mirror of
https://github.com/mozilla/gecko-dev.git
synced 2025-01-12 23:12:21 +00:00
da72652618
Currently we can only use the gfx.color_management.force_srgb pref to force all images to sRGB, or just accept device space. It would be nice to be able to test device space in our tests, as well as sRGB. This patch adds a surface flag which allows us to selectively output sRGB. This will also be useful for clipboard and re-encoding purposes, since they want a neutral output. In an ideal world we would just output the color profile and the pixel data in the original color space, but for now this is a relatively simple approach that works on all platforms and interops well with all applications. Differential Revision: https://phabricator.services.mozilla.com/D65734 --HG-- extra : moz-landing-system : lando
579 lines
18 KiB
C++
579 lines
18 KiB
C++
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include "Decoder.h"
|
|
|
|
#include "DecodePool.h"
|
|
#include "GeckoProfiler.h"
|
|
#include "IDecodingTask.h"
|
|
#include "ISurfaceProvider.h"
|
|
#include "mozilla/gfx/2D.h"
|
|
#include "mozilla/gfx/Point.h"
|
|
#include "mozilla/Telemetry.h"
|
|
#include "nsComponentManagerUtils.h"
|
|
#include "nsProxyRelease.h"
|
|
#include "nsServiceManagerUtils.h"
|
|
|
|
using mozilla::gfx::IntPoint;
|
|
using mozilla::gfx::IntRect;
|
|
using mozilla::gfx::IntSize;
|
|
using mozilla::gfx::SurfaceFormat;
|
|
|
|
namespace mozilla {
|
|
namespace image {
|
|
|
|
class MOZ_STACK_CLASS AutoRecordDecoderTelemetry final {
|
|
public:
|
|
explicit AutoRecordDecoderTelemetry(Decoder* aDecoder) : mDecoder(aDecoder) {
|
|
MOZ_ASSERT(mDecoder);
|
|
|
|
// Begin recording telemetry data.
|
|
mStartTime = TimeStamp::Now();
|
|
}
|
|
|
|
~AutoRecordDecoderTelemetry() {
|
|
// Finish telemetry.
|
|
mDecoder->mDecodeTime += (TimeStamp::Now() - mStartTime);
|
|
}
|
|
|
|
private:
|
|
Decoder* mDecoder;
|
|
TimeStamp mStartTime;
|
|
};
|
|
|
|
Decoder::Decoder(RasterImage* aImage)
|
|
: mInProfile(nullptr),
|
|
mTransform(nullptr),
|
|
mImageData(nullptr),
|
|
mImageDataLength(0),
|
|
mCMSMode(gfxPlatform::GetCMSMode()),
|
|
mImage(aImage),
|
|
mFrameRecycler(nullptr),
|
|
mProgress(NoProgress),
|
|
mFrameCount(0),
|
|
mLoopLength(FrameTimeout::Zero()),
|
|
mDecoderFlags(DefaultDecoderFlags()),
|
|
mSurfaceFlags(DefaultSurfaceFlags()),
|
|
mInitialized(false),
|
|
mMetadataDecode(false),
|
|
mHaveExplicitOutputSize(false),
|
|
mInFrame(false),
|
|
mFinishedNewFrame(false),
|
|
mHasFrameToTake(false),
|
|
mReachedTerminalState(false),
|
|
mDecodeDone(false),
|
|
mError(false),
|
|
mShouldReportError(false),
|
|
mFinalizeFrames(true) {}
|
|
|
|
Decoder::~Decoder() {
|
|
MOZ_ASSERT(mProgress == NoProgress || !mImage,
|
|
"Destroying Decoder without taking all its progress changes");
|
|
MOZ_ASSERT(mInvalidRect.IsEmpty() || !mImage,
|
|
"Destroying Decoder without taking all its invalidations");
|
|
mInitialized = false;
|
|
|
|
if (mInProfile) {
|
|
// mTransform belongs to us only if mInProfile is non-null
|
|
if (mTransform) {
|
|
qcms_transform_release(mTransform);
|
|
}
|
|
qcms_profile_release(mInProfile);
|
|
}
|
|
|
|
if (mImage && !NS_IsMainThread()) {
|
|
// Dispatch mImage to main thread to prevent it from being destructed by the
|
|
// decode thread.
|
|
NS_ReleaseOnMainThread(mImage.forget());
|
|
}
|
|
}
|
|
|
|
void Decoder::SetSurfaceFlags(SurfaceFlags aSurfaceFlags) {
|
|
MOZ_ASSERT(!mInitialized);
|
|
mSurfaceFlags = aSurfaceFlags;
|
|
if (mSurfaceFlags & SurfaceFlags::NO_COLORSPACE_CONVERSION) {
|
|
mCMSMode = eCMSMode_Off;
|
|
}
|
|
}
|
|
|
|
qcms_profile* Decoder::GetCMSOutputProfile() const {
|
|
if (mSurfaceFlags & SurfaceFlags::TO_SRGB_COLORSPACE) {
|
|
return gfxPlatform::GetCMSsRGBProfile();
|
|
}
|
|
return gfxPlatform::GetCMSOutputProfile();
|
|
}
|
|
|
|
qcms_transform* Decoder::GetCMSsRGBTransform(SurfaceFormat aFormat) const {
|
|
if (mSurfaceFlags & SurfaceFlags::TO_SRGB_COLORSPACE) {
|
|
// We want a transform to convert from sRGB to device space, but we are
|
|
// already using sRGB as our device space. That means we can skip
|
|
// color management entirely.
|
|
return nullptr;
|
|
}
|
|
|
|
switch (aFormat) {
|
|
case SurfaceFormat::B8G8R8A8:
|
|
case SurfaceFormat::B8G8R8X8:
|
|
return gfxPlatform::GetCMSBGRATransform();
|
|
case SurfaceFormat::R8G8B8A8:
|
|
case SurfaceFormat::R8G8B8X8:
|
|
return gfxPlatform::GetCMSRGBATransform();
|
|
case SurfaceFormat::R8G8B8:
|
|
return gfxPlatform::GetCMSRGBTransform();
|
|
default:
|
|
MOZ_ASSERT_UNREACHABLE("Unsupported surface format!");
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Common implementation of the decoder interface.
|
|
*/
|
|
|
|
nsresult Decoder::Init() {
|
|
// No re-initializing
|
|
MOZ_ASSERT(!mInitialized, "Can't re-initialize a decoder!");
|
|
|
|
// All decoders must have a SourceBufferIterator.
|
|
MOZ_ASSERT(mIterator);
|
|
|
|
// Metadata decoders must not set an output size.
|
|
MOZ_ASSERT_IF(mMetadataDecode, !mHaveExplicitOutputSize);
|
|
|
|
// All decoders must be anonymous except for metadata decoders.
|
|
// XXX(seth): Soon that exception will be removed.
|
|
MOZ_ASSERT_IF(mImage, IsMetadataDecode());
|
|
|
|
// Implementation-specific initialization.
|
|
nsresult rv = InitInternal();
|
|
|
|
mInitialized = true;
|
|
|
|
return rv;
|
|
}
|
|
|
|
LexerResult Decoder::Decode(IResumable* aOnResume /* = nullptr */) {
|
|
MOZ_ASSERT(mInitialized, "Should be initialized here");
|
|
MOZ_ASSERT(mIterator, "Should have a SourceBufferIterator");
|
|
|
|
// If we're already done, don't attempt to keep decoding.
|
|
if (GetDecodeDone()) {
|
|
return LexerResult(HasError() ? TerminalState::FAILURE
|
|
: TerminalState::SUCCESS);
|
|
}
|
|
|
|
LexerResult lexerResult(TerminalState::FAILURE);
|
|
{
|
|
AUTO_PROFILER_LABEL_CATEGORY_PAIR(GRAPHICS_ImageDecoding);
|
|
AutoRecordDecoderTelemetry telemetry(this);
|
|
|
|
lexerResult = DoDecode(*mIterator, aOnResume);
|
|
};
|
|
|
|
if (lexerResult.is<Yield>()) {
|
|
// We either need more data to continue (in which case either @aOnResume or
|
|
// the caller will reschedule us to run again later), or the decoder is
|
|
// yielding to allow the caller access to some intermediate output.
|
|
return lexerResult;
|
|
}
|
|
|
|
// We reached a terminal state; we're now done decoding.
|
|
MOZ_ASSERT(lexerResult.is<TerminalState>());
|
|
mReachedTerminalState = true;
|
|
|
|
// If decoding failed, record that fact.
|
|
if (lexerResult.as<TerminalState>() == TerminalState::FAILURE) {
|
|
PostError();
|
|
}
|
|
|
|
// Perform final cleanup.
|
|
CompleteDecode();
|
|
|
|
return LexerResult(HasError() ? TerminalState::FAILURE
|
|
: TerminalState::SUCCESS);
|
|
}
|
|
|
|
LexerResult Decoder::TerminateFailure() {
|
|
PostError();
|
|
|
|
// Perform final cleanup if need be.
|
|
if (!mReachedTerminalState) {
|
|
mReachedTerminalState = true;
|
|
CompleteDecode();
|
|
}
|
|
|
|
return LexerResult(TerminalState::FAILURE);
|
|
}
|
|
|
|
bool Decoder::ShouldSyncDecode(size_t aByteLimit) {
|
|
MOZ_ASSERT(aByteLimit > 0);
|
|
MOZ_ASSERT(mIterator, "Should have a SourceBufferIterator");
|
|
|
|
return mIterator->RemainingBytesIsNoMoreThan(aByteLimit);
|
|
}
|
|
|
|
void Decoder::CompleteDecode() {
|
|
// Implementation-specific finalization.
|
|
nsresult rv = BeforeFinishInternal();
|
|
if (NS_FAILED(rv)) {
|
|
PostError();
|
|
}
|
|
|
|
rv = HasError() ? FinishWithErrorInternal() : FinishInternal();
|
|
if (NS_FAILED(rv)) {
|
|
PostError();
|
|
}
|
|
|
|
if (IsMetadataDecode()) {
|
|
// If this was a metadata decode and we never got a size, the decode failed.
|
|
if (!HasSize()) {
|
|
PostError();
|
|
}
|
|
return;
|
|
}
|
|
|
|
// If the implementation left us mid-frame, finish that up. Note that it may
|
|
// have left us transparent.
|
|
if (mInFrame) {
|
|
PostHasTransparency();
|
|
PostFrameStop();
|
|
}
|
|
|
|
// If PostDecodeDone() has not been called, we may need to send teardown
|
|
// notifications if it is unrecoverable.
|
|
if (!mDecodeDone) {
|
|
// We should always report an error to the console in this case.
|
|
mShouldReportError = true;
|
|
|
|
if (GetCompleteFrameCount() > 0) {
|
|
// We're usable if we have at least one complete frame, so do exactly
|
|
// what we should have when the decoder completed.
|
|
PostHasTransparency();
|
|
PostDecodeDone();
|
|
} else {
|
|
// We're not usable. Record some final progress indicating the error.
|
|
mProgress |= FLAG_DECODE_COMPLETE | FLAG_HAS_ERROR;
|
|
}
|
|
}
|
|
|
|
if (mDecodeDone) {
|
|
MOZ_ASSERT(HasError() || mCurrentFrame, "Should have an error or a frame");
|
|
|
|
// If this image wasn't animated and isn't a transient image, mark its frame
|
|
// as optimizable. We don't support optimizing animated images and
|
|
// optimizing transient images isn't worth it.
|
|
if (!HasAnimation() &&
|
|
!(mDecoderFlags & DecoderFlags::IMAGE_IS_TRANSIENT) && mCurrentFrame) {
|
|
mCurrentFrame->SetOptimizable();
|
|
}
|
|
}
|
|
}
|
|
|
|
void Decoder::SetOutputSize(const gfx::IntSize& aSize) {
|
|
mOutputSize = Some(aSize);
|
|
mHaveExplicitOutputSize = true;
|
|
}
|
|
|
|
Maybe<gfx::IntSize> Decoder::ExplicitOutputSize() const {
|
|
MOZ_ASSERT_IF(mHaveExplicitOutputSize, mOutputSize);
|
|
return mHaveExplicitOutputSize ? mOutputSize : Nothing();
|
|
}
|
|
|
|
Maybe<uint32_t> Decoder::TakeCompleteFrameCount() {
|
|
const bool finishedNewFrame = mFinishedNewFrame;
|
|
mFinishedNewFrame = false;
|
|
return finishedNewFrame ? Some(GetCompleteFrameCount()) : Nothing();
|
|
}
|
|
|
|
DecoderFinalStatus Decoder::FinalStatus() const {
|
|
return DecoderFinalStatus(IsMetadataDecode(), GetDecodeDone(), HasError(),
|
|
ShouldReportError());
|
|
}
|
|
|
|
DecoderTelemetry Decoder::Telemetry() const {
|
|
MOZ_ASSERT(mIterator);
|
|
return DecoderTelemetry(SpeedHistogram(),
|
|
mIterator ? mIterator->ByteCount() : 0,
|
|
mIterator ? mIterator->ChunkCount() : 0, mDecodeTime);
|
|
}
|
|
|
|
nsresult Decoder::AllocateFrame(const gfx::IntSize& aOutputSize,
|
|
gfx::SurfaceFormat aFormat,
|
|
const Maybe<AnimationParams>& aAnimParams) {
|
|
mCurrentFrame = AllocateFrameInternal(aOutputSize, aFormat, aAnimParams,
|
|
std::move(mCurrentFrame));
|
|
|
|
if (mCurrentFrame) {
|
|
mHasFrameToTake = true;
|
|
|
|
// Gather the raw pointers the decoders will use.
|
|
mCurrentFrame->GetImageData(&mImageData, &mImageDataLength);
|
|
|
|
// We should now be on |aFrameNum|. (Note that we're comparing the frame
|
|
// number, which is zero-based, with the frame count, which is one-based.)
|
|
MOZ_ASSERT_IF(aAnimParams, aAnimParams->mFrameNum + 1 == mFrameCount);
|
|
|
|
// If we're past the first frame, PostIsAnimated() should've been called.
|
|
MOZ_ASSERT_IF(mFrameCount > 1, HasAnimation());
|
|
|
|
// Update our state to reflect the new frame.
|
|
MOZ_ASSERT(!mInFrame, "Starting new frame but not done with old one!");
|
|
mInFrame = true;
|
|
}
|
|
|
|
return mCurrentFrame ? NS_OK : NS_ERROR_FAILURE;
|
|
}
|
|
|
|
RawAccessFrameRef Decoder::AllocateFrameInternal(
|
|
const gfx::IntSize& aOutputSize, SurfaceFormat aFormat,
|
|
const Maybe<AnimationParams>& aAnimParams,
|
|
RawAccessFrameRef&& aPreviousFrame) {
|
|
if (HasError()) {
|
|
return RawAccessFrameRef();
|
|
}
|
|
|
|
uint32_t frameNum = aAnimParams ? aAnimParams->mFrameNum : 0;
|
|
if (frameNum != mFrameCount) {
|
|
MOZ_ASSERT_UNREACHABLE("Allocating frames out of order");
|
|
return RawAccessFrameRef();
|
|
}
|
|
|
|
if (aOutputSize.width <= 0 || aOutputSize.height <= 0) {
|
|
NS_WARNING("Trying to add frame with zero or negative size");
|
|
return RawAccessFrameRef();
|
|
}
|
|
|
|
if (frameNum == 1) {
|
|
MOZ_ASSERT(aPreviousFrame, "Must provide a previous frame when animated");
|
|
aPreviousFrame->SetRawAccessOnly();
|
|
}
|
|
|
|
if (frameNum > 0) {
|
|
if (aPreviousFrame->GetDisposalMethod() !=
|
|
DisposalMethod::RESTORE_PREVIOUS) {
|
|
// If the new restore frame is the direct previous frame, then we know
|
|
// the dirty rect is composed only of the current frame's blend rect and
|
|
// the restore frame's clear rect (if applicable) which are handled in
|
|
// filters.
|
|
mRestoreFrame = std::move(aPreviousFrame);
|
|
mRestoreDirtyRect.SetBox(0, 0, 0, 0);
|
|
} else {
|
|
// We only need the previous frame's dirty rect, because while there may
|
|
// have been several frames between us and mRestoreFrame, the only areas
|
|
// that changed are the restore frame's clear rect, the current frame
|
|
// blending rect, and the previous frame's blending rect. All else is
|
|
// forgotten due to us restoring the same frame again.
|
|
mRestoreDirtyRect = aPreviousFrame->GetBoundedBlendRect();
|
|
}
|
|
}
|
|
|
|
RawAccessFrameRef ref;
|
|
|
|
// If we have a frame recycler, it must be for an animated image producing
|
|
// full frames. If the higher layers are discarding frames because of the
|
|
// memory footprint, then the recycler will allow us to reuse the buffers.
|
|
// Each frame should be the same size and have mostly the same properties.
|
|
if (mFrameRecycler) {
|
|
MOZ_ASSERT(aAnimParams);
|
|
|
|
ref = mFrameRecycler->RecycleFrame(mRecycleRect);
|
|
if (ref) {
|
|
// If the recycled frame is actually the current restore frame, we cannot
|
|
// use it. If the next restore frame is the new frame we are creating, in
|
|
// theory we could reuse it, but we would need to store the restore frame
|
|
// animation parameters elsewhere. For now we just drop it.
|
|
bool blocked = ref.get() == mRestoreFrame.get();
|
|
if (!blocked) {
|
|
blocked = NS_FAILED(ref->InitForDecoderRecycle(aAnimParams.ref()));
|
|
}
|
|
|
|
if (blocked) {
|
|
ref.reset();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Either the recycler had nothing to give us, or we don't have a recycler.
|
|
// Produce a new frame to store the data.
|
|
if (!ref) {
|
|
// There is no underlying data to reuse, so reset the recycle rect to be
|
|
// the full frame, to ensure the restore frame is fully copied.
|
|
mRecycleRect = IntRect(IntPoint(0, 0), aOutputSize);
|
|
|
|
bool nonPremult = bool(mSurfaceFlags & SurfaceFlags::NO_PREMULTIPLY_ALPHA);
|
|
auto frame = MakeNotNull<RefPtr<imgFrame>>();
|
|
if (NS_FAILED(frame->InitForDecoder(aOutputSize, aFormat, nonPremult,
|
|
aAnimParams, bool(mFrameRecycler)))) {
|
|
NS_WARNING("imgFrame::Init should succeed");
|
|
return RawAccessFrameRef();
|
|
}
|
|
|
|
ref = frame->RawAccessRef();
|
|
if (!ref) {
|
|
frame->Abort();
|
|
return RawAccessFrameRef();
|
|
}
|
|
|
|
if (frameNum > 0) {
|
|
frame->SetRawAccessOnly();
|
|
}
|
|
}
|
|
|
|
mFrameCount++;
|
|
|
|
return ref;
|
|
}
|
|
|
|
/*
|
|
* Hook stubs. Override these as necessary in decoder implementations.
|
|
*/
|
|
|
|
nsresult Decoder::InitInternal() { return NS_OK; }
|
|
nsresult Decoder::BeforeFinishInternal() { return NS_OK; }
|
|
nsresult Decoder::FinishInternal() { return NS_OK; }
|
|
|
|
nsresult Decoder::FinishWithErrorInternal() {
|
|
MOZ_ASSERT(!mInFrame);
|
|
return NS_OK;
|
|
}
|
|
|
|
/*
|
|
* Progress Notifications
|
|
*/
|
|
|
|
void Decoder::PostSize(int32_t aWidth, int32_t aHeight,
|
|
Orientation aOrientation /* = Orientation()*/) {
|
|
// Validate.
|
|
MOZ_ASSERT(aWidth >= 0, "Width can't be negative!");
|
|
MOZ_ASSERT(aHeight >= 0, "Height can't be negative!");
|
|
|
|
// Set our intrinsic size.
|
|
mImageMetadata.SetSize(aWidth, aHeight, aOrientation);
|
|
|
|
// Verify it is the expected size, if given. Note that this is only used by
|
|
// the ICO decoder for embedded image types, so only its subdecoders are
|
|
// required to handle failures in PostSize.
|
|
if (!IsExpectedSize()) {
|
|
PostError();
|
|
return;
|
|
}
|
|
|
|
// Set our output size if it's not already set.
|
|
if (!mOutputSize) {
|
|
mOutputSize = Some(IntSize(aWidth, aHeight));
|
|
}
|
|
|
|
MOZ_ASSERT(mOutputSize->width <= aWidth && mOutputSize->height <= aHeight,
|
|
"Output size will result in upscaling");
|
|
|
|
// Record this notification.
|
|
mProgress |= FLAG_SIZE_AVAILABLE;
|
|
}
|
|
|
|
void Decoder::PostHasTransparency() { mProgress |= FLAG_HAS_TRANSPARENCY; }
|
|
|
|
void Decoder::PostIsAnimated(FrameTimeout aFirstFrameTimeout) {
|
|
mProgress |= FLAG_IS_ANIMATED;
|
|
mImageMetadata.SetHasAnimation();
|
|
mImageMetadata.SetFirstFrameTimeout(aFirstFrameTimeout);
|
|
}
|
|
|
|
void Decoder::PostFrameStop(Opacity aFrameOpacity) {
|
|
// We should be mid-frame
|
|
MOZ_ASSERT(!IsMetadataDecode(), "Stopping frame during metadata decode");
|
|
MOZ_ASSERT(mInFrame, "Stopping frame when we didn't start one");
|
|
MOZ_ASSERT(mCurrentFrame, "Stopping frame when we don't have one");
|
|
|
|
// Update our state.
|
|
mInFrame = false;
|
|
mFinishedNewFrame = true;
|
|
|
|
mCurrentFrame->Finish(aFrameOpacity, mFinalizeFrames);
|
|
|
|
mProgress |= FLAG_FRAME_COMPLETE;
|
|
|
|
mLoopLength += mCurrentFrame->GetTimeout();
|
|
|
|
if (mFrameCount == 1) {
|
|
// If we're not sending partial invalidations, then we send an invalidation
|
|
// here when the first frame is complete.
|
|
if (!ShouldSendPartialInvalidations()) {
|
|
mInvalidRect.UnionRect(mInvalidRect, IntRect(IntPoint(), Size()));
|
|
}
|
|
|
|
// If we dispose of the first frame by clearing it, then the first frame's
|
|
// refresh area is all of itself. RESTORE_PREVIOUS is invalid (assumed to
|
|
// be DISPOSE_CLEAR).
|
|
switch (mCurrentFrame->GetDisposalMethod()) {
|
|
default:
|
|
MOZ_FALLTHROUGH_ASSERT("Unexpected DisposalMethod");
|
|
case DisposalMethod::CLEAR:
|
|
case DisposalMethod::CLEAR_ALL:
|
|
case DisposalMethod::RESTORE_PREVIOUS:
|
|
mFirstFrameRefreshArea = IntRect(IntPoint(), Size());
|
|
break;
|
|
case DisposalMethod::KEEP:
|
|
case DisposalMethod::NOT_SPECIFIED:
|
|
break;
|
|
}
|
|
} else {
|
|
// Some GIFs are huge but only have a small area that they animate. We only
|
|
// need to refresh that small area when frame 0 comes around again.
|
|
mFirstFrameRefreshArea.UnionRect(mFirstFrameRefreshArea,
|
|
mCurrentFrame->GetBoundedBlendRect());
|
|
}
|
|
}
|
|
|
|
void Decoder::PostInvalidation(const gfx::IntRect& aRect,
|
|
const Maybe<gfx::IntRect>& aRectAtOutputSize
|
|
/* = Nothing() */) {
|
|
// We should be mid-frame
|
|
MOZ_ASSERT(mInFrame, "Can't invalidate when not mid-frame!");
|
|
MOZ_ASSERT(mCurrentFrame, "Can't invalidate when not mid-frame!");
|
|
|
|
// Record this invalidation, unless we're not sending partial invalidations
|
|
// or we're past the first frame.
|
|
if (ShouldSendPartialInvalidations() && mFrameCount == 1) {
|
|
mInvalidRect.UnionRect(mInvalidRect, aRect);
|
|
mCurrentFrame->ImageUpdated(aRectAtOutputSize.valueOr(aRect));
|
|
}
|
|
}
|
|
|
|
void Decoder::PostDecodeDone(int32_t aLoopCount /* = 0 */) {
|
|
MOZ_ASSERT(!IsMetadataDecode(), "Done with decoding in metadata decode");
|
|
MOZ_ASSERT(!mInFrame, "Can't be done decoding if we're mid-frame!");
|
|
MOZ_ASSERT(!mDecodeDone, "Decode already done!");
|
|
mDecodeDone = true;
|
|
|
|
mImageMetadata.SetLoopCount(aLoopCount);
|
|
|
|
// Some metadata that we track should take into account every frame in the
|
|
// image. If this is a first-frame-only decode, our accumulated loop length
|
|
// and first frame refresh area only includes the first frame, so it's not
|
|
// correct and we don't record it.
|
|
if (!IsFirstFrameDecode()) {
|
|
mImageMetadata.SetLoopLength(mLoopLength);
|
|
mImageMetadata.SetFirstFrameRefreshArea(mFirstFrameRefreshArea);
|
|
}
|
|
|
|
mProgress |= FLAG_DECODE_COMPLETE;
|
|
}
|
|
|
|
void Decoder::PostError() {
|
|
mError = true;
|
|
|
|
if (mInFrame) {
|
|
MOZ_ASSERT(mCurrentFrame);
|
|
MOZ_ASSERT(mFrameCount > 0);
|
|
mCurrentFrame->Abort();
|
|
mInFrame = false;
|
|
--mFrameCount;
|
|
mHasFrameToTake = false;
|
|
}
|
|
}
|
|
|
|
} // namespace image
|
|
} // namespace mozilla
|