gecko-dev/image/imgFrame.cpp
Ehsan Akhgari cde7e014c2 Bug 1620322 - Part 9: Move ContentBlockingLog to antitracking to keep all related code together in the same place; r=baku
Differential Revision: https://phabricator.services.mozilla.com/D65822

--HG--
rename : dom/base/ContentBlockingLog.cpp => toolkit/components/antitracking/ContentBlockingLog.cpp
rename : dom/base/ContentBlockingLog.h => toolkit/components/antitracking/ContentBlockingLog.h
extra : moz-landing-system : lando
2020-03-09 23:36:39 +00:00

975 lines
31 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "imgFrame.h"
#include "ImageRegion.h"
#include "ShutdownTracker.h"
#include "SurfaceCache.h"
#include "prenv.h"
#include "gfx2DGlue.h"
#include "gfxPlatform.h"
#include "gfxUtils.h"
#include "GeckoProfiler.h"
#include "MainThreadUtils.h"
#include "mozilla/CheckedInt.h"
#include "mozilla/gfx/gfxVars.h"
#include "mozilla/gfx/Tools.h"
#include "mozilla/gfx/SourceSurfaceRawData.h"
#include "mozilla/image/RecyclingSourceSurface.h"
#include "mozilla/layers/SourceSurfaceSharedData.h"
#include "mozilla/layers/SourceSurfaceVolatileData.h"
#include "mozilla/Likely.h"
#include "mozilla/MemoryReporting.h"
#include "mozilla/StaticPrefs_browser.h"
#include "nsMargin.h"
#include "nsRefreshDriver.h"
#include "nsThreadUtils.h"
namespace mozilla {
using namespace gfx;
namespace image {
static int32_t VolatileSurfaceStride(const IntSize& size,
SurfaceFormat format) {
// Stride must be a multiple of four or cairo will complain.
return (size.width * BytesPerPixel(format) + 0x3) & ~0x3;
}
static already_AddRefed<DataSourceSurface> CreateLockedSurface(
DataSourceSurface* aSurface, const IntSize& size, SurfaceFormat format) {
switch (aSurface->GetType()) {
case SurfaceType::DATA_SHARED:
case SurfaceType::DATA_ALIGNED: {
// Shared memory is never released until the surface itself is released.
// Similar for aligned/heap surfaces.
RefPtr<DataSourceSurface> surf(aSurface);
return surf.forget();
}
default: {
// Volatile memory requires us to map it first, and it is fallible.
DataSourceSurface::ScopedMap smap(aSurface,
DataSourceSurface::READ_WRITE);
if (smap.IsMapped()) {
return MakeAndAddRef<SourceSurfaceMappedData>(std::move(smap), size,
format);
}
break;
}
}
return nullptr;
}
static bool ShouldUseHeap(const IntSize& aSize, int32_t aStride,
bool aIsAnimated) {
// On some platforms (i.e. Android), a volatile buffer actually keeps a file
// handle active. We would like to avoid too many since we could easily
// exhaust the pool. However, other platforms we do not have the file handle
// problem, and additionally we may avoid a superfluous memset since the
// volatile memory starts out as zero-filled. Hence the knobs below.
// For as long as an animated image is retained, its frames will never be
// released to let the OS purge volatile buffers.
if (aIsAnimated && StaticPrefs::image_mem_animated_use_heap()) {
return true;
}
// Lets us avoid too many small images consuming all of the handles. The
// actual allocation checks for overflow.
int32_t bufferSize = (aStride * aSize.height) / 1024;
if (bufferSize < StaticPrefs::image_mem_volatile_min_threshold_kb()) {
return true;
}
return false;
}
static already_AddRefed<DataSourceSurface> AllocateBufferForImage(
const IntSize& size, SurfaceFormat format, bool aIsAnimated = false) {
int32_t stride = VolatileSurfaceStride(size, format);
if (gfxVars::GetUseWebRenderOrDefault() && StaticPrefs::image_mem_shared()) {
RefPtr<SourceSurfaceSharedData> newSurf = new SourceSurfaceSharedData();
if (newSurf->Init(size, stride, format)) {
return newSurf.forget();
}
} else if (ShouldUseHeap(size, stride, aIsAnimated)) {
RefPtr<SourceSurfaceAlignedRawData> newSurf =
new SourceSurfaceAlignedRawData();
if (newSurf->Init(size, format, false, 0, stride)) {
return newSurf.forget();
}
} else {
RefPtr<SourceSurfaceVolatileData> newSurf = new SourceSurfaceVolatileData();
if (newSurf->Init(size, stride, format)) {
return newSurf.forget();
}
}
return nullptr;
}
static bool GreenSurface(DataSourceSurface* aSurface, const IntSize& aSize,
SurfaceFormat aFormat) {
int32_t stride = aSurface->Stride();
uint32_t* surfaceData = reinterpret_cast<uint32_t*>(aSurface->GetData());
uint32_t surfaceDataLength = (stride * aSize.height) / sizeof(uint32_t);
// Start by assuming that GG is in the second byte and
// AA is in the final byte -- the most common case.
uint32_t color = mozilla::NativeEndian::swapFromBigEndian(0x00FF00FF);
// We are only going to handle this type of test under
// certain circumstances.
MOZ_ASSERT(surfaceData);
MOZ_ASSERT(aFormat == SurfaceFormat::B8G8R8A8 ||
aFormat == SurfaceFormat::B8G8R8X8 ||
aFormat == SurfaceFormat::R8G8B8A8 ||
aFormat == SurfaceFormat::R8G8B8X8 ||
aFormat == SurfaceFormat::A8R8G8B8 ||
aFormat == SurfaceFormat::X8R8G8B8);
MOZ_ASSERT((stride * aSize.height) % sizeof(uint32_t));
if (aFormat == SurfaceFormat::A8R8G8B8 ||
aFormat == SurfaceFormat::X8R8G8B8) {
color = mozilla::NativeEndian::swapFromBigEndian(0xFF00FF00);
}
for (uint32_t i = 0; i < surfaceDataLength; i++) {
surfaceData[i] = color;
}
return true;
}
static bool ClearSurface(DataSourceSurface* aSurface, const IntSize& aSize,
SurfaceFormat aFormat) {
int32_t stride = aSurface->Stride();
uint8_t* data = aSurface->GetData();
MOZ_ASSERT(data);
if (aFormat == SurfaceFormat::OS_RGBX) {
// Skia doesn't support RGBX surfaces, so ensure the alpha value is set
// to opaque white. While it would be nice to only do this for Skia,
// imgFrame can run off main thread and past shutdown where
// we might not have gfxPlatform, so just memset every time instead.
memset(data, 0xFF, stride * aSize.height);
} else if (aSurface->OnHeap()) {
// We only need to memset it if the buffer was allocated on the heap.
// Otherwise, it's allocated via mmap and refers to a zeroed page and will
// be COW once it's written to.
memset(data, 0, stride * aSize.height);
}
return true;
}
imgFrame::imgFrame()
: mMonitor("imgFrame"),
mDecoded(0, 0, 0, 0),
mLockCount(0),
mRecycleLockCount(0),
mAborted(false),
mFinished(false),
mOptimizable(false),
mShouldRecycle(false),
mTimeout(FrameTimeout::FromRawMilliseconds(100)),
mDisposalMethod(DisposalMethod::NOT_SPECIFIED),
mBlendMethod(BlendMethod::OVER),
mFormat(SurfaceFormat::UNKNOWN),
mNonPremult(false) {}
imgFrame::~imgFrame() {
#ifdef DEBUG
MonitorAutoLock lock(mMonitor);
MOZ_ASSERT(mAborted || AreAllPixelsWritten());
MOZ_ASSERT(mAborted || mFinished);
#endif
}
nsresult imgFrame::InitForDecoder(const nsIntSize& aImageSize,
SurfaceFormat aFormat, bool aNonPremult,
const Maybe<AnimationParams>& aAnimParams,
bool aShouldRecycle) {
// Assert for properties that should be verified by decoders,
// warn for properties related to bad content.
if (!SurfaceCache::IsLegalSize(aImageSize)) {
NS_WARNING("Should have legal image size");
mAborted = true;
return NS_ERROR_FAILURE;
}
mImageSize = aImageSize;
// May be updated shortly after InitForDecoder by BlendAnimationFilter
// because it needs to take into consideration the previous frames to
// properly calculate. We start with the whole frame as dirty.
mDirtyRect = GetRect();
if (aAnimParams) {
mBlendRect = aAnimParams->mBlendRect;
mTimeout = aAnimParams->mTimeout;
mBlendMethod = aAnimParams->mBlendMethod;
mDisposalMethod = aAnimParams->mDisposalMethod;
} else {
mBlendRect = GetRect();
}
if (aShouldRecycle) {
// If we are recycling then we should always use BGRA for the underlying
// surface because if we use BGRX, the next frame composited into the
// surface could be BGRA and cause rendering problems.
MOZ_ASSERT(aAnimParams);
mFormat = SurfaceFormat::OS_RGBA;
} else {
mFormat = aFormat;
}
mNonPremult = aNonPremult;
mShouldRecycle = aShouldRecycle;
MOZ_ASSERT(!mLockedSurface, "Called imgFrame::InitForDecoder() twice?");
bool postFirstFrame = aAnimParams && aAnimParams->mFrameNum > 0;
mRawSurface = AllocateBufferForImage(mImageSize, mFormat, postFirstFrame);
if (!mRawSurface) {
mAborted = true;
return NS_ERROR_OUT_OF_MEMORY;
}
if (StaticPrefs::browser_measurement_render_anims_and_video_solid() &&
aAnimParams) {
mBlankRawSurface = AllocateBufferForImage(mImageSize, mFormat);
if (!mBlankRawSurface) {
mAborted = true;
return NS_ERROR_OUT_OF_MEMORY;
}
}
mLockedSurface = CreateLockedSurface(mRawSurface, mImageSize, mFormat);
if (!mLockedSurface) {
NS_WARNING("Failed to create LockedSurface");
mAborted = true;
return NS_ERROR_OUT_OF_MEMORY;
}
if (mBlankRawSurface) {
mBlankLockedSurface =
CreateLockedSurface(mBlankRawSurface, mImageSize, mFormat);
if (!mBlankLockedSurface) {
NS_WARNING("Failed to create BlankLockedSurface");
mAborted = true;
return NS_ERROR_OUT_OF_MEMORY;
}
}
if (!ClearSurface(mRawSurface, mImageSize, mFormat)) {
NS_WARNING("Could not clear allocated buffer");
mAborted = true;
return NS_ERROR_OUT_OF_MEMORY;
}
if (mBlankRawSurface) {
if (!GreenSurface(mBlankRawSurface, mImageSize, mFormat)) {
NS_WARNING("Could not clear allocated blank buffer");
mAborted = true;
return NS_ERROR_OUT_OF_MEMORY;
}
}
return NS_OK;
}
nsresult imgFrame::InitForDecoderRecycle(const AnimationParams& aAnimParams) {
// We want to recycle this frame, but there is no guarantee that consumers are
// done with it in a timely manner. Let's ensure they are done with it first.
MonitorAutoLock lock(mMonitor);
MOZ_ASSERT(mLockCount > 0);
MOZ_ASSERT(mLockedSurface);
if (!mShouldRecycle) {
// This frame either was never marked as recyclable, or the flag was cleared
// for a caller which does not support recycling.
return NS_ERROR_NOT_AVAILABLE;
}
if (mRecycleLockCount > 0) {
if (NS_IsMainThread()) {
// We should never be both decoding and recycling on the main thread. Sync
// decoding can only be used to produce the first set of frames. Those
// either never use recycling because advancing was blocked (main thread
// is busy) or we were auto-advancing (to seek to a frame) and the frames
// were never accessed (and thus cannot have recycle locks).
MOZ_ASSERT_UNREACHABLE("Recycling/decoding on the main thread?");
return NS_ERROR_NOT_AVAILABLE;
}
// We don't want to wait forever to reclaim the frame because we have no
// idea why it is still held. It is possibly due to OMTP. Since we are off
// the main thread, and we generally have frames already buffered for the
// animation, we can afford to wait a short period of time to hopefully
// complete the transaction and reclaim the buffer.
//
// We choose to wait for, at most, the refresh driver interval, so that we
// won't skip more than one frame. If the frame is still in use due to
// outstanding transactions, we are already skipping frames. If the frame
// is still in use for some other purpose, it won't be returned to the pool
// and its owner can hold onto it forever without additional impact here.
TimeDuration timeout =
TimeDuration::FromMilliseconds(nsRefreshDriver::DefaultInterval());
while (true) {
TimeStamp start = TimeStamp::Now();
mMonitor.Wait(timeout);
if (mRecycleLockCount == 0) {
break;
}
TimeDuration delta = TimeStamp::Now() - start;
if (delta >= timeout) {
// We couldn't secure the frame for recycling. It will allocate a new
// frame instead.
return NS_ERROR_NOT_AVAILABLE;
}
timeout -= delta;
}
}
mBlendRect = aAnimParams.mBlendRect;
mTimeout = aAnimParams.mTimeout;
mBlendMethod = aAnimParams.mBlendMethod;
mDisposalMethod = aAnimParams.mDisposalMethod;
mDirtyRect = GetRect();
return NS_OK;
}
nsresult imgFrame::InitWithDrawable(gfxDrawable* aDrawable,
const nsIntSize& aSize,
const SurfaceFormat aFormat,
SamplingFilter aSamplingFilter,
uint32_t aImageFlags,
gfx::BackendType aBackend) {
// Assert for properties that should be verified by decoders,
// warn for properties related to bad content.
if (!SurfaceCache::IsLegalSize(aSize)) {
NS_WARNING("Should have legal image size");
mAborted = true;
return NS_ERROR_FAILURE;
}
mImageSize = aSize;
mFormat = aFormat;
RefPtr<DrawTarget> target;
bool canUseDataSurface = Factory::DoesBackendSupportDataDrawtarget(aBackend);
if (canUseDataSurface) {
// It's safe to use data surfaces for content on this platform, so we can
// get away with using volatile buffers.
MOZ_ASSERT(!mLockedSurface, "Called imgFrame::InitWithDrawable() twice?");
mRawSurface = AllocateBufferForImage(mImageSize, mFormat);
if (!mRawSurface) {
mAborted = true;
return NS_ERROR_OUT_OF_MEMORY;
}
mLockedSurface = CreateLockedSurface(mRawSurface, mImageSize, mFormat);
if (!mLockedSurface) {
NS_WARNING("Failed to create LockedSurface");
mAborted = true;
return NS_ERROR_OUT_OF_MEMORY;
}
if (!ClearSurface(mRawSurface, mImageSize, mFormat)) {
NS_WARNING("Could not clear allocated buffer");
mAborted = true;
return NS_ERROR_OUT_OF_MEMORY;
}
target = gfxPlatform::CreateDrawTargetForData(
mLockedSurface->GetData(), mImageSize, mLockedSurface->Stride(),
mFormat);
} else {
// We can't use data surfaces for content, so we'll create an offscreen
// surface instead. This means if someone later calls RawAccessRef(), we
// may have to do an expensive readback, but we warned callers about that in
// the documentation for this method.
MOZ_ASSERT(!mOptSurface, "Called imgFrame::InitWithDrawable() twice?");
if (gfxPlatform::GetPlatform()->SupportsAzureContentForType(aBackend)) {
target = gfxPlatform::GetPlatform()->CreateDrawTargetForBackend(
aBackend, mImageSize, mFormat);
} else {
target = gfxPlatform::GetPlatform()->CreateOffscreenContentDrawTarget(
mImageSize, mFormat);
}
}
if (!target || !target->IsValid()) {
mAborted = true;
return NS_ERROR_OUT_OF_MEMORY;
}
// Draw using the drawable the caller provided.
RefPtr<gfxContext> ctx = gfxContext::CreateOrNull(target);
MOZ_ASSERT(ctx); // Already checked the draw target above.
gfxUtils::DrawPixelSnapped(ctx, aDrawable, SizeDouble(mImageSize),
ImageRegion::Create(ThebesRect(GetRect())),
mFormat, aSamplingFilter, aImageFlags);
if (canUseDataSurface && !mLockedSurface) {
NS_WARNING("Failed to create VolatileDataSourceSurface");
mAborted = true;
return NS_ERROR_OUT_OF_MEMORY;
}
if (!canUseDataSurface) {
// We used an offscreen surface, which is an "optimized" surface from
// imgFrame's perspective.
mOptSurface = target->Snapshot();
} else {
FinalizeSurface();
}
// If we reach this point, we should regard ourselves as complete.
mDecoded = GetRect();
mFinished = true;
#ifdef DEBUG
MonitorAutoLock lock(mMonitor);
MOZ_ASSERT(AreAllPixelsWritten());
#endif
return NS_OK;
}
nsresult imgFrame::Optimize(DrawTarget* aTarget) {
MOZ_ASSERT(NS_IsMainThread());
mMonitor.AssertCurrentThreadOwns();
if (mLockCount > 0 || !mOptimizable) {
// Don't optimize right now.
return NS_OK;
}
// Check whether image optimization is disabled -- not thread safe!
static bool gDisableOptimize = false;
static bool hasCheckedOptimize = false;
if (!hasCheckedOptimize) {
if (PR_GetEnv("MOZ_DISABLE_IMAGE_OPTIMIZE")) {
gDisableOptimize = true;
}
hasCheckedOptimize = true;
}
// Don't optimize during shutdown because gfxPlatform may not be available.
if (ShutdownTracker::ShutdownHasStarted()) {
return NS_OK;
}
if (gDisableOptimize) {
return NS_OK;
}
if (mOptSurface) {
return NS_OK;
}
// XXX(seth): It's currently unclear if there's any reason why we can't
// optimize non-premult surfaces. We should look into removing this.
if (mNonPremult) {
return NS_OK;
}
if (!gfxVars::UseWebRender()) {
mOptSurface = aTarget->OptimizeSourceSurface(mLockedSurface);
} else {
mOptSurface = gfxPlatform::GetPlatform()
->ScreenReferenceDrawTarget()
->OptimizeSourceSurface(mLockedSurface);
}
if (mOptSurface == mLockedSurface) {
mOptSurface = nullptr;
}
if (mOptSurface) {
// There's no reason to keep our original surface around if we have an
// optimized surface. Release our reference to it. This will leave
// |mLockedSurface| as the only thing keeping it alive, so it'll get freed
// below.
mRawSurface = nullptr;
}
// Release all strong references to the surface's memory. If the underlying
// surface is volatile, this will allow the operating system to free the
// memory if it needs to.
mLockedSurface = nullptr;
mOptimizable = false;
return NS_OK;
}
DrawableFrameRef imgFrame::DrawableRef() { return DrawableFrameRef(this); }
RawAccessFrameRef imgFrame::RawAccessRef(bool aOnlyFinished /*= false*/) {
return RawAccessFrameRef(this, aOnlyFinished);
}
void imgFrame::SetRawAccessOnly() {
AssertImageDataLocked();
// Lock our data and throw away the key.
LockImageData(false);
}
imgFrame::SurfaceWithFormat imgFrame::SurfaceForDrawing(
bool aDoPartialDecode, bool aDoTile, ImageRegion& aRegion,
SourceSurface* aSurface) {
MOZ_ASSERT(NS_IsMainThread());
mMonitor.AssertCurrentThreadOwns();
if (!aDoPartialDecode) {
return SurfaceWithFormat(new gfxSurfaceDrawable(aSurface, mImageSize),
mFormat);
}
gfxRect available =
gfxRect(mDecoded.X(), mDecoded.Y(), mDecoded.Width(), mDecoded.Height());
if (aDoTile) {
// Create a temporary surface.
// Give this surface an alpha channel because there are
// transparent pixels in the padding or undecoded area
RefPtr<DrawTarget> target =
gfxPlatform::GetPlatform()->CreateOffscreenContentDrawTarget(
mImageSize, SurfaceFormat::OS_RGBA);
if (!target) {
return SurfaceWithFormat();
}
SurfacePattern pattern(aSurface, aRegion.GetExtendMode(),
Matrix::Translation(mDecoded.X(), mDecoded.Y()));
target->FillRect(ToRect(aRegion.Intersect(available).Rect()), pattern);
RefPtr<SourceSurface> newsurf = target->Snapshot();
return SurfaceWithFormat(new gfxSurfaceDrawable(newsurf, mImageSize),
target->GetFormat());
}
// Not tiling, and we have a surface, so we can account for
// a partial decode just by twiddling parameters.
aRegion = aRegion.Intersect(available);
IntSize availableSize(mDecoded.Width(), mDecoded.Height());
return SurfaceWithFormat(new gfxSurfaceDrawable(aSurface, availableSize),
mFormat);
}
bool imgFrame::Draw(gfxContext* aContext, const ImageRegion& aRegion,
SamplingFilter aSamplingFilter, uint32_t aImageFlags,
float aOpacity) {
AUTO_PROFILER_LABEL("imgFrame::Draw", GRAPHICS);
MOZ_ASSERT(NS_IsMainThread());
NS_ASSERTION(!aRegion.Rect().IsEmpty(), "Drawing empty region!");
NS_ASSERTION(!aRegion.IsRestricted() ||
!aRegion.Rect().Intersect(aRegion.Restriction()).IsEmpty(),
"We must be allowed to sample *some* source pixels!");
// Perform the draw and freeing of the surface outside the lock. We want to
// avoid contention with the decoder if we can. The surface may also attempt
// to relock the monitor if it is freed (e.g. RecyclingSourceSurface).
RefPtr<SourceSurface> surf;
SurfaceWithFormat surfaceResult;
ImageRegion region(aRegion);
gfxRect imageRect(0, 0, mImageSize.width, mImageSize.height);
{
MonitorAutoLock lock(mMonitor);
// Possibly convert this image into a GPU texture, this may also cause our
// mLockedSurface to be released and the OS to release the underlying
// memory.
Optimize(aContext->GetDrawTarget());
bool doPartialDecode = !AreAllPixelsWritten();
// Most draw targets will just use the surface only during DrawPixelSnapped
// but captures/recordings will retain a reference outside this stack
// context. While in theory a decoder thread could be trying to recycle this
// frame at this very moment, in practice the only way we can get here is if
// this frame is the current frame of the animation. Since we can only
// advance on the main thread, we know nothing else will try to use it.
DrawTarget* drawTarget = aContext->GetDrawTarget();
bool recording = drawTarget->GetBackendType() == BackendType::RECORDING;
bool temporary = !drawTarget->IsCaptureDT() && !recording;
RefPtr<SourceSurface> surf = GetSourceSurfaceInternal(temporary);
if (!surf) {
return false;
}
bool doTile = !imageRect.Contains(aRegion.Rect()) &&
!(aImageFlags & imgIContainer::FLAG_CLAMP);
surfaceResult = SurfaceForDrawing(doPartialDecode, doTile, region, surf);
// If we are recording, then we cannot recycle the surface. The blob
// rasterizer is not properly synchronized for recycling in the compositor
// process. The easiest thing to do is just mark the frames it consumes as
// non-recyclable.
if (recording && surfaceResult.IsValid()) {
mShouldRecycle = false;
}
}
if (surfaceResult.IsValid()) {
gfxUtils::DrawPixelSnapped(aContext, surfaceResult.mDrawable,
imageRect.Size(), region, surfaceResult.mFormat,
aSamplingFilter, aImageFlags, aOpacity);
}
return true;
}
nsresult imgFrame::ImageUpdated(const nsIntRect& aUpdateRect) {
MonitorAutoLock lock(mMonitor);
return ImageUpdatedInternal(aUpdateRect);
}
nsresult imgFrame::ImageUpdatedInternal(const nsIntRect& aUpdateRect) {
mMonitor.AssertCurrentThreadOwns();
// Clamp to the frame rect to ensure that decoder bugs don't result in a
// decoded rect that extends outside the bounds of the frame rect.
IntRect updateRect = aUpdateRect.Intersect(GetRect());
if (updateRect.IsEmpty()) {
return NS_OK;
}
mDecoded.UnionRect(mDecoded, updateRect);
// Update our invalidation counters for any consumers watching for changes
// in the surface.
if (mRawSurface) {
mRawSurface->Invalidate(updateRect);
}
if (mLockedSurface && mRawSurface != mLockedSurface) {
mLockedSurface->Invalidate(updateRect);
}
return NS_OK;
}
void imgFrame::Finish(Opacity aFrameOpacity /* = Opacity::SOME_TRANSPARENCY */,
bool aFinalize /* = true */) {
MonitorAutoLock lock(mMonitor);
MOZ_ASSERT(mLockCount > 0, "Image data should be locked");
IntRect frameRect(GetRect());
if (!mDecoded.IsEqualEdges(frameRect)) {
// The decoder should have produced rows starting from either the bottom or
// the top of the image. We need to calculate the region for which we have
// not yet invalidated.
IntRect delta(0, 0, frameRect.width, 0);
if (mDecoded.y == 0) {
delta.y = mDecoded.height;
delta.height = frameRect.height - mDecoded.height;
} else if (mDecoded.y + mDecoded.height == frameRect.height) {
delta.height = frameRect.height - mDecoded.y;
} else {
MOZ_ASSERT_UNREACHABLE("Decoder only updated middle of image!");
delta = frameRect;
}
ImageUpdatedInternal(delta);
}
MOZ_ASSERT(mDecoded.IsEqualEdges(frameRect));
if (aFinalize) {
FinalizeSurfaceInternal();
}
mFinished = true;
// The image is now complete, wake up anyone who's waiting.
mMonitor.NotifyAll();
}
uint32_t imgFrame::GetImageBytesPerRow() const {
mMonitor.AssertCurrentThreadOwns();
if (mRawSurface) {
return mImageSize.width * BytesPerPixel(mFormat);
}
return 0;
}
uint32_t imgFrame::GetImageDataLength() const {
return GetImageBytesPerRow() * mImageSize.height;
}
void imgFrame::GetImageData(uint8_t** aData, uint32_t* aLength) const {
MonitorAutoLock lock(mMonitor);
GetImageDataInternal(aData, aLength);
}
void imgFrame::GetImageDataInternal(uint8_t** aData, uint32_t* aLength) const {
mMonitor.AssertCurrentThreadOwns();
MOZ_ASSERT(mLockCount > 0, "Image data should be locked");
MOZ_ASSERT(mLockedSurface);
if (mLockedSurface) {
// TODO: This is okay for now because we only realloc shared surfaces on
// the main thread after decoding has finished, but if animations want to
// read frame data off the main thread, we will need to reconsider this.
*aData = mLockedSurface->GetData();
MOZ_ASSERT(
*aData,
"mLockedSurface is non-null, but GetData is null in GetImageData");
} else {
*aData = nullptr;
}
*aLength = GetImageDataLength();
}
uint8_t* imgFrame::GetImageData() const {
uint8_t* data;
uint32_t length;
GetImageData(&data, &length);
return data;
}
uint8_t* imgFrame::LockImageData(bool aOnlyFinished) {
MonitorAutoLock lock(mMonitor);
MOZ_ASSERT(mLockCount >= 0, "Unbalanced locks and unlocks");
if (mLockCount < 0 || (aOnlyFinished && !mFinished)) {
return nullptr;
}
uint8_t* data;
if (mLockedSurface) {
data = mLockedSurface->GetData();
} else {
data = nullptr;
}
// If the raw data is still available, we should get a valid pointer for it.
if (!data) {
MOZ_ASSERT_UNREACHABLE("It's illegal to re-lock an optimized imgFrame");
return nullptr;
}
++mLockCount;
return data;
}
void imgFrame::AssertImageDataLocked() const {
#ifdef DEBUG
MonitorAutoLock lock(mMonitor);
MOZ_ASSERT(mLockCount > 0, "Image data should be locked");
#endif
}
nsresult imgFrame::UnlockImageData() {
MonitorAutoLock lock(mMonitor);
MOZ_ASSERT(mLockCount > 0, "Unlocking an unlocked image!");
if (mLockCount <= 0) {
return NS_ERROR_FAILURE;
}
MOZ_ASSERT(mLockCount > 1 || mFinished || mAborted,
"Should have Finish()'d or aborted before unlocking");
mLockCount--;
return NS_OK;
}
void imgFrame::SetOptimizable() {
AssertImageDataLocked();
MonitorAutoLock lock(mMonitor);
mOptimizable = true;
}
void imgFrame::FinalizeSurface() {
MonitorAutoLock lock(mMonitor);
FinalizeSurfaceInternal();
}
void imgFrame::FinalizeSurfaceInternal() {
mMonitor.AssertCurrentThreadOwns();
// Not all images will have mRawSurface to finalize (i.e. paletted images).
if (mShouldRecycle || !mRawSurface ||
mRawSurface->GetType() != SurfaceType::DATA_SHARED) {
return;
}
auto sharedSurf = static_cast<SourceSurfaceSharedData*>(mRawSurface.get());
sharedSurf->Finalize();
}
already_AddRefed<SourceSurface> imgFrame::GetSourceSurface() {
MonitorAutoLock lock(mMonitor);
return GetSourceSurfaceInternal(/* aTemporary */ false);
}
already_AddRefed<SourceSurface> imgFrame::GetSourceSurfaceInternal(
bool aTemporary) {
mMonitor.AssertCurrentThreadOwns();
if (mOptSurface) {
if (mOptSurface->IsValid()) {
RefPtr<SourceSurface> surf(mOptSurface);
return surf.forget();
} else {
mOptSurface = nullptr;
}
}
if (mBlankLockedSurface) {
// We are going to return the blank surface because of the flags.
// We are including comments here that are copied from below
// just so that we are on the same page!
// We don't need to create recycling wrapper for some callers because they
// promise to release the surface immediately after.
if (!aTemporary && mShouldRecycle) {
RefPtr<SourceSurface> surf =
new RecyclingSourceSurface(this, mBlankLockedSurface);
return surf.forget();
}
RefPtr<SourceSurface> surf(mBlankLockedSurface);
return surf.forget();
}
if (mLockedSurface) {
// We don't need to create recycling wrapper for some callers because they
// promise to release the surface immediately after.
if (!aTemporary && mShouldRecycle) {
RefPtr<SourceSurface> surf =
new RecyclingSourceSurface(this, mLockedSurface);
return surf.forget();
}
RefPtr<SourceSurface> surf(mLockedSurface);
return surf.forget();
}
MOZ_ASSERT(!mShouldRecycle, "Should recycle but no locked surface!");
if (!mRawSurface) {
return nullptr;
}
return CreateLockedSurface(mRawSurface, mImageSize, mFormat);
}
void imgFrame::Abort() {
MonitorAutoLock lock(mMonitor);
mAborted = true;
// Wake up anyone who's waiting.
mMonitor.NotifyAll();
}
bool imgFrame::IsAborted() const {
MonitorAutoLock lock(mMonitor);
return mAborted;
}
bool imgFrame::IsFinished() const {
MonitorAutoLock lock(mMonitor);
return mFinished;
}
void imgFrame::WaitUntilFinished() const {
MonitorAutoLock lock(mMonitor);
while (true) {
// Return if we're aborted or complete.
if (mAborted || mFinished) {
return;
}
// Not complete yet, so we'll have to wait.
mMonitor.Wait();
}
}
bool imgFrame::AreAllPixelsWritten() const {
mMonitor.AssertCurrentThreadOwns();
return mDecoded.IsEqualInterior(GetRect());
}
void imgFrame::AddSizeOfExcludingThis(MallocSizeOf aMallocSizeOf,
const AddSizeOfCb& aCallback) const {
MonitorAutoLock lock(mMonitor);
AddSizeOfCbData metadata;
metadata.mFinished = mFinished;
if (mLockedSurface) {
// The locked surface should only be present if we have mRawSurface. Hence
// we only need to get its allocation size to avoid double counting.
metadata.mHeapBytes += aMallocSizeOf(mLockedSurface);
metadata.AddType(mLockedSurface->GetType());
}
if (mOptSurface) {
metadata.mHeapBytes += aMallocSizeOf(mOptSurface);
SourceSurface::SizeOfInfo info;
mOptSurface->SizeOfExcludingThis(aMallocSizeOf, info);
metadata.Accumulate(info);
}
if (mRawSurface) {
metadata.mHeapBytes += aMallocSizeOf(mRawSurface);
SourceSurface::SizeOfInfo info;
mRawSurface->SizeOfExcludingThis(aMallocSizeOf, info);
metadata.Accumulate(info);
}
aCallback(metadata);
}
RecyclingSourceSurface::RecyclingSourceSurface(imgFrame* aParent,
DataSourceSurface* aSurface)
: mParent(WrapNotNull(aParent)),
mSurface(WrapNotNull(aSurface)),
mType(SurfaceType::DATA) {
mParent->mMonitor.AssertCurrentThreadOwns();
++mParent->mRecycleLockCount;
if (aSurface->GetType() == SurfaceType::DATA_SHARED) {
mType = SurfaceType::DATA_RECYCLING_SHARED;
}
}
RecyclingSourceSurface::~RecyclingSourceSurface() {
MonitorAutoLock lock(mParent->mMonitor);
MOZ_ASSERT(mParent->mRecycleLockCount > 0);
if (--mParent->mRecycleLockCount == 0) {
mParent->mMonitor.NotifyAll();
}
}
} // namespace image
} // namespace mozilla