAfterConnect(true);
}
}
void GPUProcessHost::OnChannelErrorTask() {
if (mLaunchPhase == LaunchPhase::Waiting) {
InitAfterConnect(false);
}
}
static uint64_t sProcessTokenCounter = 0;
void GPUProcessHost::InitAfterConnect(bool aSucceeded) {
MOZ_ASSERT(mLaunchPhase == LaunchPhase::Waiting);
MOZ_ASSERT(!mGPUChild);
mLaunchPhase = LaunchPhase::Complete;
mPrefSerializer = nullptr;
if (aSucceeded) {
mProcessToken = ++sProcessTokenCounter;
mGPUChild = MakeRefPtr<GPUChild>(this);
DebugOnly<bool> rv = TakeInitialEndpoint().Bind(mGPUChild.get());
MOZ_ASSERT(rv);
mGPUChild->Init();
#ifdef MOZ_WIDGET_ANDROID
nsCOMPtr<nsIEventTarget> launcherThread(GetIPCLauncher());
MOZ_ASSERT(launcherThread);
layers::SynchronousTask task(
"GeckoProcessManager::GetCompositorSurfaceManager");
launcherThread->Dispatch(NS_NewRunnableFunction(
"GeckoProcessManager::GetCompositorSurfaceManager", [&]() {
layers::AutoCompleteTask complete(&task);
mCompositorSurfaceManager =
java::GeckoProcessManager::GetCompositorSurfaceManager();
}));
task.Wait();
#endif
}
if (mListener) {
mListener->OnProcessLaunchComplete(this);
}
}
void GPUProcessHost::Shutdown(bool aUnexpectedShutdown) {
MOZ_ASSERT(!mShutdownRequested);
mListener = nullptr;
if (mGPUChild) {
// OnChannelClosed uses this to check if the shutdown was expected or
// unexpected.
mShutdownRequested = true;
if (aUnexpectedShutdown) {
mGPUChild->OnUnexpectedShutdown();
}
// The channel might already be closed if we got here unexpectedly.
if (!mChannelClosed) {
if (VRGPUChild::IsCreated()) {
VRGPUChild::Get()->Close();
}
mGPUChild->SendShutdownVR();
mGPUChild->Close();
}
#ifndef NS_FREE_PERMANENT_DATA
// No need to communicate shutdown, the GPU process doesn't need to
// communicate anything back.
KillHard(/* aGenerateMinidump */ false);
#endif
// If we're shutting down unexpectedly, we're in the middle of handling an
// ActorDestroy for PGPUChild, which is still on the stack. We'll return
// back to OnChannelClosed.
//
// Otherwise, we'll wait for OnChannelClose to be called whenever PGPUChild
// acknowledges shutdown.
return;
}
DestroyProcess();
}
void GPUProcessHost::OnChannelClosed() {
mChannelClosed = true;
if (!mShutdownRequested && mListener) {
// This is an unclean shutdown. Notify our listener that we're going away.
mListener->OnProcessUnexpectedShutdown(this);
} else {
DestroyProcess();
}
// Release the actor.
GPUChild::Destroy(std::move(mGPUChild));
MOZ_ASSERT(!mGPUChild);
}
void GPUProcessHost::KillHard(bool aGenerateMinidump) {
MOZ_ASSERT(NS_IsMainThread());
if (mGPUChild && aGenerateMinidump) {
mGPUChild->GeneratePairedMinidump();
}
const ProcessHandle handle = GetChildProcessHandle();
if (!base::KillProcess(handle, base::PROCESS_END_KILLED_BY_USER)) {
if (mGPUChild) {
mGPUChild->DeletePairedMinidump();
}
NS_WARNING("failed to kill subprocess!");
}
SetAlreadyDead();
}
uint64_t GPUProcessHost::GetProcessToken() const { return mProcessToken; }
void GPUProcessHost::KillProcess(bool aGenerateMinidump) {
KillHard(aGenerateMinidump);
}
void GPUProcessHost::CrashProcess() { mGPUChild->SendCrashProcess(); }
void GPUProcessHost::DestroyProcess() {
// Cancel all tasks. We don't want anything triggering after our caller
// expects this to go away.
{
MonitorAutoLock lock(mMonitor);
mTaskFactory.RevokeAll();
}
GetCurrentSerialEventTarget()->Dispatch(
NS_NewRunnableFunction("DestroyProcessRunnable", [this] { Destroy(); }));
}
#ifdef MOZ_WIDGET_ANDROID
java::CompositorSurfaceManager::Param
GPUProcessHost::GetCompositorSurfaceManager() {
return mCompositorSurfaceManager;
}
#endif
} // namespace gfx
} // namespace mozilla