mirror of
https://github.com/mozilla/gecko-dev.git
synced 2024-11-02 15:15:23 +00:00
2520d366a6
As the second step in dividing functionality between AnimationPlayer and Animation, this patch moves the AnimationTiming member from AnimationPlayer to Animation. Most of this patch is simply moving code around. However, one significant functional difference is that Animation::GetLocalTime() uses the mParentTime member which is set when the Animation is updated by the player it is attached to. Other less significant differences are: * AnimationPlayer::GetLocalTime is renamed to GetCurrentTimeDuration In Web Animations, animation players have a (writeable) "current time" and animations have a (read-only) "local time". We would call the method simply "GetCurrentTime" (instead of "GetCurrentTimeDuration") but GetCurrentTime is the name of the method used in the content-facing API where it returns a double. * "IsCurrent" is defined on both AnimationPlayer and Animation with the version in AnimationPlayer serving mostly as a convenience shortcut to the version on Animation. * Animation::GetComputedTiming (previously on AnimationPlayer) now makes the timing parameter optional since most of the time it is not needed.
239 lines
8.5 KiB
C++
239 lines
8.5 KiB
C++
/* vim: set shiftwidth=2 tabstop=8 autoindent cindent expandtab: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
|
|
* You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include "mozilla/dom/Animation.h"
|
|
#include "mozilla/dom/AnimationBinding.h"
|
|
#include "mozilla/FloatingPoint.h"
|
|
|
|
namespace mozilla {
|
|
|
|
void
|
|
ComputedTimingFunction::Init(const nsTimingFunction &aFunction)
|
|
{
|
|
mType = aFunction.mType;
|
|
if (mType == nsTimingFunction::Function) {
|
|
mTimingFunction.Init(aFunction.mFunc.mX1, aFunction.mFunc.mY1,
|
|
aFunction.mFunc.mX2, aFunction.mFunc.mY2);
|
|
} else {
|
|
mSteps = aFunction.mSteps;
|
|
}
|
|
}
|
|
|
|
static inline double
|
|
StepEnd(uint32_t aSteps, double aPortion)
|
|
{
|
|
NS_ABORT_IF_FALSE(0.0 <= aPortion && aPortion <= 1.0, "out of range");
|
|
uint32_t step = uint32_t(aPortion * aSteps); // floor
|
|
return double(step) / double(aSteps);
|
|
}
|
|
|
|
double
|
|
ComputedTimingFunction::GetValue(double aPortion) const
|
|
{
|
|
switch (mType) {
|
|
case nsTimingFunction::Function:
|
|
return mTimingFunction.GetSplineValue(aPortion);
|
|
case nsTimingFunction::StepStart:
|
|
// There are diagrams in the spec that seem to suggest this check
|
|
// and the bounds point should not be symmetric with StepEnd, but
|
|
// should actually step up at rather than immediately after the
|
|
// fraction points. However, we rely on rounding negative values
|
|
// up to zero, so we can't do that. And it's not clear the spec
|
|
// really meant it.
|
|
return 1.0 - StepEnd(mSteps, 1.0 - aPortion);
|
|
default:
|
|
NS_ABORT_IF_FALSE(false, "bad type");
|
|
// fall through
|
|
case nsTimingFunction::StepEnd:
|
|
return StepEnd(mSteps, aPortion);
|
|
}
|
|
}
|
|
|
|
// In the Web Animations model, the time fraction can be outside the range
|
|
// [0.0, 1.0] but it shouldn't be Infinity.
|
|
const double ComputedTiming::kNullTimeFraction = PositiveInfinity<double>();
|
|
|
|
namespace dom {
|
|
|
|
NS_IMPL_CYCLE_COLLECTION_WRAPPERCACHE(Animation, mDocument)
|
|
|
|
NS_IMPL_CYCLE_COLLECTION_ROOT_NATIVE(Animation, AddRef)
|
|
NS_IMPL_CYCLE_COLLECTION_UNROOT_NATIVE(Animation, Release)
|
|
|
|
JSObject*
|
|
Animation::WrapObject(JSContext* aCx)
|
|
{
|
|
return AnimationBinding::Wrap(aCx, this);
|
|
}
|
|
|
|
void
|
|
Animation::SetParentTime(Nullable<TimeDuration> aParentTime)
|
|
{
|
|
mParentTime = aParentTime;
|
|
}
|
|
|
|
ComputedTiming
|
|
Animation::GetComputedTimingAt(const Nullable<TimeDuration>& aLocalTime,
|
|
const AnimationTiming& aTiming)
|
|
{
|
|
const TimeDuration zeroDuration;
|
|
|
|
// Currently we expect negative durations to be picked up during CSS
|
|
// parsing but when we start receiving timing parameters from other sources
|
|
// we will need to clamp negative durations here.
|
|
// For now, if we're hitting this it probably means we're overflowing
|
|
// integer arithmetic in mozilla::TimeStamp.
|
|
MOZ_ASSERT(aTiming.mIterationDuration >= zeroDuration,
|
|
"Expecting iteration duration >= 0");
|
|
|
|
// Always return the same object to benefit from return-value optimization.
|
|
ComputedTiming result;
|
|
|
|
result.mActiveDuration = ActiveDuration(aTiming);
|
|
|
|
// The default constructor for ComputedTiming sets all other members to
|
|
// values consistent with an animation that has not been sampled.
|
|
if (aLocalTime.IsNull()) {
|
|
return result;
|
|
}
|
|
const TimeDuration& localTime = aLocalTime.Value();
|
|
|
|
// When we finish exactly at the end of an iteration we need to report
|
|
// the end of the final iteration and not the start of the next iteration
|
|
// so we set up a flag for that case.
|
|
bool isEndOfFinalIteration = false;
|
|
|
|
// Get the normalized time within the active interval.
|
|
TimeDuration activeTime;
|
|
// FIXME: The following check that the active duration is not equal to Forever
|
|
// is a temporary workaround to avoid overflow and should be removed once
|
|
// bug 1039924 is fixed.
|
|
if (result.mActiveDuration != TimeDuration::Forever() &&
|
|
localTime >= aTiming.mDelay + result.mActiveDuration) {
|
|
result.mPhase = ComputedTiming::AnimationPhase_After;
|
|
if (!aTiming.FillsForwards()) {
|
|
// The animation isn't active or filling at this time.
|
|
result.mTimeFraction = ComputedTiming::kNullTimeFraction;
|
|
return result;
|
|
}
|
|
activeTime = result.mActiveDuration;
|
|
// Note that infinity == floor(infinity) so this will also be true when we
|
|
// have finished an infinitely repeating animation of zero duration.
|
|
isEndOfFinalIteration =
|
|
aTiming.mIterationCount != 0.0 &&
|
|
aTiming.mIterationCount == floor(aTiming.mIterationCount);
|
|
} else if (localTime < aTiming.mDelay) {
|
|
result.mPhase = ComputedTiming::AnimationPhase_Before;
|
|
if (!aTiming.FillsBackwards()) {
|
|
// The animation isn't active or filling at this time.
|
|
result.mTimeFraction = ComputedTiming::kNullTimeFraction;
|
|
return result;
|
|
}
|
|
// activeTime is zero
|
|
} else {
|
|
MOZ_ASSERT(result.mActiveDuration != zeroDuration,
|
|
"How can we be in the middle of a zero-duration interval?");
|
|
result.mPhase = ComputedTiming::AnimationPhase_Active;
|
|
activeTime = localTime - aTiming.mDelay;
|
|
}
|
|
|
|
// Get the position within the current iteration.
|
|
TimeDuration iterationTime;
|
|
if (aTiming.mIterationDuration != zeroDuration) {
|
|
iterationTime = isEndOfFinalIteration
|
|
? aTiming.mIterationDuration
|
|
: activeTime % aTiming.mIterationDuration;
|
|
} /* else, iterationTime is zero */
|
|
|
|
// Determine the 0-based index of the current iteration.
|
|
if (isEndOfFinalIteration) {
|
|
result.mCurrentIteration =
|
|
aTiming.mIterationCount == NS_IEEEPositiveInfinity()
|
|
? UINT64_MAX // FIXME: When we return this via the API we'll need
|
|
// to make sure it ends up being infinity.
|
|
: static_cast<uint64_t>(aTiming.mIterationCount) - 1;
|
|
} else if (activeTime == zeroDuration) {
|
|
// If the active time is zero we're either in the first iteration
|
|
// (including filling backwards) or we have finished an animation with an
|
|
// iteration duration of zero that is filling forwards (but we're not at
|
|
// the exact end of an iteration since we deal with that above).
|
|
result.mCurrentIteration =
|
|
result.mPhase == ComputedTiming::AnimationPhase_After
|
|
? static_cast<uint64_t>(aTiming.mIterationCount) // floor
|
|
: 0;
|
|
} else {
|
|
result.mCurrentIteration =
|
|
static_cast<uint64_t>(activeTime / aTiming.mIterationDuration); // floor
|
|
}
|
|
|
|
// Normalize the iteration time into a fraction of the iteration duration.
|
|
if (result.mPhase == ComputedTiming::AnimationPhase_Before) {
|
|
result.mTimeFraction = 0.0;
|
|
} else if (result.mPhase == ComputedTiming::AnimationPhase_After) {
|
|
result.mTimeFraction = isEndOfFinalIteration
|
|
? 1.0
|
|
: fmod(aTiming.mIterationCount, 1.0f);
|
|
} else {
|
|
// We are in the active phase so the iteration duration can't be zero.
|
|
MOZ_ASSERT(aTiming.mIterationDuration != zeroDuration,
|
|
"In the active phase of a zero-duration animation?");
|
|
result.mTimeFraction =
|
|
aTiming.mIterationDuration == TimeDuration::Forever()
|
|
? 0.0
|
|
: iterationTime / aTiming.mIterationDuration;
|
|
}
|
|
|
|
bool thisIterationReverse = false;
|
|
switch (aTiming.mDirection) {
|
|
case NS_STYLE_ANIMATION_DIRECTION_NORMAL:
|
|
thisIterationReverse = false;
|
|
break;
|
|
case NS_STYLE_ANIMATION_DIRECTION_REVERSE:
|
|
thisIterationReverse = true;
|
|
break;
|
|
case NS_STYLE_ANIMATION_DIRECTION_ALTERNATE:
|
|
thisIterationReverse = (result.mCurrentIteration & 1) == 1;
|
|
break;
|
|
case NS_STYLE_ANIMATION_DIRECTION_ALTERNATE_REVERSE:
|
|
thisIterationReverse = (result.mCurrentIteration & 1) == 0;
|
|
break;
|
|
}
|
|
if (thisIterationReverse) {
|
|
result.mTimeFraction = 1.0 - result.mTimeFraction;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
TimeDuration
|
|
Animation::ActiveDuration(const AnimationTiming& aTiming)
|
|
{
|
|
if (aTiming.mIterationCount == mozilla::PositiveInfinity<float>()) {
|
|
// An animation that repeats forever has an infinite active duration
|
|
// unless its iteration duration is zero, in which case it has a zero
|
|
// active duration.
|
|
const TimeDuration zeroDuration;
|
|
return aTiming.mIterationDuration == zeroDuration
|
|
? zeroDuration
|
|
: TimeDuration::Forever();
|
|
}
|
|
return aTiming.mIterationDuration.MultDouble(aTiming.mIterationCount);
|
|
}
|
|
|
|
bool
|
|
Animation::HasAnimationOfProperty(nsCSSProperty aProperty) const
|
|
{
|
|
for (size_t propIdx = 0, propEnd = mProperties.Length();
|
|
propIdx != propEnd; ++propIdx) {
|
|
if (aProperty == mProperties[propIdx].mProperty) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
} // namespace dom
|
|
} // namespace mozilla
|