gecko-dev/widget/gonk/HwcComposer2D.cpp
Nicholas Nethercote e7f10a07fd Bug 1293603 (part 2) - Make Run() declarations consistent. r=erahm.
This patch makes most Run() declarations in subclasses of nsIRunnable have the
same form: |NS_IMETHOD Run() override|.

As a result of these changes, I had to add |override| to a couple of other
functions to satisfy clang's -Winconsistent-missing-override warning.

--HG--
extra : rebase_source : 815d0018b0b13329bb5698c410f500dddcc3ee12
2016-08-08 12:18:10 +10:00

972 lines
32 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/* vim:set ts=4 sw=4 sts=4 et: */
/*
* Copyright (c) 2012, 2013 The Linux Foundation. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <android/log.h>
#include <string.h>
#include "gfxPrefs.h"
#include "ImageLayers.h"
#include "libdisplay/GonkDisplay.h"
#include "HwcComposer2D.h"
#include "LayerScope.h"
#include "Units.h"
#include "mozilla/ClearOnShutdown.h"
#include "mozilla/layers/CompositorBridgeParent.h"
#include "mozilla/layers/LayerManagerComposite.h"
#include "mozilla/layers/PLayerTransaction.h"
#include "mozilla/layers/ShadowLayerUtilsGralloc.h"
#include "mozilla/layers/TextureHostOGL.h" // for TextureHostOGL
#include "mozilla/StaticPtr.h"
#include "nsThreadUtils.h"
#include "cutils/properties.h"
#include "gfx2DGlue.h"
#include "gfxPlatform.h"
#include "VsyncSource.h"
#include "nsScreenManagerGonk.h"
#include "nsWindow.h"
#if ANDROID_VERSION >= 17
#include "libdisplay/DisplaySurface.h"
#endif
#ifdef LOG_TAG
#undef LOG_TAG
#endif
#define LOG_TAG "HWComposer"
/*
* By default the debug message of hwcomposer (LOG_DEBUG level) are undefined,
* but can be enabled by uncommenting HWC_DEBUG below.
*/
//#define HWC_DEBUG
#ifdef HWC_DEBUG
#define LOGD(args...) __android_log_print(ANDROID_LOG_DEBUG, LOG_TAG, ## args)
#else
#define LOGD(args...) ((void)0)
#endif
#define LOGI(args...) __android_log_print(ANDROID_LOG_INFO, LOG_TAG, ## args)
#define LOGE(args...) __android_log_print(ANDROID_LOG_ERROR, LOG_TAG, ## args)
#define LAYER_COUNT_INCREMENTS 5
using namespace android;
using namespace mozilla::gfx;
using namespace mozilla::layers;
namespace mozilla {
static void
HookInvalidate(const struct hwc_procs* aProcs)
{
HwcComposer2D::GetInstance()->Invalidate();
}
static void
HookVsync(const struct hwc_procs* aProcs, int aDisplay,
int64_t aTimestamp)
{
HwcComposer2D::GetInstance()->Vsync(aDisplay, aTimestamp);
}
static void
HookHotplug(const struct hwc_procs* aProcs, int aDisplay,
int aConnected)
{
HwcComposer2D::GetInstance()->Hotplug(aDisplay, aConnected);
}
static StaticRefPtr<HwcComposer2D> sInstance;
HwcComposer2D::HwcComposer2D()
: mList(nullptr)
, mMaxLayerCount(0)
, mColorFill(false)
, mRBSwapSupport(false)
, mPrepared(false)
, mHasHWVsync(false)
, mLock("mozilla.HwcComposer2D.mLock")
{
mHal = HwcHALBase::CreateHwcHAL();
if (!mHal->HasHwc()) {
LOGD("no hwc support");
return;
}
RegisterHwcEventCallback();
nsIntSize screenSize;
GonkDisplay::NativeData data = GetGonkDisplay()->GetNativeData(GonkDisplay::DISPLAY_PRIMARY);
ANativeWindow *win = data.mNativeWindow.get();
win->query(win, NATIVE_WINDOW_WIDTH, &screenSize.width);
win->query(win, NATIVE_WINDOW_HEIGHT, &screenSize.height);
mScreenRect = gfx::IntRect(gfx::IntPoint(0, 0), screenSize);
mColorFill = mHal->Query(HwcHALBase::QueryType::COLOR_FILL);
mRBSwapSupport = mHal->Query(HwcHALBase::QueryType::RB_SWAP);
}
HwcComposer2D::~HwcComposer2D()
{
free(mList);
}
HwcComposer2D*
HwcComposer2D::GetInstance()
{
if (!sInstance) {
#ifdef HWC_DEBUG
// Make sure only create once
static int timesCreated = 0;
++timesCreated;
MOZ_ASSERT(timesCreated == 1);
#endif
LOGI("Creating new instance");
sInstance = new HwcComposer2D();
// If anyone uses the compositor thread to create HwcComposer2D,
// we just skip this function.
// If ClearOnShutdown() can handle objects in other threads
// in the future, we can remove this check.
if (NS_IsMainThread()) {
// If we create HwcComposer2D by the main thread, we can use
// ClearOnShutdown() to make sure it will be nullified properly.
ClearOnShutdown(&sInstance);
}
}
return sInstance;
}
bool
HwcComposer2D::EnableVsync(bool aEnable)
{
MOZ_ASSERT(NS_IsMainThread());
if (!mHasHWVsync) {
return false;
}
return mHal->EnableVsync(aEnable) && aEnable;
}
bool
HwcComposer2D::RegisterHwcEventCallback()
{
const HwcHALProcs_t cHWCProcs = {
&HookInvalidate, // 1st: void (*invalidate)(...)
&HookVsync, // 2nd: void (*vsync)(...)
&HookHotplug // 3rd: void (*hotplug)(...)
};
mHasHWVsync = mHal->RegisterHwcEventCallback(cHWCProcs);
return mHasHWVsync;
}
void
HwcComposer2D::Vsync(int aDisplay, nsecs_t aVsyncTimestamp)
{
// Only support hardware vsync on kitkat, L and up due to inaccurate timings
// with JellyBean.
#if (ANDROID_VERSION == 19 || ANDROID_VERSION >= 21)
TimeStamp vsyncTime = mozilla::TimeStamp::FromSystemTime(aVsyncTimestamp);
gfxPlatform::GetPlatform()->GetHardwareVsync()->GetGlobalDisplay().NotifyVsync(vsyncTime);
#else
// If this device doesn't support vsync, this function should not be used.
MOZ_ASSERT(false);
#endif
}
// Called on the "invalidator" thread (run from HAL).
void
HwcComposer2D::Invalidate()
{
if (!mHal->HasHwc()) {
LOGE("HwcComposer2D::Invalidate failed!");
return;
}
MutexAutoLock lock(mLock);
if (mCompositorBridgeParent) {
mCompositorBridgeParent->ScheduleRenderOnCompositorThread();
}
}
namespace {
class HotplugEvent : public Runnable {
public:
HotplugEvent(GonkDisplay::DisplayType aType, bool aConnected)
: mType(aType)
, mConnected(aConnected)
{
}
NS_IMETHOD Run() override
{
RefPtr<nsScreenManagerGonk> screenManager =
nsScreenManagerGonk::GetInstance();
if (mConnected) {
screenManager->AddScreen(mType);
} else {
screenManager->RemoveScreen(mType);
}
return NS_OK;
}
private:
GonkDisplay::DisplayType mType;
bool mConnected;
};
} // namespace
void
HwcComposer2D::Hotplug(int aDisplay, int aConnected)
{
NS_DispatchToMainThread(new HotplugEvent(GonkDisplay::DISPLAY_EXTERNAL,
aConnected));
}
void
HwcComposer2D::SetCompositorBridgeParent(CompositorBridgeParent* aCompositorBridgeParent)
{
MutexAutoLock lock(mLock);
mCompositorBridgeParent = aCompositorBridgeParent;
}
bool
HwcComposer2D::ReallocLayerList()
{
int size = sizeof(HwcList) +
((mMaxLayerCount + LAYER_COUNT_INCREMENTS) * sizeof(HwcLayer));
HwcList* listrealloc = (HwcList*)realloc(mList, size);
if (!listrealloc) {
return false;
}
if (!mList) {
//first alloc, initialize
listrealloc->numHwLayers = 0;
listrealloc->flags = 0;
}
mList = listrealloc;
mMaxLayerCount += LAYER_COUNT_INCREMENTS;
return true;
}
bool
HwcComposer2D::PrepareLayerList(Layer* aLayer,
const nsIntRect& aClip,
const Matrix& aParentTransform,
bool aFindSidebandStreams)
{
// NB: we fall off this path whenever there are container layers
// that require intermediate surfaces. That means all the
// GetEffective*() coordinates are relative to the framebuffer.
bool fillColor = false;
const nsIntRegion visibleRegion = aLayer->GetLocalVisibleRegion().ToUnknownRegion();
if (visibleRegion.IsEmpty()) {
return true;
}
uint8_t opacity = std::min(0xFF, (int)(aLayer->GetEffectiveOpacity() * 256.0));
if (opacity == 0) {
LOGD("%s Layer has zero opacity; skipping", aLayer->Name());
return true;
}
if (!mHal->SupportTransparency() && opacity < 0xFF && !aFindSidebandStreams) {
LOGD("%s Layer has planar semitransparency which is unsupported by hwcomposer", aLayer->Name());
return false;
}
if (aLayer->GetMaskLayer() && !aFindSidebandStreams) {
LOGD("%s Layer has MaskLayer which is unsupported by hwcomposer", aLayer->Name());
return false;
}
nsIntRect clip;
nsIntRect layerClip = aLayer->GetLocalClipRect().valueOr(ParentLayerIntRect()).ToUnknownRect();
nsIntRect* layerClipPtr = aLayer->GetLocalClipRect() ? &layerClip : nullptr;
if (!HwcUtils::CalculateClipRect(aParentTransform,
layerClipPtr,
aClip,
&clip))
{
LOGD("%s Clip rect is empty. Skip layer", aLayer->Name());
return true;
}
// HWC supports only the following 2D transformations:
//
// Scaling via the sourceCrop and displayFrame in HwcLayer
// Translation via the sourceCrop and displayFrame in HwcLayer
// Rotation (in square angles only) via the HWC_TRANSFORM_ROT_* flags
// Reflection (horizontal and vertical) via the HWC_TRANSFORM_FLIP_* flags
//
// A 2D transform with PreservesAxisAlignedRectangles() has all the attributes
// above
Matrix layerTransform;
if (!aLayer->GetEffectiveTransform().Is2D(&layerTransform) ||
!layerTransform.PreservesAxisAlignedRectangles()) {
LOGD("Layer EffectiveTransform has a 3D transform or a non-square angle rotation");
return false;
}
Matrix layerBufferTransform;
if (!aLayer->GetEffectiveTransformForBuffer().Is2D(&layerBufferTransform) ||
!layerBufferTransform.PreservesAxisAlignedRectangles()) {
LOGD("Layer EffectiveTransformForBuffer has a 3D transform or a non-square angle rotation");
return false;
}
if (ContainerLayer* container = aLayer->AsContainerLayer()) {
if (container->UseIntermediateSurface() && !aFindSidebandStreams) {
LOGD("Container layer needs intermediate surface");
return false;
}
AutoTArray<Layer*, 12> children;
container->SortChildrenBy3DZOrder(children);
for (uint32_t i = 0; i < children.Length(); i++) {
if (!PrepareLayerList(children[i], clip, layerTransform, aFindSidebandStreams) &&
!aFindSidebandStreams) {
return false;
}
}
return true;
}
LayerRenderState state = aLayer->GetRenderState();
#if ANDROID_VERSION >= 21
if (!state.GetGrallocBuffer() && !state.GetSidebandStream().IsValid()) {
#else
if (!state.GetGrallocBuffer()) {
#endif
if (aLayer->AsColorLayer() && mColorFill) {
fillColor = true;
} else {
LOGD("%s Layer doesn't have a gralloc buffer", aLayer->Name());
return false;
}
}
nsIntRect visibleRect = visibleRegion.GetBounds();
nsIntRect bufferRect;
if (fillColor) {
bufferRect = nsIntRect(visibleRect);
} else {
nsIntRect layerRect;
if (state.mHasOwnOffset) {
bufferRect = nsIntRect(state.mOffset.x, state.mOffset.y,
state.mSize.width, state.mSize.height);
layerRect = bufferRect;
} else {
//Since the buffer doesn't have its own offset, assign the whole
//surface size as its buffer bounds
bufferRect = nsIntRect(0, 0, state.mSize.width, state.mSize.height);
layerRect = bufferRect;
if (aLayer->GetType() == Layer::TYPE_IMAGE) {
ImageLayer* imageLayer = static_cast<ImageLayer*>(aLayer);
if(imageLayer->GetScaleMode() != ScaleMode::SCALE_NONE) {
layerRect = nsIntRect(0, 0, imageLayer->GetScaleToSize().width, imageLayer->GetScaleToSize().height);
}
}
}
// In some cases the visible rect assigned to the layer can be larger
// than the layer's surface, e.g., an ImageLayer with a small Image
// in it.
visibleRect.IntersectRect(visibleRect, layerRect);
}
// Buffer rotation is not to be confused with the angled rotation done by a transform matrix
// It's a fancy PaintedLayer feature used for scrolling
if (state.BufferRotated()) {
LOGD("%s Layer has a rotated buffer", aLayer->Name());
return false;
}
const bool needsYFlip = state.OriginBottomLeft() ? true
: false;
hwc_rect_t sourceCrop, displayFrame;
if(!HwcUtils::PrepareLayerRects(visibleRect,
layerTransform,
layerBufferTransform,
clip,
bufferRect,
needsYFlip,
&(sourceCrop),
&(displayFrame)))
{
return true;
}
// OK! We can compose this layer with hwc.
int current = mList ? mList->numHwLayers : 0;
// Do not compose any layer below full-screen Opaque layer
// Note: It can be generalized to non-fullscreen Opaque layers.
bool isOpaque = opacity == 0xFF &&
(state.mFlags & LayerRenderStateFlags::OPAQUE);
// Currently we perform opacity calculation using the *bounds* of the layer.
// We can only make this assumption if we're not dealing with a complex visible region.
bool isSimpleVisibleRegion = visibleRegion.Contains(visibleRect);
if (current && isOpaque && isSimpleVisibleRegion) {
nsIntRect displayRect = nsIntRect(displayFrame.left, displayFrame.top,
displayFrame.right - displayFrame.left, displayFrame.bottom - displayFrame.top);
if (displayRect.Contains(mScreenRect)) {
// In z-order, all previous layers are below
// the current layer. We can ignore them now.
mList->numHwLayers = current = 0;
mHwcLayerMap.Clear();
}
}
if (!mList || current >= mMaxLayerCount) {
if (!ReallocLayerList() || current >= mMaxLayerCount) {
LOGE("PrepareLayerList failed! Could not increase the maximum layer count");
return false;
}
}
HwcLayer& hwcLayer = mList->hwLayers[current];
hwcLayer.displayFrame = displayFrame;
mHal->SetCrop(hwcLayer, sourceCrop);
buffer_handle_t handle = nullptr;
#if ANDROID_VERSION >= 21
if (state.GetSidebandStream().IsValid()) {
handle = state.GetSidebandStream().GetRawNativeHandle();
} else if (state.GetGrallocBuffer()) {
handle = state.GetGrallocBuffer()->getNativeBuffer()->handle;
}
#else
if (state.GetGrallocBuffer()) {
handle = state.GetGrallocBuffer()->getNativeBuffer()->handle;
}
#endif
hwcLayer.handle = handle;
hwcLayer.flags = 0;
hwcLayer.hints = 0;
hwcLayer.blending = isOpaque ? HWC_BLENDING_NONE : HWC_BLENDING_PREMULT;
#if ANDROID_VERSION >= 17
hwcLayer.compositionType = HWC_FRAMEBUFFER;
#if ANDROID_VERSION >= 21
if (state.GetSidebandStream().IsValid()) {
hwcLayer.compositionType = HWC_SIDEBAND;
}
#endif
hwcLayer.acquireFenceFd = -1;
hwcLayer.releaseFenceFd = -1;
#if ANDROID_VERSION >= 18
hwcLayer.planeAlpha = opacity;
#endif
#else
hwcLayer.compositionType = HwcUtils::HWC_USE_COPYBIT;
#endif
if (!fillColor) {
if (state.FormatRBSwapped()) {
if (!mRBSwapSupport) {
LOGD("No R/B swap support in H/W Composer");
return false;
}
hwcLayer.flags |= HwcUtils::HWC_FORMAT_RB_SWAP;
}
// Translation and scaling have been addressed in PrepareLayerRects().
// Given the above and that we checked for PreservesAxisAlignedRectangles()
// the only possible transformations left to address are
// square angle rotation and horizontal/vertical reflection.
//
// The rotation and reflection permutations total 16 but can be
// reduced to 8 transformations after eliminating redundancies.
//
// All matrices represented here are in the form
//
// | xx xy |
// | yx yy |
//
// And ignore scaling.
//
// Reflection is applied before rotation
gfx::Matrix rotation = layerTransform;
// Compute fuzzy zero like PreservesAxisAlignedRectangles()
if (fabs(rotation._11) < 1e-6) {
if (rotation._21 < 0) {
if (rotation._12 > 0) {
// 90 degree rotation
//
// | 0 -1 |
// | 1 0 |
//
hwcLayer.transform = HWC_TRANSFORM_ROT_90;
LOGD("Layer rotated 90 degrees");
}
else {
// Horizontal reflection then 90 degree rotation
//
// | 0 -1 | | -1 0 | = | 0 -1 |
// | 1 0 | | 0 1 | | -1 0 |
//
// same as vertical reflection then 270 degree rotation
//
// | 0 1 | | 1 0 | = | 0 -1 |
// | -1 0 | | 0 -1 | | -1 0 |
//
hwcLayer.transform = HWC_TRANSFORM_ROT_90 | HWC_TRANSFORM_FLIP_H;
LOGD("Layer vertically reflected then rotated 270 degrees");
}
} else {
if (rotation._12 < 0) {
// 270 degree rotation
//
// | 0 1 |
// | -1 0 |
//
hwcLayer.transform = HWC_TRANSFORM_ROT_270;
LOGD("Layer rotated 270 degrees");
}
else {
// Vertical reflection then 90 degree rotation
//
// | 0 1 | | -1 0 | = | 0 1 |
// | -1 0 | | 0 1 | | 1 0 |
//
// Same as horizontal reflection then 270 degree rotation
//
// | 0 -1 | | 1 0 | = | 0 1 |
// | 1 0 | | 0 -1 | | 1 0 |
//
hwcLayer.transform = HWC_TRANSFORM_ROT_90 | HWC_TRANSFORM_FLIP_V;
LOGD("Layer horizontally reflected then rotated 270 degrees");
}
}
} else if (rotation._11 < 0) {
if (rotation._22 > 0) {
// Horizontal reflection
//
// | -1 0 |
// | 0 1 |
//
hwcLayer.transform = HWC_TRANSFORM_FLIP_H;
LOGD("Layer rotated 180 degrees");
}
else {
// 180 degree rotation
//
// | -1 0 |
// | 0 -1 |
//
// Same as horizontal and vertical reflection
//
// | -1 0 | | 1 0 | = | -1 0 |
// | 0 1 | | 0 -1 | | 0 -1 |
//
hwcLayer.transform = HWC_TRANSFORM_ROT_180;
LOGD("Layer rotated 180 degrees");
}
} else {
if (rotation._22 < 0) {
// Vertical reflection
//
// | 1 0 |
// | 0 -1 |
//
hwcLayer.transform = HWC_TRANSFORM_FLIP_V;
LOGD("Layer rotated 180 degrees");
}
else {
// No rotation or reflection
//
// | 1 0 |
// | 0 1 |
//
hwcLayer.transform = 0;
}
}
const bool needsYFlip = state.OriginBottomLeft() ? true
: false;
if (needsYFlip) {
// Invert vertical reflection flag if it was already set
hwcLayer.transform ^= HWC_TRANSFORM_FLIP_V;
}
hwc_region_t region;
if (visibleRegion.GetNumRects() > 1) {
mVisibleRegions.push_back(HwcUtils::RectVector());
HwcUtils::RectVector* visibleRects = &(mVisibleRegions.back());
bool isVisible = false;
if(!HwcUtils::PrepareVisibleRegion(visibleRegion,
layerTransform,
layerBufferTransform,
clip,
bufferRect,
visibleRects,
isVisible)) {
LOGD("A region of layer is too small to be rendered by HWC");
return false;
}
if (!isVisible) {
// Layer is not visible, no need to render it
return true;
}
region.numRects = visibleRects->size();
region.rects = &((*visibleRects)[0]);
} else {
region.numRects = 1;
region.rects = &(hwcLayer.displayFrame);
}
hwcLayer.visibleRegionScreen = region;
} else {
hwcLayer.flags |= HwcUtils::HWC_COLOR_FILL;
ColorLayer* colorLayer = aLayer->AsColorLayer();
if (colorLayer->GetColor().a < 1.0) {
LOGD("Color layer has semitransparency which is unsupported");
return false;
}
hwcLayer.transform = colorLayer->GetColor().ToABGR();
}
#if ANDROID_VERSION >= 21
if (aFindSidebandStreams && hwcLayer.compositionType == HWC_SIDEBAND) {
mCachedSidebandLayers.AppendElement(hwcLayer);
}
#endif
mHwcLayerMap.AppendElement(static_cast<LayerComposite*>(aLayer->ImplData()));
mList->numHwLayers++;
return true;
}
#if ANDROID_VERSION >= 17
bool
HwcComposer2D::TryHwComposition(nsScreenGonk* aScreen)
{
DisplaySurface* dispSurface = aScreen->GetDisplaySurface();
if (!(dispSurface && dispSurface->lastHandle)) {
LOGD("H/W Composition failed. DispSurface not initialized.");
return false;
}
// Add FB layer
int idx = mList->numHwLayers++;
if (idx >= mMaxLayerCount) {
if (!ReallocLayerList() || idx >= mMaxLayerCount) {
LOGE("TryHwComposition failed! Could not add FB layer");
return false;
}
}
Prepare(dispSurface->lastHandle, -1, aScreen);
/* Possible composition paths, after hwc prepare:
1. GPU Composition
2. BLIT Composition
3. Full OVERLAY Composition
4. Partial OVERLAY Composition (GPU + OVERLAY) */
bool gpuComposite = false;
bool blitComposite = false;
bool overlayComposite = true;
for (int j=0; j < idx; j++) {
if (mList->hwLayers[j].compositionType == HWC_FRAMEBUFFER ||
mList->hwLayers[j].compositionType == HWC_BLIT) {
// Full OVERLAY composition is not possible on this frame
// It is either GPU / BLIT / partial OVERLAY composition.
overlayComposite = false;
break;
}
}
if (!overlayComposite) {
for (int k=0; k < idx; k++) {
switch (mList->hwLayers[k].compositionType) {
case HWC_FRAMEBUFFER:
gpuComposite = true;
break;
case HWC_BLIT:
blitComposite = true;
break;
#if ANDROID_VERSION >= 21
case HWC_SIDEBAND:
#endif
case HWC_OVERLAY: {
// HWC will compose HWC_OVERLAY layers in partial
// Overlay Composition, set layer composition flag
// on mapped LayerComposite to skip GPU composition
mHwcLayerMap[k]->SetLayerComposited(true);
uint8_t opacity = std::min(0xFF, (int)(mHwcLayerMap[k]->GetLayer()->GetEffectiveOpacity() * 256.0));
if ((mList->hwLayers[k].hints & HWC_HINT_CLEAR_FB) &&
(opacity == 0xFF)) {
// Clear visible rect on FB with transparent pixels.
hwc_rect_t r = mList->hwLayers[k].displayFrame;
mHwcLayerMap[k]->SetClearRect(nsIntRect(r.left, r.top,
r.right - r.left,
r.bottom - r.top));
}
break;
}
default:
break;
}
}
if (gpuComposite) {
// GPU or partial OVERLAY Composition
return false;
} else if (blitComposite) {
// BLIT Composition, flip DispSurface target
GetGonkDisplay()->UpdateDispSurface(aScreen->GetEGLDisplay(), aScreen->GetEGLSurface());
DisplaySurface* dispSurface = aScreen->GetDisplaySurface();
if (!dispSurface) {
LOGE("H/W Composition failed. NULL DispSurface.");
return false;
}
mList->hwLayers[idx].handle = dispSurface->lastHandle;
mList->hwLayers[idx].acquireFenceFd = dispSurface->GetPrevDispAcquireFd();
}
}
// BLIT or full OVERLAY Composition
return Commit(aScreen);
}
bool
HwcComposer2D::Render(nsIWidget* aWidget)
{
nsScreenGonk* screen = static_cast<nsWindow*>(aWidget)->GetScreen();
// HWC module does not exist or mList is not created yet.
if (!mHal->HasHwc() || !mList) {
return GetGonkDisplay()->SwapBuffers(screen->GetEGLDisplay(), screen->GetEGLSurface());
} else if (!mList && !ReallocLayerList()) {
LOGE("Cannot realloc layer list");
return false;
}
DisplaySurface* dispSurface = screen->GetDisplaySurface();
if (!dispSurface) {
LOGE("H/W Composition failed. DispSurface not initialized.");
return false;
}
if (mPrepared) {
// No mHwc prepare, if already prepared in current draw cycle
mList->hwLayers[mList->numHwLayers - 1].handle = dispSurface->lastHandle;
mList->hwLayers[mList->numHwLayers - 1].acquireFenceFd = dispSurface->GetPrevDispAcquireFd();
} else {
// Update screen rect to handle a case that TryRenderWithHwc() is not called.
mScreenRect = screen->GetNaturalBounds().ToUnknownRect();
mList->flags = HWC_GEOMETRY_CHANGED;
mList->numHwLayers = 2;
mList->hwLayers[0].hints = 0;
mList->hwLayers[0].compositionType = HWC_FRAMEBUFFER;
mList->hwLayers[0].flags = HWC_SKIP_LAYER;
mList->hwLayers[0].backgroundColor = {0};
mList->hwLayers[0].acquireFenceFd = -1;
mList->hwLayers[0].releaseFenceFd = -1;
mList->hwLayers[0].displayFrame = {0, 0, mScreenRect.width, mScreenRect.height};
#if ANDROID_VERSION >= 21
// Prepare layers for sideband streams
const uint32_t len = mCachedSidebandLayers.Length();
for (uint32_t i = 0; i < len; ++i) {
++mList->numHwLayers;
mList->hwLayers[i+1] = mCachedSidebandLayers[i];
}
#endif
Prepare(dispSurface->lastHandle, dispSurface->GetPrevDispAcquireFd(), screen);
}
// GPU or partial HWC Composition
return Commit(screen);
}
void
HwcComposer2D::Prepare(buffer_handle_t dispHandle, int fence, nsScreenGonk* screen)
{
if (mPrepared) {
LOGE("Multiple hwc prepare calls!");
}
hwc_rect_t dispRect = {0, 0, mScreenRect.width, mScreenRect.height};
mHal->Prepare(mList, screen->GetDisplayType(), dispRect, dispHandle, fence);
mPrepared = true;
}
bool
HwcComposer2D::Commit(nsScreenGonk* aScreen)
{
for (uint32_t j=0; j < (mList->numHwLayers - 1); j++) {
mList->hwLayers[j].acquireFenceFd = -1;
if (mHwcLayerMap.IsEmpty() ||
(mList->hwLayers[j].compositionType == HWC_FRAMEBUFFER)) {
continue;
}
LayerRenderState state = mHwcLayerMap[j]->GetLayer()->GetRenderState();
if (!state.mTexture) {
continue;
}
FenceHandle fence = state.mTexture->GetAndResetAcquireFenceHandle();
if (fence.IsValid()) {
RefPtr<FenceHandle::FdObj> fdObj = fence.GetAndResetFdObj();
mList->hwLayers[j].acquireFenceFd = fdObj->GetAndResetFd();
}
}
int err = mHal->Set(mList, aScreen->GetDisplayType());
mPrevRetireFence.TransferToAnotherFenceHandle(mPrevDisplayFence);
for (uint32_t j=0; j < (mList->numHwLayers - 1); j++) {
if (mList->hwLayers[j].releaseFenceFd >= 0) {
int fd = mList->hwLayers[j].releaseFenceFd;
mList->hwLayers[j].releaseFenceFd = -1;
RefPtr<FenceHandle::FdObj> fdObj = new FenceHandle::FdObj(fd);
FenceHandle fence(fdObj);
LayerRenderState state = mHwcLayerMap[j]->GetLayer()->GetRenderState();
if (!state.mTexture) {
continue;
}
state.mTexture->SetReleaseFenceHandle(fence);
}
}
if (mList->retireFenceFd >= 0) {
mPrevRetireFence = FenceHandle(new FenceHandle::FdObj(mList->retireFenceFd));
}
// Set DisplaySurface layer fence
DisplaySurface* displaySurface = aScreen->GetDisplaySurface();
displaySurface->setReleaseFenceFd(mList->hwLayers[mList->numHwLayers - 1].releaseFenceFd);
mList->hwLayers[mList->numHwLayers - 1].releaseFenceFd = -1;
mPrepared = false;
return !err;
}
#else
bool
HwcComposer2D::TryHwComposition(nsScreenGonk* aScreen)
{
mHal->SetEGLInfo(aScreen->GetEGLDisplay(), aScreen->GetEGLSurface());
return !mHal->Set(mList, aScreen->GetDisplayType());
}
bool
HwcComposer2D::Render(nsIWidget* aWidget)
{
nsScreenGonk* screen = static_cast<nsWindow*>(aWidget)->GetScreen();
return GetGonkDisplay()->SwapBuffers(screen->GetEGLDisplay(), screen->GetEGLSurface());
}
#endif
bool
HwcComposer2D::TryRenderWithHwc(Layer* aRoot,
nsIWidget* aWidget,
bool aGeometryChanged,
bool aHasImageHostOverlays)
{
if (!mHal->HasHwc()) {
return false;
}
nsScreenGonk* screen = static_cast<nsWindow*>(aWidget)->GetScreen();
if (mList) {
mList->flags = mHal->GetGeometryChangedFlag(aGeometryChanged);
mList->numHwLayers = 0;
mHwcLayerMap.Clear();
}
if (mPrepared) {
mHal->ResetHwc();
mPrepared = false;
}
// XXX: The clear() below means all rect vectors will be have to be
// reallocated. We may want to avoid this if possible
mVisibleRegions.clear();
mScreenRect = screen->GetNaturalBounds().ToUnknownRect();
MOZ_ASSERT(mHwcLayerMap.IsEmpty());
mCachedSidebandLayers.Clear();
if (!PrepareLayerList(aRoot,
mScreenRect,
gfx::Matrix(),
/* aFindSidebandStreams */ false))
{
mHwcLayerMap.Clear();
LOGD("Render aborted. Fallback to GPU Composition");
if (aHasImageHostOverlays) {
LOGD("Prepare layers of SidebandStreams");
// Failed to create a layer list for hwc. But we need the list
// only for handling sideband streams. Traverse layer tree without
// some early returns to make sure we can find all the layers.
// It is the best wrong thing that we can do.
PrepareLayerList(aRoot,
mScreenRect,
gfx::Matrix(),
/* aFindSidebandStreams */ true);
// Reset mPrepared to false, since we already fell back to
// gpu composition.
mPrepared = false;
}
return false;
}
// Send data to LayerScope for debugging
SendtoLayerScope();
if (!TryHwComposition(screen)) {
LOGD("Full HWC Composition failed. Fallback to GPU Composition or partial OVERLAY Composition");
LayerScope::CleanLayer();
return false;
}
LOGD("Frame rendered");
return true;
}
void
HwcComposer2D::SendtoLayerScope()
{
if (!LayerScope::CheckSendable()) {
return;
}
const int len = mList->numHwLayers;
for (int i = 0; i < len; ++i) {
LayerComposite* layer = mHwcLayerMap[i];
const hwc_rect_t r = mList->hwLayers[i].displayFrame;
LayerScope::SendLayer(layer, r.right - r.left, r.bottom - r.top);
}
}
} // namespace mozilla