gecko-dev/image/decoders/nsICODecoder.cpp
Andrew Osmond 6be360ba2c Bug 1388590 - StreamingLexer::Clone should bail if SourceBufferIterator::Advance returns not ready. r=tnikkel
StreamingLexer::Clone should always succeed because we are merely
creating a new SourceBufferIterator which is at the same position as the
given iterator. However it is possible if there is no more data after,
the current position, it could return COMPLETE instead of READY.

This should not happen during the first Advance loop however. We handle
the failure gracefully now, and if someone files a report with the
invalid ICO file causing this problem, then we can investigate further.
2017-08-15 17:44:03 -04:00

740 lines
25 KiB
C++

/* vim:set tw=80 expandtab softtabstop=2 ts=2 sw=2: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/* This is a Cross-Platform ICO Decoder, which should work everywhere, including
* Big-Endian machines like the PowerPC. */
#include "nsICODecoder.h"
#include <stdlib.h>
#include "mozilla/EndianUtils.h"
#include "mozilla/Move.h"
#include "RasterImage.h"
using namespace mozilla::gfx;
namespace mozilla {
namespace image {
// Constants.
static const uint32_t ICOHEADERSIZE = 6;
static const uint32_t BITMAPINFOSIZE = bmp::InfoHeaderLength::WIN_ICO;
// ----------------------------------------
// Actual Data Processing
// ----------------------------------------
// Obtains the number of colors from the bits per pixel
uint16_t
nsICODecoder::GetNumColors()
{
uint16_t numColors = 0;
if (mBPP <= 8) {
switch (mBPP) {
case 1:
numColors = 2;
break;
case 4:
numColors = 16;
break;
case 8:
numColors = 256;
break;
default:
numColors = (uint16_t)-1;
}
}
return numColors;
}
nsICODecoder::nsICODecoder(RasterImage* aImage)
: Decoder(aImage)
, mLexer(Transition::To(ICOState::HEADER, ICOHEADERSIZE),
Transition::TerminateSuccess())
, mDirEntry(nullptr)
, mNumIcons(0)
, mCurrIcon(0)
, mBPP(0)
, mMaskRowSize(0)
, mCurrMaskLine(0)
, mIsCursor(false)
, mHasMaskAlpha(false)
{ }
nsresult
nsICODecoder::FinishInternal()
{
// We shouldn't be called in error cases
MOZ_ASSERT(!HasError(), "Shouldn't call FinishInternal after error!");
return GetFinalStateFromContainedDecoder();
}
nsresult
nsICODecoder::FinishWithErrorInternal()
{
// No need to assert !mInFrame here because this condition is enforced by
// mContainedDecoder.
return GetFinalStateFromContainedDecoder();
}
nsresult
nsICODecoder::GetFinalStateFromContainedDecoder()
{
if (!mContainedDecoder) {
return NS_OK;
}
// Let the contained decoder finish up if necessary.
FlushContainedDecoder();
// Make our state the same as the state of the contained decoder.
mDecodeDone = mContainedDecoder->GetDecodeDone();
mProgress |= mContainedDecoder->TakeProgress();
mInvalidRect.UnionRect(mInvalidRect, mContainedDecoder->TakeInvalidRect());
mCurrentFrame = mContainedDecoder->GetCurrentFrameRef();
// Propagate errors.
nsresult rv = HasError() || mContainedDecoder->HasError()
? NS_ERROR_FAILURE
: NS_OK;
MOZ_ASSERT(NS_FAILED(rv) || !mCurrentFrame || mCurrentFrame->IsFinished());
return rv;
}
LexerTransition<ICOState>
nsICODecoder::ReadHeader(const char* aData)
{
// If the third byte is 1, this is an icon. If 2, a cursor.
if ((aData[2] != 1) && (aData[2] != 2)) {
return Transition::TerminateFailure();
}
mIsCursor = (aData[2] == 2);
// The fifth and sixth bytes specify the number of resources in the file.
mNumIcons = LittleEndian::readUint16(aData + 4);
if (mNumIcons == 0) {
return Transition::TerminateSuccess(); // Nothing to do.
}
// Downscale-during-decode can end up decoding different resources in the ICO
// file depending on the target size. Since the resources are not necessarily
// scaled versions of the same image, some may be transparent and some may not
// be. We could be precise about transparency if we decoded the metadata of
// every resource, but for now we don't and it's safest to assume that
// transparency could be present.
PostHasTransparency();
return Transition::To(ICOState::DIR_ENTRY, ICODIRENTRYSIZE);
}
size_t
nsICODecoder::FirstResourceOffset() const
{
MOZ_ASSERT(mNumIcons > 0,
"Calling FirstResourceOffset before processing header");
// The first resource starts right after the directory, which starts right
// after the ICO header.
return ICOHEADERSIZE + mNumIcons * ICODIRENTRYSIZE;
}
LexerTransition<ICOState>
nsICODecoder::ReadDirEntry(const char* aData)
{
mCurrIcon++;
// Ensure the resource has an offset past the ICO headers.
uint32_t offset = LittleEndian::readUint32(aData + 12);
if (offset >= FirstResourceOffset()) {
// Read the directory entry.
IconDirEntryEx e;
e.mWidth = aData[0];
e.mHeight = aData[1];
e.mColorCount = aData[2];
e.mReserved = aData[3];
e.mPlanes = LittleEndian::readUint16(aData + 4);
e.mBitCount = LittleEndian::readUint16(aData + 6);
e.mBytesInRes = LittleEndian::readUint32(aData + 8);
e.mImageOffset = offset;
e.mSize = IntSize(e.mWidth, e.mHeight);
// Only accept entries with sufficient resource data to actually contain
// some image data.
if (e.mBytesInRes > BITMAPINFOSIZE) {
if (e.mWidth == 0 || e.mHeight == 0) {
mUnsizedDirEntries.AppendElement(e);
} else {
mDirEntries.AppendElement(e);
}
}
}
if (mCurrIcon == mNumIcons) {
if (mUnsizedDirEntries.IsEmpty()) {
return Transition::To(ICOState::FINISHED_DIR_ENTRY, 0);
}
return Transition::To(ICOState::ITERATE_UNSIZED_DIR_ENTRY, 0);
}
return Transition::To(ICOState::DIR_ENTRY, ICODIRENTRYSIZE);
}
LexerTransition<ICOState>
nsICODecoder::IterateUnsizedDirEntry()
{
MOZ_ASSERT(!mUnsizedDirEntries.IsEmpty());
if (!mDirEntry) {
// The first time we are here, there is no entry selected. We must prepare a
// new iterator for the contained decoder to advance as it wills. Cloning at
// this point ensures it will begin at the end of the dir entries.
mReturnIterator = Move(mLexer.Clone(*mIterator, SIZE_MAX));
if (mReturnIterator.isNothing()) {
// If we cannot read further than this point, then there is no resource
// data to read.
return Transition::TerminateFailure();
}
} else {
// We have already selected an entry which means a metadata decoder has
// finished. Verify the size is valid and if so, add to the discovered
// resources.
if (mDirEntry->mSize.width > 0 && mDirEntry->mSize.height > 0) {
mDirEntries.AppendElement(*mDirEntry);
}
// Remove the entry from the unsized list either way.
mDirEntry = nullptr;
mUnsizedDirEntries.RemoveElementAt(0);
// Our iterator is at an unknown point, so reset it to the point that we
// saved.
mIterator = Move(mLexer.Clone(*mReturnIterator, SIZE_MAX));
if (mIterator.isNothing()) {
MOZ_ASSERT_UNREACHABLE("Cannot re-clone return iterator");
return Transition::TerminateFailure();
}
}
// There are no more unsized entries, so we can finally decide which entry to
// select for decoding.
if (mUnsizedDirEntries.IsEmpty()) {
mReturnIterator.reset();
return Transition::To(ICOState::FINISHED_DIR_ENTRY, 0);
}
// Move to the resource data to start metadata decoding.
mDirEntry = &mUnsizedDirEntries[0];
size_t offsetToResource = mDirEntry->mImageOffset - FirstResourceOffset();
return Transition::ToUnbuffered(ICOState::FOUND_RESOURCE,
ICOState::SKIP_TO_RESOURCE,
offsetToResource);
}
LexerTransition<ICOState>
nsICODecoder::FinishDirEntry()
{
MOZ_ASSERT(!mDirEntry);
if (mDirEntries.IsEmpty()) {
return Transition::TerminateFailure();
}
// If an explicit output size was specified, we'll try to select the resource
// that matches it best below.
const Maybe<IntSize> desiredSize = ExplicitOutputSize();
// Determine the biggest resource. We always use the biggest resource for the
// intrinsic size, and if we don't have a specific desired size, we select it
// as the best resource as well.
int32_t bestDelta = INT32_MIN;
IconDirEntryEx* biggestEntry = nullptr;
for (size_t i = 0; i < mDirEntries.Length(); ++i) {
IconDirEntryEx& e = mDirEntries[i];
mImageMetadata.AddNativeSize(e.mSize);
if (!biggestEntry ||
(e.mBitCount >= biggestEntry->mBitCount &&
e.mSize.width * e.mSize.height >=
biggestEntry->mSize.width * biggestEntry->mSize.height)) {
biggestEntry = &e;
if (!desiredSize) {
mDirEntry = &e;
}
}
if (desiredSize) {
// Calculate the delta between this resource's size and the desired size, so
// we can see if it is better than our current-best option. In the case of
// several equally-good resources, we use the last one. "Better" in this
// case is determined by |delta|, a measure of the difference in size
// between the entry we've found and the desired size. We will choose the
// smallest resource that is greater than or equal to the desired size (i.e.
// we assume it's better to downscale a larger icon than to upscale a
// smaller one).
int32_t delta = std::min(e.mSize.width - desiredSize->width,
e.mSize.height - desiredSize->height);
if (!mDirEntry ||
(e.mBitCount >= mDirEntry->mBitCount &&
((bestDelta < 0 && delta >= bestDelta) ||
(delta >= 0 && delta <= bestDelta)))) {
mDirEntry = &e;
bestDelta = delta;
}
}
}
MOZ_ASSERT(mDirEntry);
MOZ_ASSERT(biggestEntry);
// If this is a cursor, set the hotspot. We use the hotspot from the biggest
// resource since we also use that resource for the intrinsic size.
if (mIsCursor) {
mImageMetadata.SetHotspot(biggestEntry->mXHotspot,
biggestEntry->mYHotspot);
}
// We always report the biggest resource's size as the intrinsic size; this
// is necessary for downscale-during-decode to work since we won't even
// attempt to *upscale* while decoding.
PostSize(biggestEntry->mSize.width, biggestEntry->mSize.height);
if (HasError()) {
return Transition::TerminateFailure();
}
if (IsMetadataDecode()) {
return Transition::TerminateSuccess();
}
// If the resource we selected matches the output size perfectly, we don't
// need to do any downscaling.
if (mDirEntry->mSize == OutputSize()) {
MOZ_ASSERT_IF(desiredSize, mDirEntry->mSize == *desiredSize);
MOZ_ASSERT_IF(!desiredSize, mDirEntry->mSize == Size());
mDownscaler.reset();
}
size_t offsetToResource = mDirEntry->mImageOffset - FirstResourceOffset();
return Transition::ToUnbuffered(ICOState::FOUND_RESOURCE,
ICOState::SKIP_TO_RESOURCE,
offsetToResource);
}
LexerTransition<ICOState>
nsICODecoder::SniffResource(const char* aData)
{
MOZ_ASSERT(mDirEntry);
// We have BITMAPINFOSIZE bytes buffered at this point. We know an embedded
// BMP will have at least that many bytes by definition. We can also infer
// that any valid embedded PNG will contain that many bytes as well because:
// BITMAPINFOSIZE
// <
// signature (8 bytes) +
// IHDR (12 bytes header + 13 bytes data)
// IDAT (12 bytes header)
// We use the first PNGSIGNATURESIZE bytes to determine whether this resource
// is a PNG or a BMP.
bool isPNG = !memcmp(aData, nsPNGDecoder::pngSignatureBytes,
PNGSIGNATURESIZE);
if (isPNG) {
if (mDirEntry->mBytesInRes <= BITMAPINFOSIZE) {
return Transition::TerminateFailure();
}
// Prepare a new iterator for the contained decoder to advance as it wills.
// Cloning at the point ensures it will begin at the resource offset.
Maybe<SourceBufferIterator> containedIterator
= mLexer.Clone(*mIterator, mDirEntry->mBytesInRes);
if (containedIterator.isNothing()) {
return Transition::TerminateFailure();
}
// Create a PNG decoder which will do the rest of the work for us.
bool metadataDecode = mReturnIterator.isSome();
Maybe<IntSize> expectedSize = metadataDecode ? Nothing()
: Some(mDirEntry->mSize);
mContainedDecoder =
DecoderFactory::CreateDecoderForICOResource(DecoderType::PNG,
Move(containedIterator.ref()),
WrapNotNull(this),
metadataDecode,
expectedSize);
// Read in the rest of the PNG unbuffered.
size_t toRead = mDirEntry->mBytesInRes - BITMAPINFOSIZE;
return Transition::ToUnbuffered(ICOState::FINISHED_RESOURCE,
ICOState::READ_RESOURCE,
toRead);
} else {
// Make sure we have a sane size for the bitmap information header.
int32_t bihSize = LittleEndian::readUint32(aData);
if (bihSize != static_cast<int32_t>(BITMAPINFOSIZE)) {
return Transition::TerminateFailure();
}
// Read in the rest of the bitmap information header.
return ReadBIH(aData);
}
}
LexerTransition<ICOState>
nsICODecoder::ReadResource()
{
if (!FlushContainedDecoder()) {
return Transition::TerminateFailure();
}
return Transition::ContinueUnbuffered(ICOState::READ_RESOURCE);
}
LexerTransition<ICOState>
nsICODecoder::ReadBIH(const char* aData)
{
MOZ_ASSERT(mDirEntry);
// Extract the BPP from the BIH header; it should be trusted over the one
// we have from the ICO header which is usually set to 0.
mBPP = LittleEndian::readUint16(aData + 14);
// Check to make sure we have valid color settings.
uint16_t numColors = GetNumColors();
if (numColors == uint16_t(-1)) {
return Transition::TerminateFailure();
}
// The color table is present only if BPP is <= 8.
MOZ_ASSERT_IF(mBPP > 8, numColors == 0);
// The ICO format when containing a BMP does not include the 14 byte
// bitmap file header. So we create the BMP decoder via the constructor that
// tells it to skip this, and pass in the required data (dataOffset) that
// would have been present in the header.
uint32_t dataOffset = bmp::FILE_HEADER_LENGTH + BITMAPINFOSIZE + 4 * numColors;
// Prepare a new iterator for the contained decoder to advance as it wills.
// Cloning at the point ensures it will begin at the resource offset.
Maybe<SourceBufferIterator> containedIterator
= mLexer.Clone(*mIterator, mDirEntry->mBytesInRes);
if (containedIterator.isNothing()) {
return Transition::TerminateFailure();
}
// Create a BMP decoder which will do most of the work for us; the exception
// is the AND mask, which isn't present in standalone BMPs.
bool metadataDecode = mReturnIterator.isSome();
Maybe<IntSize> expectedSize = metadataDecode ? Nothing()
: Some(mDirEntry->mSize);
mContainedDecoder =
DecoderFactory::CreateDecoderForICOResource(DecoderType::BMP,
Move(containedIterator.ref()),
WrapNotNull(this),
metadataDecode,
expectedSize,
Some(dataOffset));
RefPtr<nsBMPDecoder> bmpDecoder =
static_cast<nsBMPDecoder*>(mContainedDecoder.get());
// Ensure the decoder has parsed at least the BMP's bitmap info header.
if (!FlushContainedDecoder()) {
return Transition::TerminateFailure();
}
// If this is a metadata decode, FinishResource will any necessary checks.
if (mContainedDecoder->IsMetadataDecode()) {
return Transition::To(ICOState::FINISHED_RESOURCE, 0);
}
// Do we have an AND mask on this BMP? If so, we need to read it after we read
// the BMP data itself.
uint32_t bmpDataLength = bmpDecoder->GetCompressedImageSize() + 4 * numColors;
bool hasANDMask = (BITMAPINFOSIZE + bmpDataLength) < mDirEntry->mBytesInRes;
ICOState afterBMPState = hasANDMask ? ICOState::PREPARE_FOR_MASK
: ICOState::FINISHED_RESOURCE;
// Read in the rest of the BMP unbuffered.
return Transition::ToUnbuffered(afterBMPState,
ICOState::READ_RESOURCE,
bmpDataLength);
}
LexerTransition<ICOState>
nsICODecoder::PrepareForMask()
{
MOZ_ASSERT(mDirEntry);
MOZ_ASSERT(mContainedDecoder->GetDecodeDone());
// We have received all of the data required by the BMP decoder so flushing
// here guarantees the decode has finished.
if (!FlushContainedDecoder()) {
return Transition::TerminateFailure();
}
MOZ_ASSERT(mContainedDecoder->GetDecodeDone());
RefPtr<nsBMPDecoder> bmpDecoder =
static_cast<nsBMPDecoder*>(mContainedDecoder.get());
uint16_t numColors = GetNumColors();
MOZ_ASSERT(numColors != uint16_t(-1));
// Determine the length of the AND mask.
uint32_t bmpLengthWithHeader =
BITMAPINFOSIZE + bmpDecoder->GetCompressedImageSize() + 4 * numColors;
MOZ_ASSERT(bmpLengthWithHeader < mDirEntry->mBytesInRes);
uint32_t maskLength = mDirEntry->mBytesInRes - bmpLengthWithHeader;
// If the BMP provides its own transparency, we ignore the AND mask.
if (bmpDecoder->HasTransparency()) {
return Transition::ToUnbuffered(ICOState::FINISHED_RESOURCE,
ICOState::SKIP_MASK,
maskLength);
}
// Compute the row size for the mask.
mMaskRowSize = ((mDirEntry->mSize.width + 31) / 32) * 4; // + 31 to round up
// If the expected size of the AND mask is larger than its actual size, then
// we must have a truncated (and therefore corrupt) AND mask.
uint32_t expectedLength = mMaskRowSize * mDirEntry->mSize.height;
if (maskLength < expectedLength) {
return Transition::TerminateFailure();
}
// If we're downscaling, the mask is the wrong size for the surface we've
// produced, so we need to downscale the mask into a temporary buffer and then
// combine the mask's alpha values with the color values from the image.
if (mDownscaler) {
MOZ_ASSERT(bmpDecoder->GetImageDataLength() ==
mDownscaler->TargetSize().width *
mDownscaler->TargetSize().height *
sizeof(uint32_t));
mMaskBuffer = MakeUnique<uint8_t[]>(bmpDecoder->GetImageDataLength());
nsresult rv = mDownscaler->BeginFrame(mDirEntry->mSize, Nothing(),
mMaskBuffer.get(),
/* aHasAlpha = */ true,
/* aFlipVertically = */ true);
if (NS_FAILED(rv)) {
return Transition::TerminateFailure();
}
}
mCurrMaskLine = mDirEntry->mSize.height;
return Transition::To(ICOState::READ_MASK_ROW, mMaskRowSize);
}
LexerTransition<ICOState>
nsICODecoder::ReadMaskRow(const char* aData)
{
MOZ_ASSERT(mDirEntry);
mCurrMaskLine--;
uint8_t sawTransparency = 0;
// Get the mask row we're reading.
const uint8_t* mask = reinterpret_cast<const uint8_t*>(aData);
const uint8_t* maskRowEnd = mask + mMaskRowSize;
// Get the corresponding row of the mask buffer (if we're downscaling) or the
// decoded image data (if we're not).
uint32_t* decoded = nullptr;
if (mDownscaler) {
// Initialize the row to all white and fully opaque.
memset(mDownscaler->RowBuffer(), 0xFF, mDirEntry->mSize.width * sizeof(uint32_t));
decoded = reinterpret_cast<uint32_t*>(mDownscaler->RowBuffer());
} else {
RefPtr<nsBMPDecoder> bmpDecoder =
static_cast<nsBMPDecoder*>(mContainedDecoder.get());
uint32_t* imageData = bmpDecoder->GetImageData();
if (!imageData) {
return Transition::TerminateFailure();
}
decoded = imageData + mCurrMaskLine * mDirEntry->mSize.width;
}
MOZ_ASSERT(decoded);
uint32_t* decodedRowEnd = decoded + mDirEntry->mSize.width;
// Iterate simultaneously through the AND mask and the image data.
while (mask < maskRowEnd) {
uint8_t idx = *mask++;
sawTransparency |= idx;
for (uint8_t bit = 0x80; bit && decoded < decodedRowEnd; bit >>= 1) {
// Clear pixel completely for transparency.
if (idx & bit) {
*decoded = 0;
}
decoded++;
}
}
if (mDownscaler) {
mDownscaler->CommitRow();
}
// If any bits are set in sawTransparency, then we know at least one pixel was
// transparent.
if (sawTransparency) {
mHasMaskAlpha = true;
}
if (mCurrMaskLine == 0) {
return Transition::To(ICOState::FINISH_MASK, 0);
}
return Transition::To(ICOState::READ_MASK_ROW, mMaskRowSize);
}
LexerTransition<ICOState>
nsICODecoder::FinishMask()
{
// If we're downscaling, we now have the appropriate alpha values in
// mMaskBuffer. We just need to transfer them to the image.
if (mDownscaler) {
// Retrieve the image data.
RefPtr<nsBMPDecoder> bmpDecoder =
static_cast<nsBMPDecoder*>(mContainedDecoder.get());
uint8_t* imageData = reinterpret_cast<uint8_t*>(bmpDecoder->GetImageData());
if (!imageData) {
return Transition::TerminateFailure();
}
// Iterate through the alpha values, copying from mask to image.
MOZ_ASSERT(mMaskBuffer);
MOZ_ASSERT(bmpDecoder->GetImageDataLength() > 0);
for (size_t i = 3 ; i < bmpDecoder->GetImageDataLength() ; i += 4) {
imageData[i] = mMaskBuffer[i];
}
}
return Transition::To(ICOState::FINISHED_RESOURCE, 0);
}
LexerTransition<ICOState>
nsICODecoder::FinishResource()
{
MOZ_ASSERT(mDirEntry);
// We have received all of the data required by the PNG/BMP decoder so
// flushing here guarantees the decode has finished.
if (!FlushContainedDecoder()) {
return Transition::TerminateFailure();
}
MOZ_ASSERT(mContainedDecoder->GetDecodeDone());
// If it is a metadata decode, all we were trying to get was the size
// information missing from the dir entry.
if (mContainedDecoder->IsMetadataDecode()) {
if (mContainedDecoder->HasSize()) {
mDirEntry->mSize = mContainedDecoder->Size();
}
return Transition::To(ICOState::ITERATE_UNSIZED_DIR_ENTRY, 0);
}
// Raymond Chen says that 32bpp only are valid PNG ICOs
// http://blogs.msdn.com/b/oldnewthing/archive/2010/10/22/10079192.aspx
if (!mContainedDecoder->IsValidICOResource()) {
return Transition::TerminateFailure();
}
// This size from the resource should match that from the dir entry.
MOZ_ASSERT_IF(mContainedDecoder->HasSize(),
mContainedDecoder->Size() == mDirEntry->mSize);
// Finalize the frame which we deferred to ensure we could modify the final
// result (e.g. to apply the BMP mask).
MOZ_ASSERT(!mContainedDecoder->GetFinalizeFrames());
if (mCurrentFrame) {
mCurrentFrame->FinalizeSurface();
}
return Transition::TerminateSuccess();
}
LexerResult
nsICODecoder::DoDecode(SourceBufferIterator& aIterator, IResumable* aOnResume)
{
MOZ_ASSERT(!HasError(), "Shouldn't call DoDecode after error!");
return mLexer.Lex(aIterator, aOnResume,
[=](ICOState aState, const char* aData, size_t aLength) {
switch (aState) {
case ICOState::HEADER:
return ReadHeader(aData);
case ICOState::DIR_ENTRY:
return ReadDirEntry(aData);
case ICOState::FINISHED_DIR_ENTRY:
return FinishDirEntry();
case ICOState::ITERATE_UNSIZED_DIR_ENTRY:
return IterateUnsizedDirEntry();
case ICOState::SKIP_TO_RESOURCE:
return Transition::ContinueUnbuffered(ICOState::SKIP_TO_RESOURCE);
case ICOState::FOUND_RESOURCE:
return Transition::To(ICOState::SNIFF_RESOURCE, BITMAPINFOSIZE);
case ICOState::SNIFF_RESOURCE:
return SniffResource(aData);
case ICOState::READ_RESOURCE:
return ReadResource();
case ICOState::PREPARE_FOR_MASK:
return PrepareForMask();
case ICOState::READ_MASK_ROW:
return ReadMaskRow(aData);
case ICOState::FINISH_MASK:
return FinishMask();
case ICOState::SKIP_MASK:
return Transition::ContinueUnbuffered(ICOState::SKIP_MASK);
case ICOState::FINISHED_RESOURCE:
return FinishResource();
default:
MOZ_CRASH("Unknown ICOState");
}
});
}
bool
nsICODecoder::FlushContainedDecoder()
{
MOZ_ASSERT(mContainedDecoder);
bool succeeded = true;
// If we run out of data, the ICO decoder will get resumed when there's more
// data available, as usual, so we don't need the contained decoder to get
// resumed too. To avoid that, we provide an IResumable which just does
// nothing. All the caller needs to do is flush when there is new data.
LexerResult result = mContainedDecoder->Decode();
if (result == LexerResult(TerminalState::FAILURE)) {
succeeded = false;
}
MOZ_ASSERT(result != LexerResult(Yield::OUTPUT_AVAILABLE),
"Unexpected yield");
// Make our state the same as the state of the contained decoder, and
// propagate errors.
mProgress |= mContainedDecoder->TakeProgress();
mInvalidRect.UnionRect(mInvalidRect, mContainedDecoder->TakeInvalidRect());
if (mContainedDecoder->HasError()) {
succeeded = false;
}
return succeeded;
}
} // namespace image
} // namespace mozilla