gecko-dev/gfx/2d/ScaledFontMac.cpp

792 lines
27 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "ScaledFontMac.h"
#include "UnscaledFontMac.h"
#include "mozilla/webrender/WebRenderTypes.h"
#include "PathSkia.h"
#include "skia/include/core/SkPaint.h"
#include "skia/include/core/SkPath.h"
#include "skia/include/ports/SkTypeface_mac.h"
#include <vector>
#include <dlfcn.h>
#ifdef MOZ_WIDGET_UIKIT
# include <CoreFoundation/CoreFoundation.h>
#endif
#include "mozilla/gfx/Logging.h"
#ifdef MOZ_WIDGET_COCOA
// prototype for private API
extern "C" {
CGPathRef CGFontGetGlyphPath(CGFontRef fontRef,
CGAffineTransform* textTransform, int unknown,
CGGlyph glyph);
};
#endif
#include "cairo-quartz.h"
namespace mozilla {
namespace gfx {
// Simple helper class to automatically release a CFObject when it goes out
// of scope.
template <class T>
class AutoRelease final {
public:
explicit AutoRelease(T aObject) : mObject(aObject) {}
~AutoRelease() {
if (mObject) {
CFRelease(mObject);
}
}
void operator=(T aObject) {
if (mObject) {
CFRelease(mObject);
}
mObject = aObject;
}
operator T() { return mObject; }
T forget() {
T obj = mObject;
mObject = nullptr;
return obj;
}
private:
T mObject;
};
// Helper to create a CTFont from a CGFont, copying any variations that were
// set on the original CGFont.
static CTFontRef CreateCTFontFromCGFontWithVariations(CGFontRef aCGFont,
CGFloat aSize,
bool aInstalledFont) {
// Avoid calling potentially buggy variation APIs on pre-Sierra macOS
// versions (see bug 1331683).
//
// And on HighSierra, CTFontCreateWithGraphicsFont properly carries over
// variation settings from the CGFont to CTFont, so we don't need to do
// the extra work here -- and this seems to avoid Core Text crashiness
// seen in bug 1454094.
//
// However, for installed fonts it seems we DO need to copy the variations
// explicitly even on 10.13, otherwise fonts fail to render (as in bug
// 1455494) when non-default values are used. Fortunately, the crash
// mentioned above occurs with data fonts, not (AFAICT) with system-
// installed fonts.
//
// So we only need to do this "the hard way" on Sierra, and for installed
// fonts on HighSierra+; otherwise, just let the standard CTFont function
// do its thing.
//
// NOTE in case this ever needs further adjustment: there is similar logic
// in four places in the tree (sadly):
// CreateCTFontFromCGFontWithVariations in gfxMacFont.cpp
// CreateCTFontFromCGFontWithVariations in ScaledFontMac.cpp
// CreateCTFontFromCGFontWithVariations in cairo-quartz-font.c
// ctfont_create_exact_copy in SkFontHost_mac.cpp
CTFontRef ctFont;
if (aInstalledFont) {
CFDictionaryRef vars = CGFontCopyVariations(aCGFont);
if (vars) {
CFDictionaryRef varAttr = CFDictionaryCreate(
nullptr, (const void**)&kCTFontVariationAttribute,
(const void**)&vars, 1, &kCFTypeDictionaryKeyCallBacks,
&kCFTypeDictionaryValueCallBacks);
CFRelease(vars);
CTFontDescriptorRef varDesc =
CTFontDescriptorCreateWithAttributes(varAttr);
CFRelease(varAttr);
ctFont = CTFontCreateWithGraphicsFont(aCGFont, aSize, nullptr, varDesc);
CFRelease(varDesc);
} else {
ctFont = CTFontCreateWithGraphicsFont(aCGFont, aSize, nullptr, nullptr);
}
} else {
ctFont = CTFontCreateWithGraphicsFont(aCGFont, aSize, nullptr, nullptr);
}
return ctFont;
}
ScaledFontMac::ScaledFontMac(CGFontRef aFont,
const RefPtr<UnscaledFont>& aUnscaledFont,
Float aSize, bool aOwnsFont,
const DeviceColor& aFontSmoothingBackgroundColor,
bool aUseFontSmoothing, bool aApplySyntheticBold,
bool aHasColorGlyphs)
: ScaledFontBase(aUnscaledFont, aSize),
mFont(aFont),
mFontSmoothingBackgroundColor(aFontSmoothingBackgroundColor),
mUseFontSmoothing(aUseFontSmoothing),
mApplySyntheticBold(aApplySyntheticBold),
mHasColorGlyphs(aHasColorGlyphs) {
if (!aOwnsFont) {
// XXX: should we be taking a reference
CGFontRetain(aFont);
}
auto unscaledMac = static_cast<UnscaledFontMac*>(aUnscaledFont.get());
bool dataFont = unscaledMac->IsDataFont();
mCTFont = CreateCTFontFromCGFontWithVariations(aFont, aSize, !dataFont);
}
ScaledFontMac::ScaledFontMac(CTFontRef aFont,
const RefPtr<UnscaledFont>& aUnscaledFont,
const DeviceColor& aFontSmoothingBackgroundColor,
bool aUseFontSmoothing, bool aApplySyntheticBold,
bool aHasColorGlyphs)
: ScaledFontBase(aUnscaledFont, CTFontGetSize(aFont)),
mCTFont(aFont),
mFontSmoothingBackgroundColor(aFontSmoothingBackgroundColor),
mUseFontSmoothing(aUseFontSmoothing),
mApplySyntheticBold(aApplySyntheticBold),
mHasColorGlyphs(aHasColorGlyphs) {
mFont = CTFontCopyGraphicsFont(aFont, nullptr);
CFRetain(mCTFont);
}
ScaledFontMac::~ScaledFontMac() {
CFRelease(mCTFont);
CGFontRelease(mFont);
}
SkTypeface* ScaledFontMac::CreateSkTypeface() {
return SkMakeTypefaceFromCTFont(mCTFont).release();
}
void ScaledFontMac::SetupSkFontDrawOptions(SkFont& aFont) {
aFont.setSubpixel(true);
// Normally, Skia enables LCD FontSmoothing which creates thicker fonts
// and also enables subpixel AA. CoreGraphics without font smoothing
// explicitly creates thinner fonts and grayscale AA.
// CoreGraphics doesn't support a configuration that produces thicker
// fonts with grayscale AA as LCD Font Smoothing enables or disables
// both. However, Skia supports it by enabling font smoothing (producing
// subpixel AA) and converts it to grayscale AA. Since Skia doesn't
// support subpixel AA on transparent backgrounds, we still want font
// smoothing for the thicker fonts, even if it is grayscale AA.
//
// With explicit Grayscale AA (from -moz-osx-font-smoothing:grayscale),
// we want to have grayscale AA with no smoothing at all. This means
// disabling the LCD font smoothing behaviour.
// To accomplish this we have to explicitly disable hinting,
// and disable LCDRenderText.
if (aFont.getEdging() == SkFont::Edging::kAntiAlias && !mUseFontSmoothing) {
aFont.setHinting(SkFontHinting::kNone);
}
}
// private API here are the public options on OS X
// CTFontCreatePathForGlyph
// ATSUGlyphGetCubicPaths
// we've used this in cairo sucessfully for some time.
// Note: cairo dlsyms it. We could do that but maybe it's
// safe just to use?
already_AddRefed<Path> ScaledFontMac::GetPathForGlyphs(
const GlyphBuffer& aBuffer, const DrawTarget* aTarget) {
return ScaledFontBase::GetPathForGlyphs(aBuffer, aTarget);
}
static uint32_t CalcTableChecksum(const uint32_t* tableStart, uint32_t length,
bool skipChecksumAdjust = false) {
uint32_t sum = 0L;
const uint32_t* table = tableStart;
const uint32_t* end = table + length / sizeof(uint32_t);
while (table < end) {
if (skipChecksumAdjust && (table - tableStart) == 2) {
table++;
} else {
sum += CFSwapInt32BigToHost(*table++);
}
}
// The length is not 4-byte aligned, but we still must process the remaining
// bytes.
if (length & 3) {
// Pad with zero before adding to the checksum.
uint32_t last = 0;
memcpy(&last, end, length & 3);
sum += CFSwapInt32BigToHost(last);
}
return sum;
}
struct TableRecord {
uint32_t tag;
uint32_t checkSum;
uint32_t offset;
uint32_t length;
CFDataRef data;
};
static int maxPow2LessThanEqual(int a) {
int x = 1;
int shift = 0;
while ((x << (shift + 1)) <= a) {
shift++;
}
return shift;
}
struct writeBuf final {
explicit writeBuf(int size) {
this->data = new unsigned char[size];
this->offset = 0;
}
~writeBuf() { delete[] this->data; }
template <class T>
void writeElement(T a) {
*reinterpret_cast<T*>(&this->data[this->offset]) = a;
this->offset += sizeof(T);
}
void writeMem(const void* data, unsigned long length) {
memcpy(&this->data[this->offset], data, length);
this->offset += length;
}
void align() {
while (this->offset & 3) {
this->data[this->offset] = 0;
this->offset++;
}
}
unsigned char* data;
int offset;
};
bool UnscaledFontMac::GetFontFileData(FontFileDataOutput aDataCallback,
void* aBaton) {
// We'll reconstruct a TTF font from the tables we can get from the CGFont
CFArrayRef tags = CGFontCopyTableTags(mFont);
CFIndex count = CFArrayGetCount(tags);
TableRecord* records = new TableRecord[count];
uint32_t offset = 0;
offset += sizeof(uint32_t) * 3;
offset += sizeof(uint32_t) * 4 * count;
bool CFF = false;
for (CFIndex i = 0; i < count; i++) {
uint32_t tag = (uint32_t)(uintptr_t)CFArrayGetValueAtIndex(tags, i);
if (tag == 0x43464620) { // 'CFF '
CFF = true;
}
CFDataRef data = CGFontCopyTableForTag(mFont, tag);
// Bug 1602391 suggests CGFontCopyTableForTag can fail, even though we just
// got the tag from the font via CGFontCopyTableTags above. If we can catch
// this (e.g. in fuzz-testing) it'd be good to understand when it happens,
// but in any case we'll handle it safely below by treating the table as
// zero-length.
MOZ_ASSERT(data, "failed to get font table data");
records[i].tag = tag;
records[i].offset = offset;
records[i].data = data;
if (data) {
records[i].length = CFDataGetLength(data);
bool skipChecksumAdjust = (tag == 0x68656164); // 'head'
records[i].checkSum = CalcTableChecksum(
reinterpret_cast<const uint32_t*>(CFDataGetBytePtr(data)),
records[i].length, skipChecksumAdjust);
offset += records[i].length;
// 32 bit align the tables
offset = (offset + 3) & ~3;
} else {
records[i].length = 0;
records[i].checkSum = 0;
}
}
CFRelease(tags);
struct writeBuf buf(offset);
// write header/offset table
if (CFF) {
buf.writeElement(CFSwapInt32HostToBig(0x4f54544f));
} else {
buf.writeElement(CFSwapInt32HostToBig(0x00010000));
}
buf.writeElement(CFSwapInt16HostToBig(count));
int maxPow2Count = maxPow2LessThanEqual(count);
buf.writeElement(CFSwapInt16HostToBig((1 << maxPow2Count) * 16));
buf.writeElement(CFSwapInt16HostToBig(maxPow2Count));
buf.writeElement(CFSwapInt16HostToBig((count - (1 << maxPow2Count)) * 16));
// write table record entries
for (CFIndex i = 0; i < count; i++) {
buf.writeElement(CFSwapInt32HostToBig(records[i].tag));
buf.writeElement(CFSwapInt32HostToBig(records[i].checkSum));
buf.writeElement(CFSwapInt32HostToBig(records[i].offset));
buf.writeElement(CFSwapInt32HostToBig(records[i].length));
}
// write tables
int checkSumAdjustmentOffset = 0;
for (CFIndex i = 0; i < count; i++) {
if (records[i].tag == 0x68656164) {
checkSumAdjustmentOffset = buf.offset + 2 * 4;
}
if (records[i].data) {
buf.writeMem(CFDataGetBytePtr(records[i].data), records[i].length);
buf.align();
CFRelease(records[i].data);
}
}
delete[] records;
// clear the checksumAdjust field before checksumming the whole font
memset(&buf.data[checkSumAdjustmentOffset], 0, sizeof(uint32_t));
uint32_t fontChecksum = CFSwapInt32HostToBig(
0xb1b0afba -
CalcTableChecksum(reinterpret_cast<const uint32_t*>(buf.data), offset));
// set checkSumAdjust to the computed checksum
memcpy(&buf.data[checkSumAdjustmentOffset], &fontChecksum,
sizeof(fontChecksum));
// we always use an index of 0
aDataCallback(buf.data, buf.offset, 0, aBaton);
return true;
}
bool UnscaledFontMac::GetFontDescriptor(FontDescriptorOutput aCb,
void* aBaton) {
if (mIsDataFont) {
return false;
}
AutoRelease<CFStringRef> psname(CGFontCopyPostScriptName(mFont));
if (!psname) {
return false;
}
char buf[256];
const char* cstr = CFStringGetCStringPtr(psname, kCFStringEncodingUTF8);
if (!cstr) {
if (!CFStringGetCString(psname, buf, sizeof(buf), kCFStringEncodingUTF8)) {
return false;
}
cstr = buf;
}
aCb(reinterpret_cast<const uint8_t*>(cstr), strlen(cstr), 0, aBaton);
return true;
}
static void CollectVariationsFromDictionary(const void* aKey,
const void* aValue,
void* aContext) {
auto keyPtr = static_cast<const CFTypeRef>(aKey);
auto valuePtr = static_cast<const CFTypeRef>(aValue);
auto outVariations = static_cast<std::vector<FontVariation>*>(aContext);
if (CFGetTypeID(keyPtr) == CFNumberGetTypeID() &&
CFGetTypeID(valuePtr) == CFNumberGetTypeID()) {
uint64_t t;
double v;
if (CFNumberGetValue(static_cast<CFNumberRef>(keyPtr), kCFNumberSInt64Type,
&t) &&
CFNumberGetValue(static_cast<CFNumberRef>(valuePtr),
kCFNumberDoubleType, &v)) {
outVariations->push_back(FontVariation{uint32_t(t), float(v)});
}
}
}
static bool GetVariationsForCTFont(CTFontRef aCTFont,
std::vector<FontVariation>* aOutVariations) {
if (!aCTFont) {
return true;
}
AutoRelease<CFDictionaryRef> dict(CTFontCopyVariation(aCTFont));
CFIndex count = dict ? CFDictionaryGetCount(dict) : 0;
if (count > 0) {
aOutVariations->reserve(count);
CFDictionaryApplyFunction(dict, CollectVariationsFromDictionary,
aOutVariations);
}
return true;
}
bool ScaledFontMac::GetFontInstanceData(FontInstanceDataOutput aCb,
void* aBaton) {
// Collect any variation settings that were incorporated into the CTFont.
std::vector<FontVariation> variations;
if (!GetVariationsForCTFont(mCTFont, &variations)) {
return false;
}
InstanceData instance(this);
aCb(reinterpret_cast<uint8_t*>(&instance), sizeof(instance),
variations.data(), variations.size(), aBaton);
return true;
}
bool ScaledFontMac::GetWRFontInstanceOptions(
Maybe<wr::FontInstanceOptions>* aOutOptions,
Maybe<wr::FontInstancePlatformOptions>* aOutPlatformOptions,
std::vector<FontVariation>* aOutVariations) {
GetVariationsForCTFont(mCTFont, aOutVariations);
wr::FontInstanceOptions options;
options.render_mode = wr::FontRenderMode::Subpixel;
options.flags = wr::FontInstanceFlags::SUBPIXEL_POSITION;
if (mUseFontSmoothing) {
options.flags |= wr::FontInstanceFlags::FONT_SMOOTHING;
}
if (mApplySyntheticBold) {
options.flags |= wr::FontInstanceFlags::SYNTHETIC_BOLD;
}
if (mHasColorGlyphs) {
options.flags |= wr::FontInstanceFlags::EMBEDDED_BITMAPS;
}
options.bg_color = wr::ToColorU(mFontSmoothingBackgroundColor);
options.synthetic_italics =
wr::DegreesToSyntheticItalics(GetSyntheticObliqueAngle());
*aOutOptions = Some(options);
return true;
}
ScaledFontMac::InstanceData::InstanceData(
const wr::FontInstanceOptions* aOptions,
const wr::FontInstancePlatformOptions* aPlatformOptions)
: mUseFontSmoothing(true),
mApplySyntheticBold(false),
mHasColorGlyphs(false) {
if (aOptions) {
if (!(aOptions->flags & wr::FontInstanceFlags::FONT_SMOOTHING)) {
mUseFontSmoothing = false;
}
if (aOptions->flags & wr::FontInstanceFlags::SYNTHETIC_BOLD) {
mApplySyntheticBold = true;
}
if (aOptions->flags & wr::FontInstanceFlags::EMBEDDED_BITMAPS) {
mHasColorGlyphs = true;
}
if (aOptions->bg_color.a != 0) {
mFontSmoothingBackgroundColor =
DeviceColor::FromU8(aOptions->bg_color.r, aOptions->bg_color.g,
aOptions->bg_color.b, aOptions->bg_color.a);
}
}
}
static CFDictionaryRef CreateVariationDictionaryOrNull(
CGFontRef aCGFont, CFArrayRef& aCGAxesCache, CFArrayRef& aCTAxesCache,
uint32_t aVariationCount, const FontVariation* aVariations) {
if (!aCGAxesCache) {
aCGAxesCache = CGFontCopyVariationAxes(aCGFont);
if (!aCGAxesCache) {
return nullptr;
}
}
if (!aCTAxesCache) {
AutoRelease<CTFontRef> ctFont(
CTFontCreateWithGraphicsFont(aCGFont, 0, nullptr, nullptr));
aCTAxesCache = CTFontCopyVariationAxes(ctFont);
if (!aCTAxesCache) {
return nullptr;
}
}
CFIndex axisCount = CFArrayGetCount(aCTAxesCache);
if (CFArrayGetCount(aCGAxesCache) != axisCount) {
return nullptr;
}
AutoRelease<CFMutableDictionaryRef> dict(CFDictionaryCreateMutable(
kCFAllocatorDefault, axisCount, &kCFTypeDictionaryKeyCallBacks,
&kCFTypeDictionaryValueCallBacks));
// Number of variation settings passed in the aVariations parameter.
// This will typically be a very low value, so we just linear-search them.
bool allDefaultValues = true;
for (CFIndex i = 0; i < axisCount; ++i) {
// We sanity-check the axis info found in the CTFont, and bail out
// (returning null) if it doesn't have the expected types.
CFTypeRef axisInfo = CFArrayGetValueAtIndex(aCTAxesCache, i);
if (CFDictionaryGetTypeID() != CFGetTypeID(axisInfo)) {
return nullptr;
}
CFDictionaryRef axis = static_cast<CFDictionaryRef>(axisInfo);
CFTypeRef axisTag =
CFDictionaryGetValue(axis, kCTFontVariationAxisIdentifierKey);
if (!axisTag || CFGetTypeID(axisTag) != CFNumberGetTypeID()) {
return nullptr;
}
int64_t tagLong;
if (!CFNumberGetValue(static_cast<CFNumberRef>(axisTag),
kCFNumberSInt64Type, &tagLong)) {
return nullptr;
}
axisInfo = CFArrayGetValueAtIndex(aCGAxesCache, i);
if (CFDictionaryGetTypeID() != CFGetTypeID(axisInfo)) {
return nullptr;
}
CFTypeRef axisName = CFDictionaryGetValue(
static_cast<CFDictionaryRef>(axisInfo), kCGFontVariationAxisName);
if (!axisName || CFGetTypeID(axisName) != CFStringGetTypeID()) {
return nullptr;
}
// Clamp axis values to the supported range.
CFTypeRef min =
CFDictionaryGetValue(axis, kCTFontVariationAxisMinimumValueKey);
CFTypeRef max =
CFDictionaryGetValue(axis, kCTFontVariationAxisMaximumValueKey);
CFTypeRef def =
CFDictionaryGetValue(axis, kCTFontVariationAxisDefaultValueKey);
if (!min || CFGetTypeID(min) != CFNumberGetTypeID() || !max ||
CFGetTypeID(max) != CFNumberGetTypeID() || !def ||
CFGetTypeID(def) != CFNumberGetTypeID()) {
return nullptr;
}
double minDouble;
double maxDouble;
double defDouble;
if (!CFNumberGetValue(static_cast<CFNumberRef>(min), kCFNumberDoubleType,
&minDouble) ||
!CFNumberGetValue(static_cast<CFNumberRef>(max), kCFNumberDoubleType,
&maxDouble) ||
!CFNumberGetValue(static_cast<CFNumberRef>(def), kCFNumberDoubleType,
&defDouble)) {
return nullptr;
}
double value = defDouble;
for (uint32_t j = 0; j < aVariationCount; ++j) {
if (aVariations[j].mTag == tagLong) {
value = std::min(std::max<double>(aVariations[j].mValue, minDouble),
maxDouble);
if (value != defDouble) {
allDefaultValues = false;
}
break;
}
}
AutoRelease<CFNumberRef> valueNumber(
CFNumberCreate(kCFAllocatorDefault, kCFNumberDoubleType, &value));
CFDictionaryAddValue(dict, axisName, valueNumber);
}
if (allDefaultValues) {
// We didn't actually set any non-default values, so throw away the
// variations dictionary and just use the default rendering.
return nullptr;
}
return dict.forget();
}
static CFDictionaryRef CreateVariationTagDictionaryOrNull(
CTFontRef aCTFont, uint32_t aVariationCount,
const FontVariation* aVariations) {
AutoRelease<CFArrayRef> axes(CTFontCopyVariationAxes(aCTFont));
CFIndex axisCount = CFArrayGetCount(axes);
AutoRelease<CFMutableDictionaryRef> dict(CFDictionaryCreateMutable(
kCFAllocatorDefault, axisCount, &kCFTypeDictionaryKeyCallBacks,
&kCFTypeDictionaryValueCallBacks));
// Number of variation settings passed in the aVariations parameter.
// This will typically be a very low value, so we just linear-search them.
bool allDefaultValues = true;
for (CFIndex i = 0; i < axisCount; ++i) {
// We sanity-check the axis info found in the CTFont, and bail out
// (returning null) if it doesn't have the expected types.
CFTypeRef axisInfo = CFArrayGetValueAtIndex(axes, i);
if (CFDictionaryGetTypeID() != CFGetTypeID(axisInfo)) {
return nullptr;
}
CFDictionaryRef axis = static_cast<CFDictionaryRef>(axisInfo);
CFTypeRef axisTag =
CFDictionaryGetValue(axis, kCTFontVariationAxisIdentifierKey);
if (!axisTag || CFGetTypeID(axisTag) != CFNumberGetTypeID()) {
return nullptr;
}
int64_t tagLong;
if (!CFNumberGetValue(static_cast<CFNumberRef>(axisTag),
kCFNumberSInt64Type, &tagLong)) {
return nullptr;
}
// Clamp axis values to the supported range.
CFTypeRef min =
CFDictionaryGetValue(axis, kCTFontVariationAxisMinimumValueKey);
CFTypeRef max =
CFDictionaryGetValue(axis, kCTFontVariationAxisMaximumValueKey);
CFTypeRef def =
CFDictionaryGetValue(axis, kCTFontVariationAxisDefaultValueKey);
if (!min || CFGetTypeID(min) != CFNumberGetTypeID() || !max ||
CFGetTypeID(max) != CFNumberGetTypeID() || !def ||
CFGetTypeID(def) != CFNumberGetTypeID()) {
return nullptr;
}
double minDouble;
double maxDouble;
double defDouble;
if (!CFNumberGetValue(static_cast<CFNumberRef>(min), kCFNumberDoubleType,
&minDouble) ||
!CFNumberGetValue(static_cast<CFNumberRef>(max), kCFNumberDoubleType,
&maxDouble) ||
!CFNumberGetValue(static_cast<CFNumberRef>(def), kCFNumberDoubleType,
&defDouble)) {
return nullptr;
}
double value = defDouble;
for (uint32_t j = 0; j < aVariationCount; ++j) {
if (aVariations[j].mTag == tagLong) {
value = std::min(std::max<double>(aVariations[j].mValue, minDouble),
maxDouble);
if (value != defDouble) {
allDefaultValues = false;
}
break;
}
}
AutoRelease<CFNumberRef> valueNumber(
CFNumberCreate(kCFAllocatorDefault, kCFNumberDoubleType, &value));
CFDictionaryAddValue(dict, axisTag, valueNumber);
}
if (allDefaultValues) {
// We didn't actually set any non-default values, so throw away the
// variations dictionary and just use the default rendering.
return nullptr;
}
return dict.forget();
}
/* static */
CGFontRef UnscaledFontMac::CreateCGFontWithVariations(
CGFontRef aFont, CFArrayRef& aCGAxesCache, CFArrayRef& aCTAxesCache,
uint32_t aVariationCount, const FontVariation* aVariations) {
if (!aVariationCount) {
return nullptr;
}
MOZ_ASSERT(aVariations);
AutoRelease<CFDictionaryRef> varDict(CreateVariationDictionaryOrNull(
aFont, aCGAxesCache, aCTAxesCache, aVariationCount, aVariations));
if (!varDict) {
return nullptr;
}
return CGFontCreateCopyWithVariations(aFont, varDict);
}
already_AddRefed<ScaledFont> UnscaledFontMac::CreateScaledFont(
Float aGlyphSize, const uint8_t* aInstanceData,
uint32_t aInstanceDataLength, const FontVariation* aVariations,
uint32_t aNumVariations)
{
if (aInstanceDataLength < sizeof(ScaledFontMac::InstanceData)) {
gfxWarning() << "Mac scaled font instance data is truncated.";
return nullptr;
}
const ScaledFontMac::InstanceData& instanceData =
*reinterpret_cast<const ScaledFontMac::InstanceData*>(aInstanceData);
RefPtr<ScaledFontMac> scaledFont;
if (mFontDesc) {
AutoRelease<CTFontRef> font(
CTFontCreateWithFontDescriptor(mFontDesc, aGlyphSize, nullptr));
if (aNumVariations > 0) {
AutoRelease<CFDictionaryRef> varDict(CreateVariationTagDictionaryOrNull(
font, aNumVariations, aVariations));
if (varDict) {
CFDictionaryRef varAttr = CFDictionaryCreate(
nullptr, (const void**)&kCTFontVariationAttribute,
(const void**)&varDict, 1, &kCFTypeDictionaryKeyCallBacks,
&kCFTypeDictionaryValueCallBacks);
AutoRelease<CTFontDescriptorRef> fontDesc(
CTFontDescriptorCreateCopyWithAttributes(mFontDesc, varAttr));
if (!fontDesc) {
return nullptr;
}
font = CTFontCreateWithFontDescriptor(fontDesc, aGlyphSize, nullptr);
}
}
scaledFont = new ScaledFontMac(
font, this, instanceData.mFontSmoothingBackgroundColor,
instanceData.mUseFontSmoothing, instanceData.mApplySyntheticBold,
instanceData.mHasColorGlyphs);
} else {
CGFontRef fontRef = mFont;
if (aNumVariations > 0) {
CGFontRef varFont = CreateCGFontWithVariations(
mFont, mCGAxesCache, mCTAxesCache, aNumVariations, aVariations);
if (varFont) {
fontRef = varFont;
}
}
scaledFont = new ScaledFontMac(fontRef, this, aGlyphSize, fontRef != mFont,
instanceData.mFontSmoothingBackgroundColor,
instanceData.mUseFontSmoothing,
instanceData.mApplySyntheticBold,
instanceData.mHasColorGlyphs);
}
return scaledFont.forget();
}
already_AddRefed<ScaledFont> UnscaledFontMac::CreateScaledFontFromWRFont(
Float aGlyphSize, const wr::FontInstanceOptions* aOptions,
const wr::FontInstancePlatformOptions* aPlatformOptions,
const FontVariation* aVariations, uint32_t aNumVariations) {
ScaledFontMac::InstanceData instanceData(aOptions, aPlatformOptions);
return CreateScaledFont(aGlyphSize, reinterpret_cast<uint8_t*>(&instanceData),
sizeof(instanceData), aVariations, aNumVariations);
}
cairo_font_face_t* ScaledFontMac::CreateCairoFontFace(
cairo_font_options_t* aFontOptions) {
MOZ_ASSERT(mFont);
return cairo_quartz_font_face_create_for_cgfont(mFont);
}
already_AddRefed<UnscaledFont> UnscaledFontMac::CreateFromFontDescriptor(
const uint8_t* aData, uint32_t aDataLength, uint32_t aIndex) {
if (aDataLength == 0) {
gfxWarning() << "Mac font descriptor is truncated.";
return nullptr;
}
CFStringRef name =
CFStringCreateWithBytes(kCFAllocatorDefault, (const UInt8*)aData,
aDataLength, kCFStringEncodingUTF8, false);
if (!name) {
return nullptr;
}
CGFontRef font = CGFontCreateWithFontName(name);
CFRelease(name);
if (!font) {
return nullptr;
}
RefPtr<UnscaledFont> unscaledFont = new UnscaledFontMac(font);
CFRelease(font);
return unscaledFont.forget();
}
} // namespace gfx
} // namespace mozilla