gecko-dev/gfx/layers/TiledLayerBuffer.h

684 lines
26 KiB
C++

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef GFX_TILEDLAYERBUFFER_H
#define GFX_TILEDLAYERBUFFER_H
// Debug defines
//#define GFX_TILEDLAYER_DEBUG_OVERLAY
//#define GFX_TILEDLAYER_PREF_WARNINGS
//#define GFX_TILEDLAYER_RETAINING_LOG
#include <stdint.h> // for uint16_t, uint32_t
#include <sys/types.h> // for int32_t
#include "gfxPlatform.h" // for GetTileWidth/GetTileHeight
#include "LayersLogging.h" // for print_stderr
#include "mozilla/gfx/Logging.h" // for gfxCriticalError
#include "nsDebug.h" // for NS_ASSERTION
#include "nsPoint.h" // for nsIntPoint
#include "nsRect.h" // for mozilla::gfx::IntRect
#include "nsRegion.h" // for nsIntRegion
#include "nsTArray.h" // for nsTArray
#if defined(MOZ_WIDGET_GONK) && ANDROID_VERSION >= 17
#include <ui/Fence.h>
#endif
namespace mozilla {
struct TileUnit {};
template<> struct IsPixel<TileUnit> : mozilla::TrueType {};
namespace layers {
// You can enable all the TILING_LOG print statements by
// changing the 0 to a 1 in the following #define.
#define ENABLE_TILING_LOG 0
#if ENABLE_TILING_LOG
# define TILING_LOG(...) printf_stderr(__VA_ARGS__);
#else
# define TILING_LOG(...)
#endif
// Normal integer division truncates towards zero,
// we instead want to floor to hangle negative numbers.
static inline int floor_div(int a, int b)
{
int rem = a % b;
int div = a/b;
if (rem == 0) {
return div;
} else {
// If the signs are different substract 1.
int sub;
sub = a ^ b;
// The results of this shift is either 0 or -1.
sub >>= 8*sizeof(int)-1;
return div+sub;
}
}
// An abstract implementation of a tile buffer. This code covers the logic of
// moving and reusing tiles and leaves the validation up to the implementor. To
// avoid the overhead of virtual dispatch, we employ the curiously recurring
// template pattern.
//
// Tiles are aligned to a grid with one of the grid points at (0,0) and other
// grid points spaced evenly in the x- and y-directions by GetTileSize()
// multiplied by mResolution. GetScaledTileSize() provides convenience for
// accessing these values.
//
// This tile buffer stores a valid region, which defines the areas that have
// up-to-date content. The contents of tiles within this region will be reused
// from paint to paint. It also stores the region that was modified in the last
// paint operation; this is useful when one tiled layer buffer shadows another
// (as in an off-main-thread-compositing scenario), so that the shadow tiled
// layer buffer can correctly reflect the updates of the master layer buffer.
//
// The associated Tile may be of any type as long as the derived class can
// validate and return tiles of that type. Tiles will be frequently copied, so
// the tile type should be a reference or some other type with an efficient
// copy constructor.
//
// It is required that the derived class specify the base class as a friend. It
// must also implement the following public method:
//
// Tile GetPlaceholderTile() const;
//
// Returns a temporary placeholder tile used as a marker. This placeholder tile
// must never be returned by validateTile and must be == to every instance
// of a placeholder tile.
//
// Additionally, it must implement the following protected methods:
//
// Tile ValidateTile(Tile aTile, const nsIntPoint& aTileOrigin,
// const nsIntRegion& aDirtyRect);
//
// Validates the dirtyRect. The returned Tile will replace the tile.
//
// void ReleaseTile(Tile aTile);
//
// Destroys the given tile.
//
// void SwapTiles(Tile& aTileA, Tile& aTileB);
//
// Swaps two tiles.
//
// The contents of the tile buffer will be rendered at the resolution specified
// in mResolution, which can be altered with SetResolution. The resolution
// should always be a factor of the tile length, to avoid tiles covering
// non-integer amounts of pixels.
// Size and Point in number of tiles rather than in pixels
typedef gfx::IntSizeTyped<TileUnit> TileIntSize;
typedef gfx::IntPointTyped<TileUnit> TileIntPoint;
/**
* Stores the origin and size of a tile buffer and handles switching between
* tile indices and tile positions.
*
* Tile positions in TileIntPoint take the first tile offset into account which
* means that two TilesPlacement of the same layer and resolution give tile
* positions in the same coordinate space (useful when changing the offset and/or
* size of a tile buffer).
*/
struct TilesPlacement {
// in tiles
TileIntPoint mFirst;
TileIntSize mSize;
TilesPlacement(int aFirstX, int aFirstY,
int aRetainedWidth, int aRetainedHeight)
: mFirst(aFirstX, aFirstY)
, mSize(aRetainedWidth, aRetainedHeight)
{}
int TileIndex(TileIntPoint aPosition) const {
return (aPosition.x - mFirst.x) * mSize.height + aPosition.y - mFirst.y;
}
TileIntPoint TilePosition(size_t aIndex) const {
return TileIntPoint(
mFirst.x + aIndex / mSize.height,
mFirst.y + aIndex % mSize.height
);
}
bool HasTile(TileIntPoint aPosition) {
return aPosition.x >= mFirst.x && aPosition.x < mFirst.x + mSize.width &&
aPosition.y >= mFirst.y && aPosition.y < mFirst.y + mSize.height;
}
};
template<typename Derived, typename Tile>
class TiledLayerBuffer
{
public:
TiledLayerBuffer()
: mTiles(0, 0, 0, 0)
, mResolution(1)
, mTileSize(gfxPlatform::GetPlatform()->GetTileWidth(),
gfxPlatform::GetPlatform()->GetTileHeight())
{}
~TiledLayerBuffer() {}
// Given a tile origin aligned to a multiple of GetScaledTileSize,
// return the tile that describes that region.
// NOTE: To get the valid area of that tile you must intersect
// (aTileOrigin.x, aTileOrigin.y,
// GetScaledTileSize().width, GetScaledTileSize().height)
// and GetValidRegion() to get the area of the tile that is valid.
Tile& GetTile(const gfx::IntPoint& aTileOrigin);
// Given a tile x, y relative to the top left of the layer, this function
// will return the tile for
// (x*GetScaledTileSize().width, y*GetScaledTileSize().height,
// GetScaledTileSize().width, GetScaledTileSize().height)
Tile& GetTile(int x, int y);
Tile& GetTile(size_t i) { return mRetainedTiles[i]; }
gfx::IntPoint GetTileOffset(TileIntPoint aPosition) const {
gfx::IntSize scaledTileSize = GetScaledTileSize();
return gfx::IntPoint(aPosition.x * scaledTileSize.width,
aPosition.y * scaledTileSize.height);
}
const TilesPlacement& GetPlacement() const { return mTiles; }
int TileIndex(const gfx::IntPoint& aTileOrigin) const;
int TileIndex(int x, int y) const { return x * mTiles.mSize.height + y; }
bool HasTile(int index) const { return index >= 0 && index < (int)mRetainedTiles.Length(); }
bool HasTile(const gfx::IntPoint& aTileOrigin) const;
bool HasTile(int x, int y) const {
return x >= 0 && x < mTiles.mSize.width && y >= 0 && y < mTiles.mSize.height;
}
const gfx::IntSize& GetTileSize() const { return mTileSize; }
gfx::IntSize GetScaledTileSize() const { return RoundedToInt(gfx::Size(mTileSize) / mResolution); }
unsigned int GetTileCount() const { return mRetainedTiles.Length(); }
const nsIntRegion& GetValidRegion() const { return mValidRegion; }
const nsIntRegion& GetPaintedRegion() const { return mPaintedRegion; }
void ClearPaintedRegion() { mPaintedRegion.SetEmpty(); }
void ResetPaintedAndValidState() {
mPaintedRegion.SetEmpty();
mValidRegion.SetEmpty();
mTiles.mSize.width = 0;
mTiles.mSize.height = 0;
for (size_t i = 0; i < mRetainedTiles.Length(); i++) {
if (!mRetainedTiles[i].IsPlaceholderTile()) {
AsDerived().ReleaseTile(mRetainedTiles[i]);
}
}
mRetainedTiles.Clear();
}
// Given a position i, this function returns the position inside the current tile.
int GetTileStart(int i, int aTileLength) const {
return (i >= 0) ? (i % aTileLength)
: ((aTileLength - (-i % aTileLength)) %
aTileLength);
}
// Rounds the given coordinate down to the nearest tile boundary.
int RoundDownToTileEdge(int aX, int aTileLength) const { return aX - GetTileStart(aX, aTileLength); }
// Get and set draw scaling. mResolution affects the resolution at which the
// contents of the buffer are drawn. mResolution has no effect on the
// coordinate space of the valid region, but does affect the size of an
// individual tile's rect in relation to the valid region.
// Setting the resolution will invalidate the buffer.
float GetResolution() const { return mResolution; }
bool IsLowPrecision() const { return mResolution < 1; }
typedef Tile* Iterator;
Iterator TilesBegin() { return mRetainedTiles.Elements(); }
Iterator TilesEnd() { return mRetainedTiles.Elements() + mRetainedTiles.Length(); }
void Dump(std::stringstream& aStream, const char* aPrefix, bool aDumpHtml);
protected:
// The implementor should call Update() to change
// the new valid region. This implementation will call
// validateTile on each tile that is dirty, which is left
// to the implementor.
void Update(const nsIntRegion& aNewValidRegion, const nsIntRegion& aPaintRegion);
// Return a reference to this tile in GetTile when the requested tile offset
// does not exist.
Tile mPlaceHolderTile;
nsIntRegion mValidRegion;
nsIntRegion mPaintedRegion;
/**
* mRetainedTiles is a rectangular buffer of mTiles.mSize.width x mTiles.mSize.height
* stored as column major with the same origin as mValidRegion.GetBounds().
* Any tile that does not intersect mValidRegion is a PlaceholderTile.
* Only the region intersecting with mValidRegion should be read from a tile,
* another other region is assumed to be uninitialized. The contents of the
* tiles is scaled by mResolution.
*/
nsTArray<Tile> mRetainedTiles;
TilesPlacement mTiles;
float mResolution;
gfx::IntSize mTileSize;
private:
const Derived& AsDerived() const { return *static_cast<const Derived*>(this); }
Derived& AsDerived() { return *static_cast<Derived*>(this); }
};
class ClientTiledLayerBuffer;
class SurfaceDescriptorTiles;
class ISurfaceAllocator;
// Shadow layers may implement this interface in order to be notified when a
// tiled layer buffer is updated.
class TiledLayerComposer
{
public:
/**
* Update the current retained layer with the updated layer data.
* It is expected that the tiles described by aTiledDescriptor are all in the
* ReadLock state, so that the locks can be adopted when recreating a
* ClientTiledLayerBuffer locally. This lock will be retained until the buffer
* has completed uploading.
*
* Returns false if a deserialization error happened, in which case we will
* have to kill the child process.
*/
virtual bool UseTiledLayerBuffer(ISurfaceAllocator* aAllocator,
const SurfaceDescriptorTiles& aTiledDescriptor) = 0;
/**
* If some part of the buffer is being rendered at a lower precision, this
* returns that region. If it is not, an empty region will be returned.
*/
virtual const nsIntRegion& GetValidLowPrecisionRegion() const = 0;
virtual const nsIntRegion& GetValidRegion() const = 0;
};
template<typename Derived, typename Tile> bool
TiledLayerBuffer<Derived, Tile>::HasTile(const gfx::IntPoint& aTileOrigin) const {
gfx::IntSize scaledTileSize = GetScaledTileSize();
return HasTile(floor_div(aTileOrigin.x, scaledTileSize.width) - mTiles.mFirst.x,
floor_div(aTileOrigin.y, scaledTileSize.height) - mTiles.mFirst.y);
}
template<typename Derived, typename Tile> Tile&
TiledLayerBuffer<Derived, Tile>::GetTile(const nsIntPoint& aTileOrigin)
{
if (HasTile(aTileOrigin)) {
return mRetainedTiles[TileIndex(aTileOrigin)];
}
return mPlaceHolderTile;
}
template<typename Derived, typename Tile> int
TiledLayerBuffer<Derived, Tile>::TileIndex(const gfx::IntPoint& aTileOrigin) const
{
// Find the tile x/y of the first tile and the target tile relative to the (0, 0)
// origin, the difference is the tile x/y relative to the start of the tile buffer.
gfx::IntSize scaledTileSize = GetScaledTileSize();
return TileIndex(floor_div(aTileOrigin.x, scaledTileSize.width) - mTiles.mFirst.x,
floor_div(aTileOrigin.y, scaledTileSize.height) - mTiles.mFirst.y);
}
template<typename Derived, typename Tile> Tile&
TiledLayerBuffer<Derived, Tile>::GetTile(int x, int y)
{
if (HasTile(x, y)) {
return mRetainedTiles[TileIndex(x, y)];
}
return mPlaceHolderTile;
}
template<typename Derived, typename Tile> void
TiledLayerBuffer<Derived, Tile>::Dump(std::stringstream& aStream,
const char* aPrefix,
bool aDumpHtml)
{
gfx::IntRect visibleRect = GetValidRegion().GetBounds();
gfx::IntSize scaledTileSize = GetScaledTileSize();
for (int32_t x = visibleRect.x; x < visibleRect.x + visibleRect.width;) {
int32_t tileStartX = GetTileStart(x, scaledTileSize.width);
int32_t w = scaledTileSize.width - tileStartX;
for (int32_t y = visibleRect.y; y < visibleRect.y + visibleRect.height;) {
int32_t tileStartY = GetTileStart(y, scaledTileSize.height);
nsIntPoint tileOrigin = nsIntPoint(RoundDownToTileEdge(x, scaledTileSize.width),
RoundDownToTileEdge(y, scaledTileSize.height));
Tile& tileTexture = GetTile(tileOrigin);
int32_t h = scaledTileSize.height - tileStartY;
aStream << "\n" << aPrefix << "Tile (x=" <<
RoundDownToTileEdge(x, scaledTileSize.width) << ", y=" <<
RoundDownToTileEdge(y, scaledTileSize.height) << "): ";
if (!tileTexture.IsPlaceholderTile()) {
tileTexture.DumpTexture(aStream);
} else {
aStream << "empty tile";
}
y += h;
}
x += w;
}
}
template<typename Derived, typename Tile> void
TiledLayerBuffer<Derived, Tile>::Update(const nsIntRegion& newValidRegion,
const nsIntRegion& aPaintRegion)
{
gfx::IntSize scaledTileSize = GetScaledTileSize();
nsTArray<Tile> newRetainedTiles;
nsTArray<Tile>& oldRetainedTiles = mRetainedTiles;
const gfx::IntRect oldBound = mValidRegion.GetBounds();
const gfx::IntRect newBound = newValidRegion.GetBounds();
const nsIntPoint oldBufferOrigin(RoundDownToTileEdge(oldBound.x, scaledTileSize.width),
RoundDownToTileEdge(oldBound.y, scaledTileSize.height));
const nsIntPoint newBufferOrigin(RoundDownToTileEdge(newBound.x, scaledTileSize.width),
RoundDownToTileEdge(newBound.y, scaledTileSize.height));
// This is the reason we break the style guide with newValidRegion instead
// of aNewValidRegion - so that the names match better and code easier to read
const nsIntRegion& oldValidRegion = mValidRegion;
const int oldRetainedHeight = mTiles.mSize.height;
#ifdef GFX_TILEDLAYER_RETAINING_LOG
{ // scope ss
std::stringstream ss;
ss << "TiledLayerBuffer " << this << " starting update"
<< " on bounds ";
AppendToString(ss, newBound);
ss << " with mResolution=" << mResolution << "\n";
for (size_t i = 0; i < mRetainedTiles.Length(); i++) {
ss << "mRetainedTiles[" << i << "] = ";
mRetainedTiles[i].Dump(ss);
ss << "\n";
}
print_stderr(ss);
}
#endif
// Pass 1: Recycle valid content from the old buffer
// Recycle tiles from the old buffer that contain valid regions.
// Insert placeholders tiles if we have no valid area for that tile
// which we will allocate in pass 2.
// TODO: Add a tile pool to reduce new allocation
int tileX = 0;
int tileY = 0;
int tilesMissing = 0;
// Iterate over the new drawing bounds in steps of tiles.
for (int32_t x = newBound.x; x < newBound.XMost(); tileX++) {
// Compute tileRect(x,y,width,height) in layer space coordinate
// giving us the rect of the tile that hits the newBounds.
int width = scaledTileSize.width - GetTileStart(x, scaledTileSize.width);
if (x + width > newBound.XMost()) {
width = newBound.x + newBound.width - x;
}
tileY = 0;
for (int32_t y = newBound.y; y < newBound.YMost(); tileY++) {
int height = scaledTileSize.height - GetTileStart(y, scaledTileSize.height);
if (y + height > newBound.y + newBound.height) {
height = newBound.y + newBound.height - y;
}
const gfx::IntRect tileRect(x,y,width,height);
if (oldValidRegion.Intersects(tileRect) && newValidRegion.Intersects(tileRect)) {
// This old tiles contains some valid area so move it to the new tile
// buffer. Replace the tile in the old buffer with a placeholder
// to leave the old buffer index unaffected.
int tileX = floor_div(x - oldBufferOrigin.x, scaledTileSize.width);
int tileY = floor_div(y - oldBufferOrigin.y, scaledTileSize.height);
int index = tileX * oldRetainedHeight + tileY;
// The tile may have been removed, skip over it in this case.
if (oldRetainedTiles.
SafeElementAt(index, AsDerived().GetPlaceholderTile()).IsPlaceholderTile()) {
newRetainedTiles.AppendElement(AsDerived().GetPlaceholderTile());
} else {
Tile tileWithPartialValidContent = oldRetainedTiles[index];
newRetainedTiles.AppendElement(tileWithPartialValidContent);
oldRetainedTiles[index] = AsDerived().GetPlaceholderTile();
}
} else {
// This tile is either:
// 1) Outside the new valid region and will simply be an empty
// placeholder forever.
// 2) The old buffer didn't have any data for this tile. We postpone
// the allocation of this tile after we've reused any tile with
// valid content because then we know we can safely recycle
// with taking from a tile that has recyclable content.
newRetainedTiles.AppendElement(AsDerived().GetPlaceholderTile());
if (aPaintRegion.Intersects(tileRect)) {
tilesMissing++;
}
}
y += height;
}
x += width;
}
// Keep track of the number of horizontal/vertical tiles
// in the buffer so that we can easily look up a tile.
mTiles.mSize.width = tileX;
mTiles.mSize.height = tileY;
#ifdef GFX_TILEDLAYER_RETAINING_LOG
{ // scope ss
std::stringstream ss;
ss << "TiledLayerBuffer " << this << " finished pass 1 of update;"
<< " tilesMissing=" << tilesMissing << "\n";
for (size_t i = 0; i < oldRetainedTiles.Length(); i++) {
ss << "oldRetainedTiles[" << i << "] = ";
oldRetainedTiles[i].Dump(ss);
ss << "\n";
}
print_stderr(ss);
}
#endif
// Pass 1.5: Release excess tiles in oldRetainedTiles
// Tiles in oldRetainedTiles that aren't in newRetainedTiles will be recycled
// before creating new ones, but there could still be excess unnecessary
// tiles. As tiles may not have a fixed memory cost (for example, due to
// double-buffering), we should release these excess tiles first.
int oldTileCount = 0;
for (size_t i = 0; i < oldRetainedTiles.Length(); i++) {
Tile oldTile = oldRetainedTiles[i];
if (oldTile.IsPlaceholderTile()) {
continue;
}
if (oldTileCount >= tilesMissing) {
oldRetainedTiles[i] = AsDerived().GetPlaceholderTile();
AsDerived().ReleaseTile(oldTile);
} else {
oldTileCount ++;
}
}
if (!newValidRegion.Contains(aPaintRegion)) {
gfxCriticalError() << "Painting outside visible:"
<< " paint " << aPaintRegion.ToString().get()
<< " old valid " << oldValidRegion.ToString().get()
<< " new valid " << newValidRegion.ToString().get();
}
#ifdef DEBUG
nsIntRegion oldAndPainted(oldValidRegion);
oldAndPainted.Or(oldAndPainted, aPaintRegion);
if (!oldAndPainted.Contains(newValidRegion)) {
gfxCriticalError() << "Not fully painted:"
<< " paint " << aPaintRegion.ToString().get()
<< " old valid " << oldValidRegion.ToString().get()
<< " old painted " << oldAndPainted.ToString().get()
<< " new valid " << newValidRegion.ToString().get();
}
#endif
nsIntRegion regionToPaint(aPaintRegion);
#ifdef GFX_TILEDLAYER_RETAINING_LOG
{ // scope ss
std::stringstream ss;
ss << "TiledLayerBuffer " << this << " finished pass 1.5 of update\n";
for (size_t i = 0; i < oldRetainedTiles.Length(); i++) {
ss << "oldRetainedTiles[" << i << "] = ";
oldRetainedTiles[i].Dump(ss);
ss << "\n";
}
for (size_t i = 0; i < newRetainedTiles.Length(); i++) {
ss << "newRetainedTiles[" << i << "] = ";
newRetainedTiles[i].Dump(ss);
ss << "\n";
}
print_stderr(ss);
}
#endif
// Pass 2: Validate
// We know at this point that any tile in the new buffer that had valid content
// from the previous buffer is placed correctly in the new buffer.
// We know that any tile in the old buffer that isn't a place holder is
// of no use and can be recycled.
// We also know that any place holder tile in the new buffer must be
// allocated.
tileX = 0;
#ifdef GFX_TILEDLAYER_PREF_WARNINGS
printf_stderr("Update %i, %i, %i, %i\n", newBound.x, newBound.y, newBound.width, newBound.height);
#endif
for (int x = newBound.x; x < newBound.x + newBound.width; tileX++) {
// Compute tileRect(x,y,width,height) in layer space coordinate
// giving us the rect of the tile that hits the newBounds.
int tileStartX = RoundDownToTileEdge(x, scaledTileSize.width);
int width = scaledTileSize.width - GetTileStart(x, scaledTileSize.width);
if (x + width > newBound.XMost())
width = newBound.XMost() - x;
tileY = 0;
for (int y = newBound.y; y < newBound.y + newBound.height; tileY++) {
int tileStartY = RoundDownToTileEdge(y, scaledTileSize.height);
int height = scaledTileSize.height - GetTileStart(y, scaledTileSize.height);
if (y + height > newBound.YMost()) {
height = newBound.YMost() - y;
}
const gfx::IntRect tileRect(x, y, width, height);
nsIntRegion tileDrawRegion;
tileDrawRegion.And(tileRect, regionToPaint);
if (tileDrawRegion.IsEmpty()) {
// We have a tile but it doesn't hit the draw region
// because we can reuse all of the content from the
// previous buffer.
#ifdef DEBUG
int currTileX = floor_div(x - newBufferOrigin.x, scaledTileSize.width);
int currTileY = floor_div(y - newBufferOrigin.y, scaledTileSize.height);
int index = TileIndex(currTileX, currTileY);
// If allocating a tile failed we can run into this assertion.
// Rendering is going to be glitchy but we don't want to crash.
NS_ASSERTION(!newValidRegion.Intersects(tileRect) ||
!newRetainedTiles.
SafeElementAt(index, AsDerived().GetPlaceholderTile()).IsPlaceholderTile(),
"Unexpected placeholder tile");
#endif
y += height;
continue;
}
int tileX = floor_div(x - newBufferOrigin.x, scaledTileSize.width);
int tileY = floor_div(y - newBufferOrigin.y, scaledTileSize.height);
int index = TileIndex(tileX, tileY);
MOZ_ASSERT(index >= 0 &&
static_cast<unsigned>(index) < newRetainedTiles.Length(),
"index out of range");
Tile newTile = newRetainedTiles[index];
// Try to reuse a tile from the old retained tiles that had no partially
// valid content.
while (newTile.IsPlaceholderTile() && oldRetainedTiles.Length() > 0) {
AsDerived().SwapTiles(newTile, oldRetainedTiles[oldRetainedTiles.Length()-1]);
oldRetainedTiles.RemoveElementAt(oldRetainedTiles.Length()-1);
if (!newTile.IsPlaceholderTile()) {
oldTileCount--;
}
}
// We've done our best effort to recycle a tile but it can be null
// in which case it's up to the derived class's ValidateTile()
// implementation to allocate a new tile before drawing
nsIntPoint tileOrigin(tileStartX, tileStartY);
newTile = AsDerived().ValidateTile(newTile, nsIntPoint(tileStartX, tileStartY),
tileDrawRegion);
NS_ASSERTION(!newTile.IsPlaceholderTile(), "Unexpected placeholder tile - failed to allocate?");
#ifdef GFX_TILEDLAYER_PREF_WARNINGS
printf_stderr("Store Validate tile %i, %i -> %i\n", tileStartX, tileStartY, index);
#endif
newRetainedTiles[index] = newTile;
y += height;
}
x += width;
}
AsDerived().PostValidate(aPaintRegion);
for (unsigned int i = 0; i < newRetainedTiles.Length(); ++i) {
AsDerived().UnlockTile(newRetainedTiles[i]);
}
#ifdef GFX_TILEDLAYER_RETAINING_LOG
{ // scope ss
std::stringstream ss;
ss << "TiledLayerBuffer " << this << " finished pass 2 of update;"
<< " oldTileCount=" << oldTileCount << "\n";
for (size_t i = 0; i < oldRetainedTiles.Length(); i++) {
ss << "oldRetainedTiles[" << i << "] = ";
oldRetainedTiles[i].Dump(ss);
ss << "\n";
}
for (size_t i = 0; i < newRetainedTiles.Length(); i++) {
ss << "newRetainedTiles[" << i << "] = ";
newRetainedTiles[i].Dump(ss);
ss << "\n";
}
print_stderr(ss);
}
#endif
// At this point, oldTileCount should be zero
MOZ_ASSERT(oldTileCount == 0, "Failed to release old tiles");
mRetainedTiles = newRetainedTiles;
mValidRegion = newValidRegion;
mTiles.mFirst.x = floor_div(mValidRegion.GetBounds().x, scaledTileSize.width);
mTiles.mFirst.y = floor_div(mValidRegion.GetBounds().y, scaledTileSize.height);
mPaintedRegion.Or(mPaintedRegion, aPaintRegion);
}
} // layers
} // mozilla
#endif // GFX_TILEDLAYERBUFFER_H