gecko-dev/gfx/layers/opengl/CompositorOGL.cpp

1830 lines
62 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "CompositorOGL.h"
#include <stddef.h> // for size_t
#include <stdint.h> // for uint32_t, uint8_t
#include <stdlib.h> // for free, malloc
#include "GLContextProvider.h" // for GLContextProvider
#include "GLContext.h" // for GLContext
#include "GLUploadHelpers.h"
#include "Layers.h" // for WriteSnapshotToDumpFile
#include "LayerScope.h" // for LayerScope
#include "gfxCrashReporterUtils.h" // for ScopedGfxFeatureReporter
#include "gfxEnv.h" // for gfxEnv
#include "gfxPlatform.h" // for gfxPlatform
#include "gfxPrefs.h" // for gfxPrefs
#include "gfxRect.h" // for gfxRect
#include "gfxUtils.h" // for gfxUtils, etc
#include "mozilla/ArrayUtils.h" // for ArrayLength
#include "mozilla/Preferences.h" // for Preferences
#include "mozilla/gfx/BasePoint.h" // for BasePoint
#include "mozilla/gfx/Matrix.h" // for Matrix4x4, Matrix
#include "mozilla/gfx/Triangle.h" // for Triangle
#include "mozilla/gfx/gfxVars.h" // for gfxVars
#include "mozilla/layers/LayerManagerComposite.h" // for LayerComposite, etc
#include "mozilla/layers/CompositingRenderTargetOGL.h"
#include "mozilla/layers/Effects.h" // for EffectChain, TexturedEffect, etc
#include "mozilla/layers/TextureHost.h" // for TextureSource, etc
#include "mozilla/layers/TextureHostOGL.h" // for TextureSourceOGL, etc
#include "mozilla/mozalloc.h" // for operator delete, etc
#include "nsAppRunner.h"
#include "nsAString.h"
#include "nsIConsoleService.h" // for nsIConsoleService, etc
#include "nsIWidget.h" // for nsIWidget
#include "nsLiteralString.h" // for NS_LITERAL_STRING
#include "nsMathUtils.h" // for NS_roundf
#include "nsRect.h" // for mozilla::gfx::IntRect
#include "nsServiceManagerUtils.h" // for do_GetService
#include "nsString.h" // for nsString, nsAutoCString, etc
#include "ScopedGLHelpers.h"
#include "GLReadTexImageHelper.h"
#include "GLBlitTextureImageHelper.h"
#include "HeapCopyOfStackArray.h"
#if MOZ_WIDGET_ANDROID
#include "TexturePoolOGL.h"
#endif
#include "GeckoProfiler.h"
namespace mozilla {
using namespace std;
using namespace gfx;
namespace layers {
using namespace mozilla::gl;
static const GLuint kCoordinateAttributeIndex = 0;
static const GLuint kTexCoordinateAttributeIndex = 1;
static void
BindMaskForProgram(ShaderProgramOGL* aProgram, TextureSourceOGL* aSourceMask,
GLenum aTexUnit, const gfx::Matrix4x4& aTransform)
{
MOZ_ASSERT(LOCAL_GL_TEXTURE0 <= aTexUnit && aTexUnit <= LOCAL_GL_TEXTURE31);
aSourceMask->BindTexture(aTexUnit, gfx::SamplingFilter::LINEAR);
aProgram->SetMaskTextureUnit(aTexUnit - LOCAL_GL_TEXTURE0);
aProgram->SetMaskLayerTransform(aTransform);
}
void
CompositorOGL::BindBackdrop(ShaderProgramOGL* aProgram, GLuint aBackdrop, GLenum aTexUnit)
{
MOZ_ASSERT(aBackdrop);
mGLContext->fActiveTexture(aTexUnit);
mGLContext->fBindTexture(LOCAL_GL_TEXTURE_2D, aBackdrop);
mGLContext->fTexParameteri(LOCAL_GL_TEXTURE_2D, LOCAL_GL_TEXTURE_MIN_FILTER, LOCAL_GL_LINEAR);
mGLContext->fTexParameteri(LOCAL_GL_TEXTURE_2D, LOCAL_GL_TEXTURE_MAG_FILTER, LOCAL_GL_LINEAR);
aProgram->SetBackdropTextureUnit(aTexUnit - LOCAL_GL_TEXTURE0);
}
CompositorOGL::CompositorOGL(CompositorBridgeParent* aParent,
widget::CompositorWidget* aWidget,
int aSurfaceWidth, int aSurfaceHeight,
bool aUseExternalSurfaceSize)
: Compositor(aWidget, aParent)
, mWidgetSize(-1, -1)
, mSurfaceSize(aSurfaceWidth, aSurfaceHeight)
, mHasBGRA(0)
, mUseExternalSurfaceSize(aUseExternalSurfaceSize)
, mFrameInProgress(false)
, mDestroyed(false)
, mViewportSize(0, 0)
, mCurrentProgram(nullptr)
{
MOZ_COUNT_CTOR(CompositorOGL);
}
CompositorOGL::~CompositorOGL()
{
MOZ_COUNT_DTOR(CompositorOGL);
Destroy();
}
already_AddRefed<mozilla::gl::GLContext>
CompositorOGL::CreateContext()
{
RefPtr<GLContext> context;
// Used by mock widget to create an offscreen context
nsIWidget* widget = mWidget->RealWidget();
void* widgetOpenGLContext = widget ? widget->GetNativeData(NS_NATIVE_OPENGL_CONTEXT) : nullptr;
if (widgetOpenGLContext) {
GLContext* alreadyRefed = reinterpret_cast<GLContext*>(widgetOpenGLContext);
return already_AddRefed<GLContext>(alreadyRefed);
}
#ifdef XP_WIN
if (gfxEnv::LayersPreferEGL()) {
printf_stderr("Trying GL layers...\n");
context = gl::GLContextProviderEGL::CreateForCompositorWidget(mWidget, false);
}
#endif
// Allow to create offscreen GL context for main Layer Manager
if (!context && gfxEnv::LayersPreferOffscreen()) {
SurfaceCaps caps = SurfaceCaps::ForRGB();
caps.preserve = false;
caps.bpp16 = gfxVars::OffscreenFormat() == SurfaceFormat::R5G6B5_UINT16;
nsCString discardFailureId;
context = GLContextProvider::CreateOffscreen(mSurfaceSize,
caps, CreateContextFlags::REQUIRE_COMPAT_PROFILE,
&discardFailureId);
}
if (!context) {
context = gl::GLContextProvider::CreateForCompositorWidget(mWidget,
gfxVars::RequiresAcceleratedGLContextForCompositorOGL());
}
if (!context) {
NS_WARNING("Failed to create CompositorOGL context");
}
return context.forget();
}
void
CompositorOGL::Destroy()
{
Compositor::Destroy();
if (mTexturePool) {
mTexturePool->Clear();
mTexturePool = nullptr;
}
if (!mDestroyed) {
mDestroyed = true;
CleanupResources();
}
}
void
CompositorOGL::CleanupResources()
{
if (!mGLContext)
return;
RefPtr<GLContext> ctx = mGLContext->GetSharedContext();
if (!ctx) {
ctx = mGLContext;
}
if (!ctx->MakeCurrent()) {
// Leak resources!
mQuadVBO = 0;
mTriangleVBO = 0;
mGLContext = nullptr;
mPrograms.clear();
return;
}
for (std::map<ShaderConfigOGL, ShaderProgramOGL *>::iterator iter = mPrograms.begin();
iter != mPrograms.end();
iter++) {
delete iter->second;
}
mPrograms.clear();
ctx->fBindFramebuffer(LOCAL_GL_FRAMEBUFFER, 0);
if (mQuadVBO) {
ctx->fDeleteBuffers(1, &mQuadVBO);
mQuadVBO = 0;
}
if (mTriangleVBO) {
ctx->fDeleteBuffers(1, &mTriangleVBO);
mTriangleVBO = 0;
}
mGLContext->MakeCurrent();
mBlitTextureImageHelper = nullptr;
mContextStateTracker.DestroyOGL(mGLContext);
// On the main thread the Widget will be destroyed soon and calling MakeCurrent
// after that could cause a crash (at least with GLX, see bug 1059793), unless
// context is marked as destroyed.
// There may be some textures still alive that will try to call MakeCurrent on
// the context so let's make sure it is marked destroyed now.
mGLContext->MarkDestroyed();
mGLContext = nullptr;
}
bool
CompositorOGL::Initialize(nsCString* const out_failureReason)
{
ScopedGfxFeatureReporter reporter("GL Layers");
// Do not allow double initialization
MOZ_ASSERT(mGLContext == nullptr, "Don't reinitialize CompositorOGL");
mGLContext = CreateContext();
#ifdef MOZ_WIDGET_ANDROID
if (!mGLContext){
*out_failureReason = "FEATURE_FAILURE_OPENGL_NO_ANDROID_CONTEXT";
MOZ_CRASH("We need a context on Android");
}
#endif
if (!mGLContext){
*out_failureReason = "FEATURE_FAILURE_OPENGL_CREATE_CONTEXT";
return false;
}
MakeCurrent();
mHasBGRA =
mGLContext->IsExtensionSupported(gl::GLContext::EXT_texture_format_BGRA8888) ||
mGLContext->IsExtensionSupported(gl::GLContext::EXT_bgra);
mGLContext->fBlendFuncSeparate(LOCAL_GL_ONE, LOCAL_GL_ONE_MINUS_SRC_ALPHA,
LOCAL_GL_ONE, LOCAL_GL_ONE_MINUS_SRC_ALPHA);
mGLContext->fEnable(LOCAL_GL_BLEND);
// initialise a common shader to check that we can actually compile a shader
RefPtr<EffectSolidColor> effect = new EffectSolidColor(Color(0, 0, 0, 0));
ShaderConfigOGL config = GetShaderConfigFor(effect);
if (!GetShaderProgramFor(config)) {
*out_failureReason = "FEATURE_FAILURE_OPENGL_COMPILE_SHADER";
return false;
}
if (mGLContext->WorkAroundDriverBugs()) {
/**
* We'll test the ability here to bind NPOT textures to a framebuffer, if
* this fails we'll try ARB_texture_rectangle.
*/
GLenum textureTargets[] = {
LOCAL_GL_TEXTURE_2D,
LOCAL_GL_NONE
};
if (!mGLContext->IsGLES()) {
// No TEXTURE_RECTANGLE_ARB available on ES2
textureTargets[1] = LOCAL_GL_TEXTURE_RECTANGLE_ARB;
}
mFBOTextureTarget = LOCAL_GL_NONE;
GLuint testFBO = 0;
mGLContext->fGenFramebuffers(1, &testFBO);
GLuint testTexture = 0;
for (uint32_t i = 0; i < ArrayLength(textureTargets); i++) {
GLenum target = textureTargets[i];
if (!target)
continue;
mGLContext->fGenTextures(1, &testTexture);
mGLContext->fBindTexture(target, testTexture);
mGLContext->fTexParameteri(target,
LOCAL_GL_TEXTURE_MIN_FILTER,
LOCAL_GL_NEAREST);
mGLContext->fTexParameteri(target,
LOCAL_GL_TEXTURE_MAG_FILTER,
LOCAL_GL_NEAREST);
mGLContext->fTexImage2D(target,
0,
LOCAL_GL_RGBA,
5, 3, /* sufficiently NPOT */
0,
LOCAL_GL_RGBA,
LOCAL_GL_UNSIGNED_BYTE,
nullptr);
// unbind this texture, in preparation for binding it to the FBO
mGLContext->fBindTexture(target, 0);
mGLContext->fBindFramebuffer(LOCAL_GL_FRAMEBUFFER, testFBO);
mGLContext->fFramebufferTexture2D(LOCAL_GL_FRAMEBUFFER,
LOCAL_GL_COLOR_ATTACHMENT0,
target,
testTexture,
0);
if (mGLContext->fCheckFramebufferStatus(LOCAL_GL_FRAMEBUFFER) ==
LOCAL_GL_FRAMEBUFFER_COMPLETE)
{
mFBOTextureTarget = target;
mGLContext->fDeleteTextures(1, &testTexture);
break;
}
mGLContext->fDeleteTextures(1, &testTexture);
}
if (testFBO) {
mGLContext->fDeleteFramebuffers(1, &testFBO);
}
if (mFBOTextureTarget == LOCAL_GL_NONE) {
/* Unable to find a texture target that works with FBOs and NPOT textures */
*out_failureReason = "FEATURE_FAILURE_OPENGL_NO_TEXTURE_TARGET";
return false;
}
} else {
// not trying to work around driver bugs, so TEXTURE_2D should just work
mFBOTextureTarget = LOCAL_GL_TEXTURE_2D;
}
// back to default framebuffer, to avoid confusion
mGLContext->fBindFramebuffer(LOCAL_GL_FRAMEBUFFER, 0);
if (mFBOTextureTarget == LOCAL_GL_TEXTURE_RECTANGLE_ARB) {
/* If we're using TEXTURE_RECTANGLE, then we must have the ARB
* extension -- the EXT variant does not provide support for
* texture rectangle access inside GLSL (sampler2DRect,
* texture2DRect).
*/
if (!mGLContext->IsExtensionSupported(gl::GLContext::ARB_texture_rectangle)){
*out_failureReason = "FEATURE_FAILURE_OPENGL_ARB_EXT";
return false;
}
}
// Create a VBO for triangle vertices.
mGLContext->fGenBuffers(1, &mTriangleVBO);
/* Create a simple quad VBO */
mGLContext->fGenBuffers(1, &mQuadVBO);
// 4 quads, with the number of the quad (vertexID) encoded in w.
GLfloat vertices[] = {
0.0f, 0.0f, 0.0f, 0.0f,
1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f, 0.0f,
1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f, 0.0f,
1.0f, 1.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f,
1.0f, 0.0f, 0.0f, 1.0f,
0.0f, 1.0f, 0.0f, 1.0f,
1.0f, 0.0f, 0.0f, 1.0f,
0.0f, 1.0f, 0.0f, 1.0f,
1.0f, 1.0f, 0.0f, 1.0f,
0.0f, 0.0f, 0.0f, 2.0f,
1.0f, 0.0f, 0.0f, 2.0f,
0.0f, 1.0f, 0.0f, 2.0f,
1.0f, 0.0f, 0.0f, 2.0f,
0.0f, 1.0f, 0.0f, 2.0f,
1.0f, 1.0f, 0.0f, 2.0f,
0.0f, 0.0f, 0.0f, 3.0f,
1.0f, 0.0f, 0.0f, 3.0f,
0.0f, 1.0f, 0.0f, 3.0f,
1.0f, 0.0f, 0.0f, 3.0f,
0.0f, 1.0f, 0.0f, 3.0f,
1.0f, 1.0f, 0.0f, 3.0f,
};
HeapCopyOfStackArray<GLfloat> verticesOnHeap(vertices);
mGLContext->fBindBuffer(LOCAL_GL_ARRAY_BUFFER, mQuadVBO);
mGLContext->fBufferData(LOCAL_GL_ARRAY_BUFFER,
verticesOnHeap.ByteLength(),
verticesOnHeap.Data(),
LOCAL_GL_STATIC_DRAW);
mGLContext->fBindBuffer(LOCAL_GL_ARRAY_BUFFER, 0);
nsCOMPtr<nsIConsoleService>
console(do_GetService(NS_CONSOLESERVICE_CONTRACTID));
if (console) {
nsString msg;
msg +=
NS_LITERAL_STRING("OpenGL compositor Initialized Succesfully.\nVersion: ");
msg += NS_ConvertUTF8toUTF16(
nsDependentCString((const char*)mGLContext->fGetString(LOCAL_GL_VERSION)));
msg += NS_LITERAL_STRING("\nVendor: ");
msg += NS_ConvertUTF8toUTF16(
nsDependentCString((const char*)mGLContext->fGetString(LOCAL_GL_VENDOR)));
msg += NS_LITERAL_STRING("\nRenderer: ");
msg += NS_ConvertUTF8toUTF16(
nsDependentCString((const char*)mGLContext->fGetString(LOCAL_GL_RENDERER)));
msg += NS_LITERAL_STRING("\nFBO Texture Target: ");
if (mFBOTextureTarget == LOCAL_GL_TEXTURE_2D)
msg += NS_LITERAL_STRING("TEXTURE_2D");
else
msg += NS_LITERAL_STRING("TEXTURE_RECTANGLE");
console->LogStringMessage(msg.get());
}
reporter.SetSuccessful();
return true;
}
/*
* Returns a size that is equal to, or larger than and closest to,
* aSize where both width and height are powers of two.
* If the OpenGL setup is capable of using non-POT textures,
* then it will just return aSize.
*/
static IntSize
CalculatePOTSize(const IntSize& aSize, GLContext* gl)
{
if (CanUploadNonPowerOfTwo(gl))
return aSize;
return IntSize(RoundUpPow2(aSize.width), RoundUpPow2(aSize.height));
}
gfx::Rect
CompositorOGL::GetTextureCoordinates(gfx::Rect textureRect, TextureSource* aTexture)
{
// If the OpenGL setup does not support non-power-of-two textures then the
// texture's width and height will have been increased to the next
// power-of-two (unless already a power of two). In that case we must scale
// the texture coordinates to account for that.
if (!CanUploadNonPowerOfTwo(mGLContext)) {
const IntSize& textureSize = aTexture->GetSize();
const IntSize potSize = CalculatePOTSize(textureSize, mGLContext);
if (potSize != textureSize) {
const float xScale = (float)textureSize.width / (float)potSize.width;
const float yScale = (float)textureSize.height / (float)potSize.height;
textureRect.Scale(xScale, yScale);
}
}
return textureRect;
}
void
CompositorOGL::PrepareViewport(CompositingRenderTargetOGL* aRenderTarget)
{
MOZ_ASSERT(aRenderTarget);
// Logical surface size.
const gfx::IntSize& size = aRenderTarget->mInitParams.mSize;
// Physical surface size.
const gfx::IntSize& phySize = aRenderTarget->mInitParams.mPhySize;
// Set the viewport correctly.
mGLContext->fViewport(0, 0, phySize.width, phySize.height);
mViewportSize = size;
if (!aRenderTarget->HasComplexProjection()) {
// We flip the view matrix around so that everything is right-side up; we're
// drawing directly into the window's back buffer, so this keeps things
// looking correct.
// XXX: We keep track of whether the window size changed, so we could skip
// this update if it hadn't changed since the last call.
// Matrix to transform (0, 0, aWidth, aHeight) to viewport space (-1.0, 1.0,
// 2, 2) and flip the contents.
Matrix viewMatrix;
if (mGLContext->IsOffscreen() && !gIsGtest) {
// In case of rendering via GL Offscreen context, disable Y-Flipping
viewMatrix.PreTranslate(-1.0, -1.0);
viewMatrix.PreScale(2.0f / float(size.width), 2.0f / float(size.height));
} else {
viewMatrix.PreTranslate(-1.0, 1.0);
viewMatrix.PreScale(2.0f / float(size.width), 2.0f / float(size.height));
viewMatrix.PreScale(1.0f, -1.0f);
}
MOZ_ASSERT(mCurrentRenderTarget, "No destination");
// If we're drawing directly to the window then we want to offset
// drawing by the render offset.
if (!mTarget && mCurrentRenderTarget->IsWindow()) {
viewMatrix.PreTranslate(mRenderOffset.x, mRenderOffset.y);
}
Matrix4x4 matrix3d = Matrix4x4::From2D(viewMatrix);
matrix3d._33 = 0.0f;
mProjMatrix = matrix3d;
mGLContext->fDepthRange(0.0f, 1.0f);
} else {
// XXX take into account mRenderOffset
bool depthEnable;
float zNear, zFar;
aRenderTarget->GetProjection(mProjMatrix, depthEnable, zNear, zFar);
mGLContext->fDepthRange(zNear, zFar);
}
}
already_AddRefed<CompositingRenderTarget>
CompositorOGL::CreateRenderTarget(const IntRect &aRect, SurfaceInitMode aInit)
{
MOZ_ASSERT(aRect.width != 0 && aRect.height != 0, "Trying to create a render target of invalid size");
if (aRect.width * aRect.height == 0) {
return nullptr;
}
if (!gl()) {
// CompositingRenderTargetOGL does not work without a gl context.
return nullptr;
}
GLuint tex = 0;
GLuint fbo = 0;
IntRect rect = aRect;
IntSize FBOSize;
CreateFBOWithTexture(rect, false, 0, &fbo, &tex, &FBOSize);
RefPtr<CompositingRenderTargetOGL> surface
= new CompositingRenderTargetOGL(this, aRect.TopLeft(), tex, fbo);
surface->Initialize(aRect.Size(), FBOSize, mFBOTextureTarget, aInit);
return surface.forget();
}
already_AddRefed<CompositingRenderTarget>
CompositorOGL::CreateRenderTargetFromSource(const IntRect &aRect,
const CompositingRenderTarget *aSource,
const IntPoint &aSourcePoint)
{
MOZ_ASSERT(aRect.width != 0 && aRect.height != 0, "Trying to create a render target of invalid size");
if (aRect.width * aRect.height == 0) {
return nullptr;
}
if (!gl()) {
return nullptr;
}
GLuint tex = 0;
GLuint fbo = 0;
const CompositingRenderTargetOGL* sourceSurface
= static_cast<const CompositingRenderTargetOGL*>(aSource);
IntRect sourceRect(aSourcePoint, aRect.Size());
if (aSource) {
CreateFBOWithTexture(sourceRect, true, sourceSurface->GetFBO(),
&fbo, &tex);
} else {
CreateFBOWithTexture(sourceRect, true, 0,
&fbo, &tex);
}
RefPtr<CompositingRenderTargetOGL> surface
= new CompositingRenderTargetOGL(this, aRect.TopLeft(), tex, fbo);
surface->Initialize(aRect.Size(),
sourceRect.Size(),
mFBOTextureTarget,
INIT_MODE_NONE);
return surface.forget();
}
void
CompositorOGL::SetRenderTarget(CompositingRenderTarget *aSurface)
{
MOZ_ASSERT(aSurface);
CompositingRenderTargetOGL* surface
= static_cast<CompositingRenderTargetOGL*>(aSurface);
if (mCurrentRenderTarget != surface) {
mCurrentRenderTarget = surface;
if (mCurrentRenderTarget) {
mContextStateTracker.PopOGLSection(gl(), "Frame");
}
mContextStateTracker.PushOGLSection(gl(), "Frame");
surface->BindRenderTarget();
}
PrepareViewport(mCurrentRenderTarget);
}
CompositingRenderTarget*
CompositorOGL::GetCurrentRenderTarget() const
{
return mCurrentRenderTarget;
}
static GLenum
GetFrameBufferInternalFormat(GLContext* gl,
GLuint aFrameBuffer,
mozilla::widget::CompositorWidget* aWidget)
{
if (aFrameBuffer == 0) { // default framebuffer
return aWidget->GetGLFrameBufferFormat();
}
return LOCAL_GL_RGBA;
}
void
CompositorOGL::ClearRect(const gfx::Rect& aRect)
{
// Map aRect to OGL coordinates, origin:bottom-left
GLint y = mViewportSize.height - (aRect.y + aRect.height);
ScopedGLState scopedScissorTestState(mGLContext, LOCAL_GL_SCISSOR_TEST, true);
ScopedScissorRect autoScissorRect(mGLContext, aRect.x, y, aRect.width, aRect.height);
mGLContext->fClearColor(0.0, 0.0, 0.0, 0.0);
mGLContext->fClear(LOCAL_GL_COLOR_BUFFER_BIT | LOCAL_GL_DEPTH_BUFFER_BIT);
}
void
CompositorOGL::BeginFrame(const nsIntRegion& aInvalidRegion,
const IntRect *aClipRectIn,
const IntRect& aRenderBounds,
const nsIntRegion& aOpaqueRegion,
IntRect *aClipRectOut,
IntRect *aRenderBoundsOut)
{
PROFILER_LABEL("CompositorOGL", "BeginFrame",
js::ProfileEntry::Category::GRAPHICS);
MOZ_ASSERT(!mFrameInProgress, "frame still in progress (should have called EndFrame");
gfx::IntRect rect;
if (mUseExternalSurfaceSize) {
rect = gfx::IntRect(0, 0, mSurfaceSize.width, mSurfaceSize.height);
} else {
rect = gfx::IntRect(aRenderBounds.x, aRenderBounds.y, aRenderBounds.width, aRenderBounds.height);
}
if (aRenderBoundsOut) {
*aRenderBoundsOut = rect;
}
GLint width = rect.width;
GLint height = rect.height;
// We can't draw anything to something with no area
// so just return
if (width == 0 || height == 0)
return;
// We're about to actually draw a frame.
mFrameInProgress = true;
// If the widget size changed, we have to force a MakeCurrent
// to make sure that GL sees the updated widget size.
if (mWidgetSize.width != width ||
mWidgetSize.height != height)
{
MakeCurrent(ForceMakeCurrent);
mWidgetSize.width = width;
mWidgetSize.height = height;
} else {
MakeCurrent();
}
mPixelsPerFrame = width * height;
mPixelsFilled = 0;
#ifdef MOZ_WIDGET_ANDROID
TexturePoolOGL::Fill(gl());
#endif
// Default blend function implements "OVER"
mGLContext->fBlendFuncSeparate(LOCAL_GL_ONE, LOCAL_GL_ONE_MINUS_SRC_ALPHA,
LOCAL_GL_ONE, LOCAL_GL_ONE_MINUS_SRC_ALPHA);
mGLContext->fEnable(LOCAL_GL_BLEND);
RefPtr<CompositingRenderTargetOGL> rt =
CompositingRenderTargetOGL::RenderTargetForWindow(this,
IntSize(width, height));
SetRenderTarget(rt);
#ifdef DEBUG
mWindowRenderTarget = mCurrentRenderTarget;
#endif
if (aClipRectOut && !aClipRectIn) {
aClipRectOut->SetRect(0, 0, width, height);
}
mGLContext->fClearColor(mClearColor.r, mClearColor.g, mClearColor.b, mClearColor.a);
mGLContext->fClear(LOCAL_GL_COLOR_BUFFER_BIT | LOCAL_GL_DEPTH_BUFFER_BIT);
}
void
CompositorOGL::CreateFBOWithTexture(const gfx::IntRect& aRect,
bool aCopyFromSource,
GLuint aSourceFrameBuffer,
GLuint *aFBO, GLuint *aTexture,
gfx::IntSize* aAllocSize)
{
*aTexture = CreateTexture(aRect, aCopyFromSource, aSourceFrameBuffer,
aAllocSize);
mGLContext->fGenFramebuffers(1, aFBO);
}
GLuint
CompositorOGL::CreateTexture(const IntRect& aRect, bool aCopyFromSource,
GLuint aSourceFrameBuffer, IntSize* aAllocSize)
{
// we're about to create a framebuffer backed by textures to use as an intermediate
// surface. What to do if its size (as given by aRect) would exceed the
// maximum texture size supported by the GL? The present code chooses the compromise
// of just clamping the framebuffer's size to the max supported size.
// This gives us a lower resolution rendering of the intermediate surface (children layers).
// See bug 827170 for a discussion.
IntRect clampedRect = aRect;
int32_t maxTexSize = GetMaxTextureSize();
clampedRect.width = std::min(clampedRect.width, maxTexSize);
clampedRect.height = std::min(clampedRect.height, maxTexSize);
GLuint tex;
mGLContext->fActiveTexture(LOCAL_GL_TEXTURE0);
mGLContext->fGenTextures(1, &tex);
mGLContext->fBindTexture(mFBOTextureTarget, tex);
if (aCopyFromSource) {
GLuint curFBO = mCurrentRenderTarget->GetFBO();
if (curFBO != aSourceFrameBuffer) {
mGLContext->fBindFramebuffer(LOCAL_GL_FRAMEBUFFER, aSourceFrameBuffer);
}
// We're going to create an RGBA temporary fbo. But to
// CopyTexImage() from the current framebuffer, the framebuffer's
// format has to be compatible with the new texture's. So we
// check the format of the framebuffer here and take a slow path
// if it's incompatible.
GLenum format =
GetFrameBufferInternalFormat(gl(), aSourceFrameBuffer, mWidget);
bool isFormatCompatibleWithRGBA
= gl()->IsGLES() ? (format == LOCAL_GL_RGBA)
: true;
if (isFormatCompatibleWithRGBA) {
mGLContext->fCopyTexImage2D(mFBOTextureTarget,
0,
LOCAL_GL_RGBA,
clampedRect.x, FlipY(clampedRect.y + clampedRect.height),
clampedRect.width, clampedRect.height,
0);
} else {
// Curses, incompatible formats. Take a slow path.
// RGBA
size_t bufferSize = clampedRect.width * clampedRect.height * 4;
auto buf = MakeUnique<uint8_t[]>(bufferSize);
mGLContext->fReadPixels(clampedRect.x, clampedRect.y,
clampedRect.width, clampedRect.height,
LOCAL_GL_RGBA,
LOCAL_GL_UNSIGNED_BYTE,
buf.get());
mGLContext->fTexImage2D(mFBOTextureTarget,
0,
LOCAL_GL_RGBA,
clampedRect.width, clampedRect.height,
0,
LOCAL_GL_RGBA,
LOCAL_GL_UNSIGNED_BYTE,
buf.get());
}
GLenum error = mGLContext->fGetError();
if (error != LOCAL_GL_NO_ERROR) {
nsAutoCString msg;
msg.AppendPrintf("Texture initialization failed! -- error 0x%x, Source %d, Source format %d, RGBA Compat %d",
error, aSourceFrameBuffer, format, isFormatCompatibleWithRGBA);
NS_ERROR(msg.get());
}
} else {
mGLContext->fTexImage2D(mFBOTextureTarget,
0,
LOCAL_GL_RGBA,
clampedRect.width, clampedRect.height,
0,
LOCAL_GL_RGBA,
LOCAL_GL_UNSIGNED_BYTE,
nullptr);
}
mGLContext->fTexParameteri(mFBOTextureTarget, LOCAL_GL_TEXTURE_MIN_FILTER,
LOCAL_GL_LINEAR);
mGLContext->fTexParameteri(mFBOTextureTarget, LOCAL_GL_TEXTURE_MAG_FILTER,
LOCAL_GL_LINEAR);
mGLContext->fTexParameteri(mFBOTextureTarget, LOCAL_GL_TEXTURE_WRAP_S,
LOCAL_GL_CLAMP_TO_EDGE);
mGLContext->fTexParameteri(mFBOTextureTarget, LOCAL_GL_TEXTURE_WRAP_T,
LOCAL_GL_CLAMP_TO_EDGE);
mGLContext->fBindTexture(mFBOTextureTarget, 0);
if (aAllocSize) {
aAllocSize->width = clampedRect.width;
aAllocSize->height = clampedRect.height;
}
return tex;
}
ShaderConfigOGL
CompositorOGL::GetShaderConfigFor(Effect *aEffect,
MaskType aMask,
gfx::CompositionOp aOp,
bool aColorMatrix,
bool aDEAAEnabled) const
{
ShaderConfigOGL config;
switch(aEffect->mType) {
case EffectTypes::SOLID_COLOR:
config.SetRenderColor(true);
break;
case EffectTypes::YCBCR:
config.SetYCbCr(true);
break;
case EffectTypes::NV12:
config.SetNV12(true);
config.SetTextureTarget(LOCAL_GL_TEXTURE_RECTANGLE_ARB);
break;
case EffectTypes::COMPONENT_ALPHA:
{
config.SetComponentAlpha(true);
EffectComponentAlpha* effectComponentAlpha =
static_cast<EffectComponentAlpha*>(aEffect);
gfx::SurfaceFormat format = effectComponentAlpha->mOnWhite->GetFormat();
config.SetRBSwap(format == gfx::SurfaceFormat::B8G8R8A8 ||
format == gfx::SurfaceFormat::B8G8R8X8);
TextureSourceOGL* source = effectComponentAlpha->mOnWhite->AsSourceOGL();
config.SetTextureTarget(source->GetTextureTarget());
break;
}
case EffectTypes::RENDER_TARGET:
config.SetTextureTarget(mFBOTextureTarget);
break;
default:
{
MOZ_ASSERT(aEffect->mType == EffectTypes::RGB);
TexturedEffect* texturedEffect =
static_cast<TexturedEffect*>(aEffect);
TextureSourceOGL* source = texturedEffect->mTexture->AsSourceOGL();
MOZ_ASSERT_IF(source->GetTextureTarget() == LOCAL_GL_TEXTURE_EXTERNAL,
source->GetFormat() == gfx::SurfaceFormat::R8G8B8A8 ||
source->GetFormat() == gfx::SurfaceFormat::R8G8B8X8);
MOZ_ASSERT_IF(source->GetTextureTarget() == LOCAL_GL_TEXTURE_RECTANGLE_ARB,
source->GetFormat() == gfx::SurfaceFormat::R8G8B8A8 ||
source->GetFormat() == gfx::SurfaceFormat::R8G8B8X8 ||
source->GetFormat() == gfx::SurfaceFormat::R5G6B5_UINT16 ||
source->GetFormat() == gfx::SurfaceFormat::YUV422 );
config = ShaderConfigFromTargetAndFormat(source->GetTextureTarget(),
source->GetFormat());
if (!texturedEffect->mPremultiplied) {
config.SetNoPremultipliedAlpha();
}
break;
}
}
config.SetColorMatrix(aColorMatrix);
config.SetMask(aMask == MaskType::Mask);
config.SetDEAA(aDEAAEnabled);
config.SetCompositionOp(aOp);
return config;
}
ShaderProgramOGL*
CompositorOGL::GetShaderProgramFor(const ShaderConfigOGL &aConfig)
{
std::map<ShaderConfigOGL, ShaderProgramOGL *>::iterator iter = mPrograms.find(aConfig);
if (iter != mPrograms.end())
return iter->second;
ProgramProfileOGL profile = ProgramProfileOGL::GetProfileFor(aConfig);
ShaderProgramOGL *shader = new ShaderProgramOGL(gl(), profile);
if (!shader->Initialize()) {
delete shader;
return nullptr;
}
mPrograms[aConfig] = shader;
return shader;
}
void
CompositorOGL::ActivateProgram(ShaderProgramOGL* aProg)
{
if (mCurrentProgram != aProg) {
gl()->fUseProgram(aProg->GetProgram());
mCurrentProgram = aProg;
}
}
void
CompositorOGL::ResetProgram()
{
mCurrentProgram = nullptr;
}
static bool SetBlendMode(GLContext* aGL, gfx::CompositionOp aBlendMode, bool aIsPremultiplied = true)
{
if (BlendOpIsMixBlendMode(aBlendMode)) {
// Mix-blend modes require an extra step (or more) that cannot be expressed
// in the fixed-function blending capabilities of opengl. We handle them
// separately in shaders, and the shaders assume we will use our default
// blend function for compositing (premultiplied OP_OVER).
return false;
}
if (aBlendMode == gfx::CompositionOp::OP_OVER && aIsPremultiplied) {
return false;
}
GLenum srcBlend;
GLenum dstBlend;
GLenum srcAlphaBlend = LOCAL_GL_ONE;
GLenum dstAlphaBlend = LOCAL_GL_ONE_MINUS_SRC_ALPHA;
switch (aBlendMode) {
case gfx::CompositionOp::OP_OVER:
MOZ_ASSERT(!aIsPremultiplied);
srcBlend = LOCAL_GL_SRC_ALPHA;
dstBlend = LOCAL_GL_ONE_MINUS_SRC_ALPHA;
break;
case gfx::CompositionOp::OP_SOURCE:
srcBlend = aIsPremultiplied ? LOCAL_GL_ONE : LOCAL_GL_SRC_ALPHA;
dstBlend = LOCAL_GL_ZERO;
srcAlphaBlend = LOCAL_GL_ONE;
dstAlphaBlend = LOCAL_GL_ZERO;
break;
default:
MOZ_ASSERT_UNREACHABLE("Unsupported blend mode!");
return false;
}
aGL->fBlendFuncSeparate(srcBlend, dstBlend,
srcAlphaBlend, dstAlphaBlend);
return true;
}
gfx::Point3D
CompositorOGL::GetLineCoefficients(const gfx::Point& aPoint1,
const gfx::Point& aPoint2)
{
// Return standard coefficients for a line between aPoint1 and aPoint2
// for standard line equation:
//
// Ax + By + C = 0
//
// A = (p1.y p2.y)
// B = (p2.x p1.x)
// C = (p1.x * p2.y) (p2.x * p1.y)
gfx::Point3D coeffecients;
coeffecients.x = aPoint1.y - aPoint2.y;
coeffecients.y = aPoint2.x - aPoint1.x;
coeffecients.z = aPoint1.x * aPoint2.y - aPoint2.x * aPoint1.y;
coeffecients *= 1.0f / sqrtf(coeffecients.x * coeffecients.x +
coeffecients.y * coeffecients.y);
// Offset outwards by 0.5 pixel as the edge is considered to be 1 pixel
// wide and included within the interior of the polygon
coeffecients.z += 0.5f;
return coeffecients;
}
void
CompositorOGL::DrawQuad(const Rect& aRect,
const IntRect& aClipRect,
const EffectChain &aEffectChain,
Float aOpacity,
const gfx::Matrix4x4& aTransform,
const gfx::Rect& aVisibleRect)
{
PROFILER_LABEL("CompositorOGL", "DrawQuad",
js::ProfileEntry::Category::GRAPHICS);
DrawGeometry(aRect, aClipRect, aEffectChain,
aOpacity, aTransform, aVisibleRect);
}
void
CompositorOGL::DrawTriangle(const gfx::TexturedTriangle& aTriangle,
const gfx::IntRect& aClipRect,
const EffectChain& aEffectChain,
gfx::Float aOpacity,
const gfx::Matrix4x4& aTransform,
const gfx::Rect& aVisibleRect)
{
PROFILER_LABEL("CompositorOGL", "DrawTriangle",
js::ProfileEntry::Category::GRAPHICS);
DrawGeometry(aTriangle, aClipRect, aEffectChain,
aOpacity, aTransform, aVisibleRect);
}
template<typename Geometry>
void
CompositorOGL::DrawGeometry(const Geometry& aGeometry,
const IntRect& aClipRect,
const EffectChain &aEffectChain,
Float aOpacity,
const gfx::Matrix4x4& aTransform,
const gfx::Rect& aVisibleRect)
{
MOZ_ASSERT(mFrameInProgress, "frame not started");
MOZ_ASSERT(mCurrentRenderTarget, "No destination");
MakeCurrent();
IntPoint offset = mCurrentRenderTarget->GetOrigin();
IntSize size = mCurrentRenderTarget->GetSize();
Rect renderBound(0, 0, size.width, size.height);
renderBound.IntersectRect(renderBound, Rect(aClipRect));
renderBound.MoveBy(offset);
Rect destRect = aTransform.TransformAndClipBounds(aGeometry, renderBound);
// XXX: This doesn't handle 3D transforms. It also doesn't handled rotated
// quads. Fix me.
mPixelsFilled += destRect.width * destRect.height;
// Do a simple culling if this rect is out of target buffer.
// Inflate a small size to avoid some numerical imprecision issue.
destRect.Inflate(1, 1);
destRect.MoveBy(-offset);
renderBound = Rect(0, 0, size.width, size.height);
if (!renderBound.Intersects(destRect)) {
return;
}
LayerScope::DrawBegin();
IntRect clipRect = aClipRect;
// aClipRect is in destination coordinate space (after all
// transforms and offsets have been applied) so if our
// drawing is going to be shifted by mRenderOffset then we need
// to shift the clip rect by the same amount.
if (!mTarget && mCurrentRenderTarget->IsWindow()) {
clipRect.MoveBy(mRenderOffset.x, mRenderOffset.y);
}
ScopedGLState scopedScissorTestState(mGLContext, LOCAL_GL_SCISSOR_TEST, true);
ScopedScissorRect autoScissorRect(mGLContext, clipRect.x, FlipY(clipRect.y + clipRect.height),
clipRect.width, clipRect.height);
MaskType maskType;
EffectMask* effectMask;
TextureSourceOGL* sourceMask = nullptr;
gfx::Matrix4x4 maskQuadTransform;
if (aEffectChain.mSecondaryEffects[EffectTypes::MASK]) {
effectMask = static_cast<EffectMask*>(aEffectChain.mSecondaryEffects[EffectTypes::MASK].get());
sourceMask = effectMask->mMaskTexture->AsSourceOGL();
// NS_ASSERTION(textureMask->IsAlpha(),
// "OpenGL mask layers must be backed by alpha surfaces");
// We're assuming that the gl backend won't cheat and use NPOT
// textures when glContext says it can't (which seems to happen
// on a mac when you force POT textures)
IntSize maskSize = CalculatePOTSize(effectMask->mSize, mGLContext);
const gfx::Matrix4x4& maskTransform = effectMask->mMaskTransform;
NS_ASSERTION(maskTransform.Is2D(), "How did we end up with a 3D transform here?!");
Rect bounds = Rect(Point(), Size(maskSize));
bounds = maskTransform.As2D().TransformBounds(bounds);
maskQuadTransform._11 = 1.0f/bounds.width;
maskQuadTransform._22 = 1.0f/bounds.height;
maskQuadTransform._41 = float(-bounds.x)/bounds.width;
maskQuadTransform._42 = float(-bounds.y)/bounds.height;
maskType = MaskType::Mask;
} else {
maskType = MaskType::MaskNone;
}
// Determine the color if this is a color shader and fold the opacity into
// the color since color shaders don't have an opacity uniform.
Color color;
if (aEffectChain.mPrimaryEffect->mType == EffectTypes::SOLID_COLOR) {
EffectSolidColor* effectSolidColor =
static_cast<EffectSolidColor*>(aEffectChain.mPrimaryEffect.get());
color = effectSolidColor->mColor;
Float opacity = aOpacity * color.a;
color.r *= opacity;
color.g *= opacity;
color.b *= opacity;
color.a = opacity;
// We can fold opacity into the color, so no need to consider it further.
aOpacity = 1.f;
}
bool createdMixBlendBackdropTexture = false;
GLuint mixBlendBackdrop = 0;
gfx::CompositionOp blendMode = gfx::CompositionOp::OP_OVER;
if (aEffectChain.mSecondaryEffects[EffectTypes::BLEND_MODE]) {
EffectBlendMode *blendEffect =
static_cast<EffectBlendMode*>(aEffectChain.mSecondaryEffects[EffectTypes::BLEND_MODE].get());
blendMode = blendEffect->mBlendMode;
}
// Only apply DEAA to quads that have been transformed such that aliasing
// could be visible
bool bEnableAA = gfxPrefs::LayersDEAAEnabled() &&
!aTransform.Is2DIntegerTranslation();
bool colorMatrix = aEffectChain.mSecondaryEffects[EffectTypes::COLOR_MATRIX];
ShaderConfigOGL config = GetShaderConfigFor(aEffectChain.mPrimaryEffect,
maskType, blendMode, colorMatrix,
bEnableAA);
config.SetOpacity(aOpacity != 1.f);
ApplyPrimitiveConfig(config, aGeometry);
ShaderProgramOGL *program = GetShaderProgramFor(config);
ActivateProgram(program);
program->SetProjectionMatrix(mProjMatrix);
program->SetLayerTransform(aTransform);
LayerScope::SetLayerTransform(aTransform);
if (colorMatrix) {
EffectColorMatrix* effectColorMatrix =
static_cast<EffectColorMatrix*>(aEffectChain.mSecondaryEffects[EffectTypes::COLOR_MATRIX].get());
program->SetColorMatrix(effectColorMatrix->mColorMatrix);
}
if (BlendOpIsMixBlendMode(blendMode)) {
gfx::Matrix4x4 backdropTransform;
if (gl()->IsExtensionSupported(GLContext::NV_texture_barrier)) {
// The NV_texture_barrier extension lets us read directly from the
// backbuffer. Let's do that.
// We need to tell OpenGL about this, so that it can make sure everything
// on the GPU is happening in the right order.
gl()->fTextureBarrier();
mixBlendBackdrop = mCurrentRenderTarget->GetTextureHandle();
} else {
gfx::IntRect rect = ComputeBackdropCopyRect(aGeometry, aClipRect,
aTransform, &backdropTransform);
mixBlendBackdrop = CreateTexture(rect, true, mCurrentRenderTarget->GetFBO());
createdMixBlendBackdropTexture = true;
}
program->SetBackdropTransform(backdropTransform);
}
program->SetRenderOffset(offset.x, offset.y);
LayerScope::SetRenderOffset(offset.x, offset.y);
if (aOpacity != 1.f)
program->SetLayerOpacity(aOpacity);
if (config.mFeatures & ENABLE_TEXTURE_RECT) {
TextureSourceOGL* source = nullptr;
if (aEffectChain.mPrimaryEffect->mType == EffectTypes::COMPONENT_ALPHA) {
EffectComponentAlpha* effectComponentAlpha =
static_cast<EffectComponentAlpha*>(aEffectChain.mPrimaryEffect.get());
source = effectComponentAlpha->mOnWhite->AsSourceOGL();
} else {
TexturedEffect* texturedEffect =
static_cast<TexturedEffect*>(aEffectChain.mPrimaryEffect.get());
source = texturedEffect->mTexture->AsSourceOGL();
}
// This is used by IOSurface that use 0,0...w,h coordinate rather then 0,0..1,1.
program->SetTexCoordMultiplier(source->GetSize().width, source->GetSize().height);
}
// XXX kip - These calculations could be performed once per layer rather than
// for every tile. This might belong in Compositor.cpp once DEAA
// is implemented for DirectX.
if (bEnableAA) {
// Calculate the transformed vertices of aVisibleRect in screen space
// pixels, mirroring the calculations in the vertex shader
Matrix4x4 flatTransform = aTransform;
flatTransform.PostTranslate(-offset.x, -offset.y, 0.0f);
flatTransform *= mProjMatrix;
Rect viewportClip = Rect(-1.0f, -1.0f, 2.0f, 2.0f);
size_t edgeCount = 0;
Point3D coefficients[4];
Point points[Matrix4x4::kTransformAndClipRectMaxVerts];
size_t pointCount = flatTransform.TransformAndClipRect(aVisibleRect, viewportClip, points);
for (size_t i = 0; i < pointCount; i++) {
points[i] = Point((points[i].x * 0.5f + 0.5f) * mViewportSize.width,
(points[i].y * 0.5f + 0.5f) * mViewportSize.height);
}
if (pointCount > 2) {
// Use shoelace formula on a triangle in the clipped quad to determine if
// winding order is reversed. Iterate through the triangles until one is
// found with a non-zero area.
float winding = 0.0f;
size_t wp = 0;
while (winding == 0.0f && wp < pointCount) {
int wp1 = (wp + 1) % pointCount;
int wp2 = (wp + 2) % pointCount;
winding = (points[wp1].x - points[wp].x) * (points[wp1].y + points[wp].y) +
(points[wp2].x - points[wp1].x) * (points[wp2].y + points[wp1].y) +
(points[wp].x - points[wp2].x) * (points[wp].y + points[wp2].y);
wp++;
}
bool frontFacing = winding >= 0.0f;
// Calculate the line coefficients used by the DEAA shader to determine the
// sub-pixel coverage of the edge pixels
for (size_t i=0; i<pointCount; i++) {
const Point& p1 = points[i];
const Point& p2 = points[(i + 1) % pointCount];
// Create a DEAA edge for any non-straight lines, to a maximum of 4
if (p1.x != p2.x && p1.y != p2.y && edgeCount < 4) {
if (frontFacing) {
coefficients[edgeCount++] = GetLineCoefficients(p2, p1);
} else {
coefficients[edgeCount++] = GetLineCoefficients(p1, p2);
}
}
}
}
// The coefficients that are not needed must not cull any fragments.
// We fill these unused coefficients with a clipping plane that has no
// effect.
for (size_t i = edgeCount; i < 4; i++) {
coefficients[i] = Point3D(0.0f, 1.0f, mViewportSize.height);
}
// Set uniforms required by DEAA shader
Matrix4x4 transformInverted = aTransform;
transformInverted.Invert();
program->SetLayerTransformInverse(transformInverted);
program->SetDEAAEdges(coefficients);
program->SetVisibleCenter(aVisibleRect.Center());
program->SetViewportSize(mViewportSize);
}
bool didSetBlendMode = false;
switch (aEffectChain.mPrimaryEffect->mType) {
case EffectTypes::SOLID_COLOR: {
program->SetRenderColor(color);
if (maskType != MaskType::MaskNone) {
BindMaskForProgram(program, sourceMask, LOCAL_GL_TEXTURE0, maskQuadTransform);
}
if (mixBlendBackdrop) {
BindBackdrop(program, mixBlendBackdrop, LOCAL_GL_TEXTURE1);
}
didSetBlendMode = SetBlendMode(gl(), blendMode);
BindAndDrawGeometry(program, aGeometry);
}
break;
case EffectTypes::RGB: {
TexturedEffect* texturedEffect =
static_cast<TexturedEffect*>(aEffectChain.mPrimaryEffect.get());
TextureSource *source = texturedEffect->mTexture;
didSetBlendMode = SetBlendMode(gl(), blendMode, texturedEffect->mPremultiplied);
gfx::SamplingFilter samplingFilter = texturedEffect->mSamplingFilter;
source->AsSourceOGL()->BindTexture(LOCAL_GL_TEXTURE0, samplingFilter);
program->SetTextureUnit(0);
Matrix4x4 textureTransform = source->AsSourceOGL()->GetTextureTransform();
program->SetTextureTransform(textureTransform);
if (maskType != MaskType::MaskNone) {
BindMaskForProgram(program, sourceMask, LOCAL_GL_TEXTURE1, maskQuadTransform);
}
if (mixBlendBackdrop) {
BindBackdrop(program, mixBlendBackdrop, LOCAL_GL_TEXTURE2);
}
BindAndDrawGeometryWithTextureRect(program, aGeometry,
texturedEffect->mTextureCoords, source);
}
break;
case EffectTypes::YCBCR: {
EffectYCbCr* effectYCbCr =
static_cast<EffectYCbCr*>(aEffectChain.mPrimaryEffect.get());
TextureSource* sourceYCbCr = effectYCbCr->mTexture;
const int Y = 0, Cb = 1, Cr = 2;
TextureSourceOGL* sourceY = sourceYCbCr->GetSubSource(Y)->AsSourceOGL();
TextureSourceOGL* sourceCb = sourceYCbCr->GetSubSource(Cb)->AsSourceOGL();
TextureSourceOGL* sourceCr = sourceYCbCr->GetSubSource(Cr)->AsSourceOGL();
if (!sourceY || !sourceCb || !sourceCr) {
NS_WARNING("Invalid layer texture.");
return;
}
sourceY->BindTexture(LOCAL_GL_TEXTURE0, effectYCbCr->mSamplingFilter);
sourceCb->BindTexture(LOCAL_GL_TEXTURE1, effectYCbCr->mSamplingFilter);
sourceCr->BindTexture(LOCAL_GL_TEXTURE2, effectYCbCr->mSamplingFilter);
program->SetYCbCrTextureUnits(Y, Cb, Cr);
program->SetTextureTransform(Matrix4x4());
program->SetYUVColorSpace(effectYCbCr->mYUVColorSpace);
if (maskType != MaskType::MaskNone) {
BindMaskForProgram(program, sourceMask, LOCAL_GL_TEXTURE3, maskQuadTransform);
}
if (mixBlendBackdrop) {
BindBackdrop(program, mixBlendBackdrop, LOCAL_GL_TEXTURE4);
}
didSetBlendMode = SetBlendMode(gl(), blendMode);
BindAndDrawGeometryWithTextureRect(program,
aGeometry,
effectYCbCr->mTextureCoords,
sourceYCbCr->GetSubSource(Y));
}
break;
case EffectTypes::NV12: {
EffectNV12* effectNV12 =
static_cast<EffectNV12*>(aEffectChain.mPrimaryEffect.get());
TextureSource* sourceNV12 = effectNV12->mTexture;
const int Y = 0, CbCr = 1;
TextureSourceOGL* sourceY = sourceNV12->GetSubSource(Y)->AsSourceOGL();
TextureSourceOGL* sourceCbCr = sourceNV12->GetSubSource(CbCr)->AsSourceOGL();
if (!sourceY || !sourceCbCr) {
NS_WARNING("Invalid layer texture.");
return;
}
sourceY->BindTexture(LOCAL_GL_TEXTURE0, effectNV12->mSamplingFilter);
sourceCbCr->BindTexture(LOCAL_GL_TEXTURE1, effectNV12->mSamplingFilter);
if (config.mFeatures & ENABLE_TEXTURE_RECT) {
// This is used by IOSurface that use 0,0...w,h coordinate rather then 0,0..1,1.
program->SetCbCrTexCoordMultiplier(sourceCbCr->GetSize().width, sourceCbCr->GetSize().height);
}
program->SetNV12TextureUnits(Y, CbCr);
program->SetTextureTransform(Matrix4x4());
if (maskType != MaskType::MaskNone) {
BindMaskForProgram(program, sourceMask, LOCAL_GL_TEXTURE2, maskQuadTransform);
}
if (mixBlendBackdrop) {
BindBackdrop(program, mixBlendBackdrop, LOCAL_GL_TEXTURE3);
}
didSetBlendMode = SetBlendMode(gl(), blendMode);
BindAndDrawGeometryWithTextureRect(program,
aGeometry,
effectNV12->mTextureCoords,
sourceNV12->GetSubSource(Y));
}
break;
case EffectTypes::RENDER_TARGET: {
EffectRenderTarget* effectRenderTarget =
static_cast<EffectRenderTarget*>(aEffectChain.mPrimaryEffect.get());
RefPtr<CompositingRenderTargetOGL> surface
= static_cast<CompositingRenderTargetOGL*>(effectRenderTarget->mRenderTarget.get());
surface->BindTexture(LOCAL_GL_TEXTURE0, mFBOTextureTarget);
// Drawing is always flipped, but when copying between surfaces we want to avoid
// this, so apply a flip here to cancel the other one out.
Matrix transform;
transform.PreTranslate(0.0, 1.0);
transform.PreScale(1.0f, -1.0f);
program->SetTextureTransform(Matrix4x4::From2D(transform));
program->SetTextureUnit(0);
if (maskType != MaskType::MaskNone) {
BindMaskForProgram(program, sourceMask, LOCAL_GL_TEXTURE1, maskQuadTransform);
}
if (mixBlendBackdrop) {
BindBackdrop(program, mixBlendBackdrop, LOCAL_GL_TEXTURE2);
}
if (config.mFeatures & ENABLE_TEXTURE_RECT) {
// 2DRect case, get the multiplier right for a sampler2DRect
program->SetTexCoordMultiplier(surface->GetSize().width,
surface->GetSize().height);
}
// Drawing is always flipped, but when copying between surfaces we want to avoid
// this. Pass true for the flip parameter to introduce a second flip
// that cancels the other one out.
didSetBlendMode = SetBlendMode(gl(), blendMode);
BindAndDrawGeometry(program, aGeometry);
}
break;
case EffectTypes::COMPONENT_ALPHA: {
MOZ_ASSERT(gfxPrefs::ComponentAlphaEnabled());
MOZ_ASSERT(blendMode == gfx::CompositionOp::OP_OVER, "Can't support blend modes with component alpha!");
EffectComponentAlpha* effectComponentAlpha =
static_cast<EffectComponentAlpha*>(aEffectChain.mPrimaryEffect.get());
TextureSourceOGL* sourceOnWhite = effectComponentAlpha->mOnWhite->AsSourceOGL();
TextureSourceOGL* sourceOnBlack = effectComponentAlpha->mOnBlack->AsSourceOGL();
if (!sourceOnBlack->IsValid() ||
!sourceOnWhite->IsValid()) {
NS_WARNING("Invalid layer texture for component alpha");
return;
}
sourceOnBlack->BindTexture(LOCAL_GL_TEXTURE0, effectComponentAlpha->mSamplingFilter);
sourceOnWhite->BindTexture(LOCAL_GL_TEXTURE1, effectComponentAlpha->mSamplingFilter);
program->SetBlackTextureUnit(0);
program->SetWhiteTextureUnit(1);
program->SetTextureTransform(Matrix4x4());
if (maskType != MaskType::MaskNone) {
BindMaskForProgram(program, sourceMask, LOCAL_GL_TEXTURE2, maskQuadTransform);
}
// Pass 1.
gl()->fBlendFuncSeparate(LOCAL_GL_ZERO, LOCAL_GL_ONE_MINUS_SRC_COLOR,
LOCAL_GL_ONE, LOCAL_GL_ONE);
program->SetTexturePass2(false);
BindAndDrawGeometryWithTextureRect(program,
aGeometry,
effectComponentAlpha->mTextureCoords,
effectComponentAlpha->mOnBlack);
// Pass 2.
gl()->fBlendFuncSeparate(LOCAL_GL_ONE, LOCAL_GL_ONE,
LOCAL_GL_ONE, LOCAL_GL_ONE);
program->SetTexturePass2(true);
BindAndDrawGeometryWithTextureRect(program,
aGeometry,
effectComponentAlpha->mTextureCoords,
effectComponentAlpha->mOnBlack);
mGLContext->fBlendFuncSeparate(LOCAL_GL_ONE, LOCAL_GL_ONE_MINUS_SRC_ALPHA,
LOCAL_GL_ONE, LOCAL_GL_ONE_MINUS_SRC_ALPHA);
}
break;
default:
MOZ_ASSERT(false, "Unhandled effect type");
break;
}
if (didSetBlendMode) {
gl()->fBlendFuncSeparate(LOCAL_GL_ONE, LOCAL_GL_ONE_MINUS_SRC_ALPHA,
LOCAL_GL_ONE, LOCAL_GL_ONE_MINUS_SRC_ALPHA);
}
if (createdMixBlendBackdropTexture) {
gl()->fDeleteTextures(1, &mixBlendBackdrop);
}
// in case rendering has used some other GL context
MakeCurrent();
LayerScope::DrawEnd(mGLContext, aEffectChain,
aGeometry.width, aGeometry.height);
}
void
CompositorOGL::BindAndDrawGeometry(ShaderProgramOGL* aProgram,
const gfx::Rect& aRect,
const gfx::Rect& aTextureRect)
{
BindAndDrawQuad(aProgram, aRect, aTextureRect);
}
void
CompositorOGL::BindAndDrawGeometry(ShaderProgramOGL* aProgram,
const gfx::TexturedTriangle& aTriangle,
const gfx::Rect& aTextureRect)
{
NS_ASSERTION(aProgram->HasInitialized(), "Shader program not correctly initialized");
const gfx::TexturedTriangle& t = aTriangle;
const gfx::Triangle& tex = t.textureCoords;
GLfloat vertices[] = {
t.p1.x, t.p1.y, 0.0f, 1.0f, tex.p1.x, tex.p1.y,
t.p2.x, t.p2.y, 0.0f, 1.0f, tex.p2.x, tex.p2.y,
t.p3.x, t.p3.y, 0.0f, 1.0f, tex.p3.x, tex.p3.y
};
HeapCopyOfStackArray<GLfloat> verticesOnHeap(vertices);
mGLContext->fBindBuffer(LOCAL_GL_ARRAY_BUFFER, mTriangleVBO);
mGLContext->fBufferData(LOCAL_GL_ARRAY_BUFFER,
verticesOnHeap.ByteLength(),
verticesOnHeap.Data(),
LOCAL_GL_STREAM_DRAW);
const GLsizei stride = 6 * sizeof(GLfloat);
InitializeVAO(kCoordinateAttributeIndex, 4, stride, 0);
InitializeVAO(kTexCoordinateAttributeIndex, 2, stride, 4 * sizeof(GLfloat));
mGLContext->fDrawArrays(LOCAL_GL_TRIANGLES, 0, 3);
mGLContext->fDisableVertexAttribArray(kCoordinateAttributeIndex);
mGLContext->fDisableVertexAttribArray(kTexCoordinateAttributeIndex);
mGLContext->fBindBuffer(LOCAL_GL_ARRAY_BUFFER, 0);
}
// |aRect| is the rectangle we want to draw to. We will draw it with
// up to 4 draw commands if necessary to avoid wrapping.
// |aTexCoordRect| is the rectangle from the texture that we want to
// draw using the given program.
// |aTexture| is the texture we are drawing. Its actual size can be
// larger than the rectangle given by |texCoordRect|.
void
CompositorOGL::BindAndDrawGeometryWithTextureRect(ShaderProgramOGL *aProg,
const Rect& aRect,
const Rect& aTexCoordRect,
TextureSource *aTexture)
{
Rect scaledTexCoordRect = GetTextureCoordinates(aTexCoordRect, aTexture);
Rect layerRects[4];
Rect textureRects[4];
size_t rects = DecomposeIntoNoRepeatRects(aRect,
scaledTexCoordRect,
&layerRects,
&textureRects);
BindAndDrawQuads(aProg, rects, layerRects, textureRects);
}
void
CompositorOGL::BindAndDrawGeometryWithTextureRect(ShaderProgramOGL *aProg,
const gfx::TexturedTriangle& aTriangle,
const gfx::Rect& aTexCoordRect,
TextureSource *aTexture)
{
BindAndDrawGeometry(aProg, aTriangle,
GetTextureCoordinates(aTexCoordRect, aTexture));
}
void
CompositorOGL::BindAndDrawQuads(ShaderProgramOGL *aProg,
int aQuads,
const Rect* aLayerRects,
const Rect* aTextureRects)
{
NS_ASSERTION(aProg->HasInitialized(), "Shader program not correctly initialized");
mGLContext->fBindBuffer(LOCAL_GL_ARRAY_BUFFER, mQuadVBO);
InitializeVAO(kCoordinateAttributeIndex, 4, 0, 0);
aProg->SetLayerRects(aLayerRects);
if (aProg->GetTextureCount() > 0) {
aProg->SetTextureRects(aTextureRects);
}
// We are using GL_TRIANGLES here because the Mac Intel drivers fail to properly
// process uniform arrays with GL_TRIANGLE_STRIP. Go figure.
mGLContext->fDrawArrays(LOCAL_GL_TRIANGLES, 0, 6 * aQuads);
mGLContext->fDisableVertexAttribArray(kCoordinateAttributeIndex);
mGLContext->fBindBuffer(LOCAL_GL_ARRAY_BUFFER, 0);
LayerScope::SetDrawRects(aQuads, aLayerRects, aTextureRects);
}
void
CompositorOGL::InitializeVAO(const GLuint aAttrib, const GLint aComponents,
const GLsizei aStride, const size_t aOffset)
{
mGLContext->fVertexAttribPointer(aAttrib, aComponents, LOCAL_GL_FLOAT,
LOCAL_GL_FALSE, aStride,
reinterpret_cast<GLvoid*>(aOffset));
mGLContext->fEnableVertexAttribArray(aAttrib);
}
void
CompositorOGL::EndFrame()
{
PROFILER_LABEL("CompositorOGL", "EndFrame",
js::ProfileEntry::Category::GRAPHICS);
MOZ_ASSERT(mCurrentRenderTarget == mWindowRenderTarget, "Rendering target not properly restored");
#ifdef MOZ_DUMP_PAINTING
if (gfxEnv::DumpCompositorTextures()) {
LayoutDeviceIntSize size;
if (mUseExternalSurfaceSize) {
size = LayoutDeviceIntSize(mSurfaceSize.width, mSurfaceSize.height);
} else {
size = mWidget->GetClientSize();
}
RefPtr<DrawTarget> target = gfxPlatform::GetPlatform()->CreateOffscreenContentDrawTarget(IntSize(size.width, size.height), SurfaceFormat::B8G8R8A8);
if (target) {
CopyToTarget(target, nsIntPoint(), Matrix());
WriteSnapshotToDumpFile(this, target);
}
}
#endif
mContextStateTracker.PopOGLSection(gl(), "Frame");
mFrameInProgress = false;
if (mTarget) {
CopyToTarget(mTarget, mTargetBounds.TopLeft(), Matrix());
mGLContext->fBindBuffer(LOCAL_GL_ARRAY_BUFFER, 0);
mCurrentRenderTarget = nullptr;
Compositor::EndFrame();
return;
}
mCurrentRenderTarget = nullptr;
if (mTexturePool) {
mTexturePool->EndFrame();
}
mGLContext->SwapBuffers();
mGLContext->fBindBuffer(LOCAL_GL_ARRAY_BUFFER, 0);
// Unbind all textures
for (GLuint i = 0; i <= 4; i++) {
mGLContext->fActiveTexture(LOCAL_GL_TEXTURE0 + i);
mGLContext->fBindTexture(LOCAL_GL_TEXTURE_2D, 0);
if (!mGLContext->IsGLES()) {
mGLContext->fBindTexture(LOCAL_GL_TEXTURE_RECTANGLE_ARB, 0);
}
}
Compositor::EndFrame();
}
void
CompositorOGL::SetDestinationSurfaceSize(const IntSize& aSize)
{
mSurfaceSize.width = aSize.width;
mSurfaceSize.height = aSize.height;
}
void
CompositorOGL::CopyToTarget(DrawTarget* aTarget, const nsIntPoint& aTopLeft, const gfx::Matrix& aTransform)
{
MOZ_ASSERT(aTarget);
IntRect rect;
if (mUseExternalSurfaceSize) {
rect = IntRect(0, 0, mSurfaceSize.width, mSurfaceSize.height);
} else {
rect = IntRect(0, 0, mWidgetSize.width, mWidgetSize.height);
}
GLint width = rect.width;
GLint height = rect.height;
if ((int64_t(width) * int64_t(height) * int64_t(4)) > INT32_MAX) {
NS_ERROR("Widget size too big - integer overflow!");
return;
}
mGLContext->fBindFramebuffer(LOCAL_GL_FRAMEBUFFER, 0);
if (!mGLContext->IsGLES()) {
// GLES2 promises that binding to any custom FBO will attach
// to GL_COLOR_ATTACHMENT0 attachment point.
mGLContext->fReadBuffer(LOCAL_GL_BACK);
}
RefPtr<DataSourceSurface> source =
Factory::CreateDataSourceSurface(rect.Size(), gfx::SurfaceFormat::B8G8R8A8);
if (NS_WARN_IF(!source)) {
return;
}
ReadPixelsIntoDataSurface(mGLContext, source);
// Map from GL space to Cairo space and reverse the world transform.
Matrix glToCairoTransform = aTransform;
glToCairoTransform.Invert();
glToCairoTransform.PreScale(1.0, -1.0);
glToCairoTransform.PreTranslate(0.0, -height);
glToCairoTransform.PostTranslate(-aTopLeft.x, -aTopLeft.y);
Matrix oldMatrix = aTarget->GetTransform();
aTarget->SetTransform(glToCairoTransform);
Rect floatRect = Rect(rect.x, rect.y, rect.width, rect.height);
aTarget->DrawSurface(source, floatRect, floatRect, DrawSurfaceOptions(), DrawOptions(1.0f, CompositionOp::OP_SOURCE));
aTarget->SetTransform(oldMatrix);
aTarget->Flush();
}
void
CompositorOGL::Pause()
{
#ifdef MOZ_WIDGET_ANDROID
if (!gl() || gl()->IsDestroyed())
return;
// ReleaseSurface internally calls MakeCurrent.
gl()->ReleaseSurface();
#endif
}
bool
CompositorOGL::Resume()
{
#if defined(MOZ_WIDGET_ANDROID) || defined(MOZ_WIDGET_UIKIT)
if (!gl() || gl()->IsDestroyed())
return false;
// RenewSurface internally calls MakeCurrent.
return gl()->RenewSurface(GetWidget());
#endif
return true;
}
already_AddRefed<DataTextureSource>
CompositorOGL::CreateDataTextureSource(TextureFlags aFlags)
{
return MakeAndAddRef<TextureImageTextureSourceOGL>(this, aFlags);
}
bool
CompositorOGL::SupportsPartialTextureUpdate()
{
return CanUploadSubTextures(mGLContext);
}
int32_t
CompositorOGL::GetMaxTextureSize() const
{
MOZ_ASSERT(mGLContext);
GLint texSize = 0;
mGLContext->fGetIntegerv(LOCAL_GL_MAX_TEXTURE_SIZE,
&texSize);
MOZ_ASSERT(texSize != 0);
return texSize;
}
void
CompositorOGL::MakeCurrent(MakeCurrentFlags aFlags) {
if (mDestroyed) {
NS_WARNING("Call on destroyed layer manager");
return;
}
mGLContext->MakeCurrent(aFlags & ForceMakeCurrent);
}
GLBlitTextureImageHelper*
CompositorOGL::BlitTextureImageHelper()
{
if (!mBlitTextureImageHelper) {
mBlitTextureImageHelper = MakeUnique<GLBlitTextureImageHelper>(this);
}
return mBlitTextureImageHelper.get();
}
GLuint
CompositorOGL::GetTemporaryTexture(GLenum aTarget, GLenum aUnit)
{
if (!mTexturePool) {
mTexturePool = new PerUnitTexturePoolOGL(gl());
}
return mTexturePool->GetTexture(aTarget, aUnit);
}
GLuint
PerUnitTexturePoolOGL::GetTexture(GLenum aTarget, GLenum aTextureUnit)
{
if (mTextureTarget == 0) {
mTextureTarget = aTarget;
}
MOZ_ASSERT(mTextureTarget == aTarget);
size_t index = aTextureUnit - LOCAL_GL_TEXTURE0;
// lazily grow the array of temporary textures
if (mTextures.Length() <= index) {
size_t prevLength = mTextures.Length();
mTextures.SetLength(index + 1);
for(unsigned int i = prevLength; i <= index; ++i) {
mTextures[i] = 0;
}
}
// lazily initialize the temporary textures
if (!mTextures[index]) {
if (!mGL->MakeCurrent()) {
return 0;
}
mGL->fGenTextures(1, &mTextures[index]);
mGL->fBindTexture(aTarget, mTextures[index]);
mGL->fTexParameteri(aTarget, LOCAL_GL_TEXTURE_WRAP_S, LOCAL_GL_CLAMP_TO_EDGE);
mGL->fTexParameteri(aTarget, LOCAL_GL_TEXTURE_WRAP_T, LOCAL_GL_CLAMP_TO_EDGE);
}
return mTextures[index];
}
void
PerUnitTexturePoolOGL::DestroyTextures()
{
if (mGL && mGL->MakeCurrent()) {
if (mTextures.Length() > 0) {
mGL->fDeleteTextures(mTextures.Length(), &mTextures[0]);
}
}
mTextures.SetLength(0);
}
bool
CompositorOGL::SupportsLayerGeometry() const
{
return gfxPrefs::OGLLayerGeometry();
}
} // namespace layers
} // namespace mozilla