gecko-dev/content/media/webaudio/blink/HRTFPanner.cpp
Karl Tomlinson d74753f274 b=986901 don't assume that DelayNode maxDelayTime is greater than 1 block r=padenot
Also apply DelayNode maxDelayTime before rounding to ticks.

--HG--
extra : transplant_source : %F1i%02%2A%ED%98%95%C9u%60%0B%1A%81A%C2%8E%FB%F3%FA%D5
2014-03-31 18:32:34 +13:00

298 lines
12 KiB
C++

/*
* Copyright (C) 2010, Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "HRTFPanner.h"
#include "HRTFDatabaseLoader.h"
#include "FFTConvolver.h"
#include "HRTFDatabase.h"
using namespace std;
using namespace mozilla;
using dom::ChannelInterpretation;
namespace WebCore {
// The value of 2 milliseconds is larger than the largest delay which exists in any HRTFKernel from the default HRTFDatabase (0.0136 seconds).
// We ASSERT the delay values used in process() with this value.
const double MaxDelayTimeSeconds = 0.002;
const int UninitializedAzimuth = -1;
const unsigned RenderingQuantum = WEBAUDIO_BLOCK_SIZE;
HRTFPanner::HRTFPanner(float sampleRate, mozilla::TemporaryRef<HRTFDatabaseLoader> databaseLoader)
: m_databaseLoader(databaseLoader)
, m_sampleRate(sampleRate)
, m_crossfadeSelection(CrossfadeSelection1)
, m_azimuthIndex1(UninitializedAzimuth)
, m_azimuthIndex2(UninitializedAzimuth)
// m_elevation1 and m_elevation2 are initialized in pan()
, m_crossfadeX(0)
, m_crossfadeIncr(0)
, m_convolverL1(HRTFElevation::fftSizeForSampleRate(sampleRate))
, m_convolverR1(m_convolverL1.fftSize())
, m_convolverL2(m_convolverL1.fftSize())
, m_convolverR2(m_convolverL1.fftSize())
, m_delayLine(MaxDelayTimeSeconds * sampleRate, 1.0)
{
MOZ_ASSERT(m_databaseLoader);
MOZ_COUNT_CTOR(HRTFPanner);
m_tempL1.SetLength(RenderingQuantum);
m_tempR1.SetLength(RenderingQuantum);
m_tempL2.SetLength(RenderingQuantum);
m_tempR2.SetLength(RenderingQuantum);
}
HRTFPanner::~HRTFPanner()
{
MOZ_COUNT_DTOR(HRTFPanner);
}
void HRTFPanner::reset()
{
m_azimuthIndex1 = UninitializedAzimuth;
m_azimuthIndex2 = UninitializedAzimuth;
// m_elevation1 and m_elevation2 are initialized in pan()
m_crossfadeSelection = CrossfadeSelection1;
m_crossfadeX = 0.0f;
m_crossfadeIncr = 0.0f;
m_convolverL1.reset();
m_convolverR1.reset();
m_convolverL2.reset();
m_convolverR2.reset();
m_delayLine.Reset();
}
int HRTFPanner::calculateDesiredAzimuthIndexAndBlend(double azimuth, double& azimuthBlend)
{
// Convert the azimuth angle from the range -180 -> +180 into the range 0 -> 360.
// The azimuth index may then be calculated from this positive value.
if (azimuth < 0)
azimuth += 360.0;
HRTFDatabase* database = m_databaseLoader->database();
MOZ_ASSERT(database);
int numberOfAzimuths = database->numberOfAzimuths();
const double angleBetweenAzimuths = 360.0 / numberOfAzimuths;
// Calculate the azimuth index and the blend (0 -> 1) for interpolation.
double desiredAzimuthIndexFloat = azimuth / angleBetweenAzimuths;
int desiredAzimuthIndex = static_cast<int>(desiredAzimuthIndexFloat);
azimuthBlend = desiredAzimuthIndexFloat - static_cast<double>(desiredAzimuthIndex);
// We don't immediately start using this azimuth index, but instead approach this index from the last index we rendered at.
// This minimizes the clicks and graininess for moving sources which occur otherwise.
desiredAzimuthIndex = max(0, desiredAzimuthIndex);
desiredAzimuthIndex = min(numberOfAzimuths - 1, desiredAzimuthIndex);
return desiredAzimuthIndex;
}
void HRTFPanner::pan(double desiredAzimuth, double elevation, const AudioChunk* inputBus, AudioChunk* outputBus)
{
#ifdef DEBUG
unsigned numInputChannels =
inputBus->IsNull() ? 0 : inputBus->mChannelData.Length();
MOZ_ASSERT(numInputChannels <= 2);
MOZ_ASSERT(inputBus->mDuration == WEBAUDIO_BLOCK_SIZE);
#endif
bool isOutputGood = outputBus && outputBus->mChannelData.Length() == 2 && outputBus->mDuration == WEBAUDIO_BLOCK_SIZE;
MOZ_ASSERT(isOutputGood);
if (!isOutputGood) {
if (outputBus)
outputBus->SetNull(outputBus->mDuration);
return;
}
HRTFDatabase* database = m_databaseLoader->database();
if (!database) { // not yet loaded
outputBus->SetNull(outputBus->mDuration);
return;
}
// IRCAM HRTF azimuths values from the loaded database is reversed from the panner's notion of azimuth.
double azimuth = -desiredAzimuth;
bool isAzimuthGood = azimuth >= -180.0 && azimuth <= 180.0;
MOZ_ASSERT(isAzimuthGood);
if (!isAzimuthGood) {
outputBus->SetNull(outputBus->mDuration);
return;
}
// Normally, we'll just be dealing with mono sources.
// If we have a stereo input, implement stereo panning with left source processed by left HRTF, and right source by right HRTF.
// Get destination pointers.
float* destinationL =
static_cast<float*>(const_cast<void*>(outputBus->mChannelData[0]));
float* destinationR =
static_cast<float*>(const_cast<void*>(outputBus->mChannelData[1]));
double azimuthBlend;
int desiredAzimuthIndex = calculateDesiredAzimuthIndexAndBlend(azimuth, azimuthBlend);
// Initially snap azimuth and elevation values to first values encountered.
if (m_azimuthIndex1 == UninitializedAzimuth) {
m_azimuthIndex1 = desiredAzimuthIndex;
m_elevation1 = elevation;
}
if (m_azimuthIndex2 == UninitializedAzimuth) {
m_azimuthIndex2 = desiredAzimuthIndex;
m_elevation2 = elevation;
}
// Cross-fade / transition over a period of around 45 milliseconds.
// This is an empirical value tuned to be a reasonable trade-off between
// smoothness and speed.
const double fadeFrames = sampleRate() <= 48000 ? 2048 : 4096;
// Check for azimuth and elevation changes, initiating a cross-fade if needed.
if (!m_crossfadeX && m_crossfadeSelection == CrossfadeSelection1) {
if (desiredAzimuthIndex != m_azimuthIndex1 || elevation != m_elevation1) {
// Cross-fade from 1 -> 2
m_crossfadeIncr = 1 / fadeFrames;
m_azimuthIndex2 = desiredAzimuthIndex;
m_elevation2 = elevation;
}
}
if (m_crossfadeX == 1 && m_crossfadeSelection == CrossfadeSelection2) {
if (desiredAzimuthIndex != m_azimuthIndex2 || elevation != m_elevation2) {
// Cross-fade from 2 -> 1
m_crossfadeIncr = -1 / fadeFrames;
m_azimuthIndex1 = desiredAzimuthIndex;
m_elevation1 = elevation;
}
}
// Get the HRTFKernels and interpolated delays.
HRTFKernel* kernelL1;
HRTFKernel* kernelR1;
HRTFKernel* kernelL2;
HRTFKernel* kernelR2;
double frameDelayL1;
double frameDelayR1;
double frameDelayL2;
double frameDelayR2;
database->getKernelsFromAzimuthElevation(azimuthBlend, m_azimuthIndex1, m_elevation1, kernelL1, kernelR1, frameDelayL1, frameDelayR1);
database->getKernelsFromAzimuthElevation(azimuthBlend, m_azimuthIndex2, m_elevation2, kernelL2, kernelR2, frameDelayL2, frameDelayR2);
bool areKernelsGood = kernelL1 && kernelR1 && kernelL2 && kernelR2;
MOZ_ASSERT(areKernelsGood);
if (!areKernelsGood) {
outputBus->SetNull(outputBus->mDuration);
return;
}
MOZ_ASSERT(frameDelayL1 / sampleRate() < MaxDelayTimeSeconds && frameDelayR1 / sampleRate() < MaxDelayTimeSeconds);
MOZ_ASSERT(frameDelayL2 / sampleRate() < MaxDelayTimeSeconds && frameDelayR2 / sampleRate() < MaxDelayTimeSeconds);
// Crossfade inter-aural delays based on transitions.
double frameDelaysL[WEBAUDIO_BLOCK_SIZE];
double frameDelaysR[WEBAUDIO_BLOCK_SIZE];
{
float x = m_crossfadeX;
float incr = m_crossfadeIncr;
for (unsigned i = 0; i < WEBAUDIO_BLOCK_SIZE; ++i) {
frameDelaysL[i] = (1 - x) * frameDelayL1 + x * frameDelayL2;
frameDelaysR[i] = (1 - x) * frameDelayR1 + x * frameDelayR2;
x += incr;
}
}
// First run through delay lines for inter-aural time difference.
m_delayLine.Write(*inputBus);
// "Speakers" means a mono input is read into both outputs (with possibly
// different delays).
m_delayLine.ReadChannel(frameDelaysL, outputBus, 0,
ChannelInterpretation::Speakers);
m_delayLine.ReadChannel(frameDelaysR, outputBus, 1,
ChannelInterpretation::Speakers);
m_delayLine.NextBlock();
bool needsCrossfading = m_crossfadeIncr;
// Have the convolvers render directly to the final destination if we're not cross-fading.
float* convolutionDestinationL1 = needsCrossfading ? m_tempL1.Elements() : destinationL;
float* convolutionDestinationR1 = needsCrossfading ? m_tempR1.Elements() : destinationR;
float* convolutionDestinationL2 = needsCrossfading ? m_tempL2.Elements() : destinationL;
float* convolutionDestinationR2 = needsCrossfading ? m_tempR2.Elements() : destinationR;
// Now do the convolutions.
// Note that we avoid doing convolutions on both sets of convolvers if we're not currently cross-fading.
if (m_crossfadeSelection == CrossfadeSelection1 || needsCrossfading) {
m_convolverL1.process(kernelL1->fftFrame(), destinationL, convolutionDestinationL1, WEBAUDIO_BLOCK_SIZE);
m_convolverR1.process(kernelR1->fftFrame(), destinationR, convolutionDestinationR1, WEBAUDIO_BLOCK_SIZE);
}
if (m_crossfadeSelection == CrossfadeSelection2 || needsCrossfading) {
m_convolverL2.process(kernelL2->fftFrame(), destinationL, convolutionDestinationL2, WEBAUDIO_BLOCK_SIZE);
m_convolverR2.process(kernelR2->fftFrame(), destinationR, convolutionDestinationR2, WEBAUDIO_BLOCK_SIZE);
}
if (needsCrossfading) {
// Apply linear cross-fade.
float x = m_crossfadeX;
float incr = m_crossfadeIncr;
for (unsigned i = 0; i < WEBAUDIO_BLOCK_SIZE; ++i) {
destinationL[i] = (1 - x) * convolutionDestinationL1[i] + x * convolutionDestinationL2[i];
destinationR[i] = (1 - x) * convolutionDestinationR1[i] + x * convolutionDestinationR2[i];
x += incr;
}
// Update cross-fade value from local.
m_crossfadeX = x;
if (m_crossfadeIncr > 0 && fabs(m_crossfadeX - 1) < m_crossfadeIncr) {
// We've fully made the crossfade transition from 1 -> 2.
m_crossfadeSelection = CrossfadeSelection2;
m_crossfadeX = 1;
m_crossfadeIncr = 0;
} else if (m_crossfadeIncr < 0 && fabs(m_crossfadeX) < -m_crossfadeIncr) {
// We've fully made the crossfade transition from 2 -> 1.
m_crossfadeSelection = CrossfadeSelection1;
m_crossfadeX = 0;
m_crossfadeIncr = 0;
}
}
}
int HRTFPanner::maxTailFrames() const
{
// Although the ideal tail time would be the length of the impulse
// response, there is additional tail time from the approximations in the
// implementation. Because HRTFPanner is implemented with a DelayKernel
// and a FFTConvolver, the tailTime of the HRTFPanner is the sum of the
// tailTime of the DelayKernel and the tailTime of the FFTConvolver.
// The FFTConvolver has a tail time of fftSize(), including latency of
// fftSize()/2.
return m_delayLine.MaxDelayTicks() + fftSize();
}
} // namespace WebCore