gecko-dev/media/libvpx/vp9/decoder/vp9_decodemv.c
Jan Gerber 8d3525293e Bug 918550 - Update libvpx to 1.3.0 r=glandium,cpearce
This updates our in-tree copy of libvpx to the
v1.3.0 git tag (2e88f2f2ec777259bda1714e72f1ecd2519bceb5)
libvpx 1.3.0 adds support for VP9. VP9 support is built
but not yet exposed with this commit.

Our update.sh script is replaced with update.py that can
update the build system to a given git commit.
 - checkout out upstream git
 - create platform dependend config files
 - add/remove changed libvpx files
 - update moz.build
 - warn about new build categories in libvpx
2013-12-06 03:19:00 -08:00

573 lines
20 KiB
C

/*
Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <assert.h>
#include "vp9/common/vp9_common.h"
#include "vp9/common/vp9_entropy.h"
#include "vp9/common/vp9_entropymode.h"
#include "vp9/common/vp9_entropymv.h"
#include "vp9/common/vp9_findnearmv.h"
#include "vp9/common/vp9_mvref_common.h"
#include "vp9/common/vp9_pred_common.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/common/vp9_seg_common.h"
#include "vp9/decoder/vp9_decodemv.h"
#include "vp9/decoder/vp9_decodframe.h"
#include "vp9/decoder/vp9_onyxd_int.h"
#include "vp9/decoder/vp9_treereader.h"
static MB_PREDICTION_MODE read_intra_mode(vp9_reader *r, const vp9_prob *p) {
return (MB_PREDICTION_MODE)treed_read(r, vp9_intra_mode_tree, p);
}
static MB_PREDICTION_MODE read_intra_mode_y(VP9_COMMON *cm, vp9_reader *r,
int size_group) {
const MB_PREDICTION_MODE y_mode = read_intra_mode(r,
cm->fc.y_mode_prob[size_group]);
if (!cm->frame_parallel_decoding_mode)
++cm->counts.y_mode[size_group][y_mode];
return y_mode;
}
static MB_PREDICTION_MODE read_intra_mode_uv(VP9_COMMON *cm, vp9_reader *r,
MB_PREDICTION_MODE y_mode) {
const MB_PREDICTION_MODE uv_mode = read_intra_mode(r,
cm->fc.uv_mode_prob[y_mode]);
if (!cm->frame_parallel_decoding_mode)
++cm->counts.uv_mode[y_mode][uv_mode];
return uv_mode;
}
static MB_PREDICTION_MODE read_inter_mode(VP9_COMMON *cm, vp9_reader *r,
int ctx) {
const int mode = treed_read(r, vp9_inter_mode_tree,
cm->fc.inter_mode_probs[ctx]);
if (!cm->frame_parallel_decoding_mode)
++cm->counts.inter_mode[ctx][mode];
return NEARESTMV + mode;
}
static int read_segment_id(vp9_reader *r, const struct segmentation *seg) {
return treed_read(r, vp9_segment_tree, seg->tree_probs);
}
static TX_SIZE read_selected_tx_size(VP9_COMMON *cm, MACROBLOCKD *xd,
TX_SIZE max_tx_size, vp9_reader *r) {
const int ctx = vp9_get_pred_context_tx_size(xd);
const vp9_prob *tx_probs = get_tx_probs(max_tx_size, ctx, &cm->fc.tx_probs);
TX_SIZE tx_size = vp9_read(r, tx_probs[0]);
if (tx_size != TX_4X4 && max_tx_size >= TX_16X16) {
tx_size += vp9_read(r, tx_probs[1]);
if (tx_size != TX_8X8 && max_tx_size >= TX_32X32)
tx_size += vp9_read(r, tx_probs[2]);
}
if (!cm->frame_parallel_decoding_mode)
++get_tx_counts(max_tx_size, ctx, &cm->counts.tx)[tx_size];
return tx_size;
}
static TX_SIZE read_tx_size(VP9_COMMON *cm, MACROBLOCKD *xd, TX_MODE tx_mode,
BLOCK_SIZE bsize, int allow_select, vp9_reader *r) {
const TX_SIZE max_tx_size = max_txsize_lookup[bsize];
if (allow_select && tx_mode == TX_MODE_SELECT && bsize >= BLOCK_8X8)
return read_selected_tx_size(cm, xd, max_tx_size, r);
else
return MIN(max_tx_size, tx_mode_to_biggest_tx_size[tx_mode]);
}
static void set_segment_id(VP9_COMMON *cm, BLOCK_SIZE bsize,
int mi_row, int mi_col, int segment_id) {
const int mi_offset = mi_row * cm->mi_cols + mi_col;
const int bw = num_8x8_blocks_wide_lookup[bsize];
const int bh = num_8x8_blocks_high_lookup[bsize];
const int xmis = MIN(cm->mi_cols - mi_col, bw);
const int ymis = MIN(cm->mi_rows - mi_row, bh);
int x, y;
assert(segment_id >= 0 && segment_id < MAX_SEGMENTS);
for (y = 0; y < ymis; y++)
for (x = 0; x < xmis; x++)
cm->last_frame_seg_map[mi_offset + y * cm->mi_cols + x] = segment_id;
}
static int read_intra_segment_id(VP9_COMMON *const cm, MACROBLOCKD *const xd,
int mi_row, int mi_col,
vp9_reader *r) {
struct segmentation *const seg = &cm->seg;
const BLOCK_SIZE bsize = xd->mi_8x8[0]->mbmi.sb_type;
int segment_id;
if (!seg->enabled)
return 0; // Default for disabled segmentation
if (!seg->update_map)
return 0;
segment_id = read_segment_id(r, seg);
set_segment_id(cm, bsize, mi_row, mi_col, segment_id);
return segment_id;
}
static int read_inter_segment_id(VP9_COMMON *const cm, MACROBLOCKD *const xd,
int mi_row, int mi_col, vp9_reader *r) {
struct segmentation *const seg = &cm->seg;
const BLOCK_SIZE bsize = xd->mi_8x8[0]->mbmi.sb_type;
int pred_segment_id, segment_id;
if (!seg->enabled)
return 0; // Default for disabled segmentation
pred_segment_id = vp9_get_segment_id(cm, cm->last_frame_seg_map,
bsize, mi_row, mi_col);
if (!seg->update_map)
return pred_segment_id;
if (seg->temporal_update) {
const vp9_prob pred_prob = vp9_get_pred_prob_seg_id(seg, xd);
const int pred_flag = vp9_read(r, pred_prob);
vp9_set_pred_flag_seg_id(xd, pred_flag);
segment_id = pred_flag ? pred_segment_id
: read_segment_id(r, seg);
} else {
segment_id = read_segment_id(r, seg);
}
set_segment_id(cm, bsize, mi_row, mi_col, segment_id);
return segment_id;
}
static int read_skip_coeff(VP9_COMMON *cm, const MACROBLOCKD *xd,
int segment_id, vp9_reader *r) {
if (vp9_segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
return 1;
} else {
const int ctx = vp9_get_pred_context_mbskip(xd);
const int skip = vp9_read(r, cm->fc.mbskip_probs[ctx]);
if (!cm->frame_parallel_decoding_mode)
++cm->counts.mbskip[ctx][skip];
return skip;
}
}
static void read_intra_frame_mode_info(VP9_COMMON *const cm,
MACROBLOCKD *const xd,
MODE_INFO *const m,
int mi_row, int mi_col, vp9_reader *r) {
MB_MODE_INFO *const mbmi = &m->mbmi;
const BLOCK_SIZE bsize = mbmi->sb_type;
const MODE_INFO *above_mi = xd->mi_8x8[-cm->mode_info_stride];
const MODE_INFO *left_mi = xd->left_available ? xd->mi_8x8[-1] : NULL;
mbmi->segment_id = read_intra_segment_id(cm, xd, mi_row, mi_col, r);
mbmi->skip_coeff = read_skip_coeff(cm, xd, mbmi->segment_id, r);
mbmi->tx_size = read_tx_size(cm, xd, cm->tx_mode, bsize, 1, r);
mbmi->ref_frame[0] = INTRA_FRAME;
mbmi->ref_frame[1] = NONE;
if (bsize >= BLOCK_8X8) {
const MB_PREDICTION_MODE A = above_block_mode(m, above_mi, 0);
const MB_PREDICTION_MODE L = left_block_mode(m, left_mi, 0);
mbmi->mode = read_intra_mode(r, vp9_kf_y_mode_prob[A][L]);
} else {
// Only 4x4, 4x8, 8x4 blocks
const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize]; // 1 or 2
const int num_4x4_h = num_4x4_blocks_high_lookup[bsize]; // 1 or 2
int idx, idy;
for (idy = 0; idy < 2; idy += num_4x4_h) {
for (idx = 0; idx < 2; idx += num_4x4_w) {
const int ib = idy * 2 + idx;
const MB_PREDICTION_MODE A = above_block_mode(m, above_mi, ib);
const MB_PREDICTION_MODE L = left_block_mode(m, left_mi, ib);
const MB_PREDICTION_MODE b_mode = read_intra_mode(r,
vp9_kf_y_mode_prob[A][L]);
m->bmi[ib].as_mode = b_mode;
if (num_4x4_h == 2)
m->bmi[ib + 2].as_mode = b_mode;
if (num_4x4_w == 2)
m->bmi[ib + 1].as_mode = b_mode;
}
}
mbmi->mode = m->bmi[3].as_mode;
}
mbmi->uv_mode = read_intra_mode(r, vp9_kf_uv_mode_prob[mbmi->mode]);
}
static int read_mv_component(vp9_reader *r,
const nmv_component *mvcomp, int usehp) {
int mag, d, fr, hp;
const int sign = vp9_read(r, mvcomp->sign);
const int mv_class = treed_read(r, vp9_mv_class_tree, mvcomp->classes);
const int class0 = mv_class == MV_CLASS_0;
// Integer part
if (class0) {
d = treed_read(r, vp9_mv_class0_tree, mvcomp->class0);
} else {
int i;
const int n = mv_class + CLASS0_BITS - 1; // number of bits
d = 0;
for (i = 0; i < n; ++i)
d |= vp9_read(r, mvcomp->bits[i]) << i;
}
// Fractional part
fr = treed_read(r, vp9_mv_fp_tree,
class0 ? mvcomp->class0_fp[d] : mvcomp->fp);
// High precision part (if hp is not used, the default value of the hp is 1)
hp = usehp ? vp9_read(r, class0 ? mvcomp->class0_hp : mvcomp->hp)
: 1;
// Result
mag = vp9_get_mv_mag(mv_class, (d << 3) | (fr << 1) | hp) + 1;
return sign ? -mag : mag;
}
static INLINE void read_mv(vp9_reader *r, MV *mv, const MV *ref,
const nmv_context *ctx,
nmv_context_counts *counts, int allow_hp) {
const MV_JOINT_TYPE j = treed_read(r, vp9_mv_joint_tree, ctx->joints);
const int use_hp = allow_hp && vp9_use_mv_hp(ref);
MV diff = {0, 0};
if (mv_joint_vertical(j))
diff.row = read_mv_component(r, &ctx->comps[0], use_hp);
if (mv_joint_horizontal(j))
diff.col = read_mv_component(r, &ctx->comps[1], use_hp);
vp9_inc_mv(&diff, counts);
mv->row = ref->row + diff.row;
mv->col = ref->col + diff.col;
}
static COMPPREDMODE_TYPE read_reference_mode(VP9_COMMON *cm,
const MACROBLOCKD *xd,
vp9_reader *r) {
const int ctx = vp9_get_pred_context_comp_inter_inter(cm, xd);
const int mode = vp9_read(r, cm->fc.comp_inter_prob[ctx]);
if (!cm->frame_parallel_decoding_mode)
++cm->counts.comp_inter[ctx][mode];
return mode; // SINGLE_PREDICTION_ONLY or COMP_PREDICTION_ONLY
}
// Read the referncence frame
static void read_ref_frames(VP9_COMMON *const cm, MACROBLOCKD *const xd,
vp9_reader *r,
int segment_id, MV_REFERENCE_FRAME ref_frame[2]) {
FRAME_CONTEXT *const fc = &cm->fc;
FRAME_COUNTS *const counts = &cm->counts;
if (vp9_segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
ref_frame[0] = vp9_get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME);
ref_frame[1] = NONE;
} else {
const COMPPREDMODE_TYPE mode = (cm->comp_pred_mode == HYBRID_PREDICTION)
? read_reference_mode(cm, xd, r)
: cm->comp_pred_mode;
// FIXME(rbultje) I'm pretty sure this breaks segmentation ref frame coding
if (mode == COMP_PREDICTION_ONLY) {
const int idx = cm->ref_frame_sign_bias[cm->comp_fixed_ref];
const int ctx = vp9_get_pred_context_comp_ref_p(cm, xd);
const int bit = vp9_read(r, fc->comp_ref_prob[ctx]);
if (!cm->frame_parallel_decoding_mode)
++counts->comp_ref[ctx][bit];
ref_frame[idx] = cm->comp_fixed_ref;
ref_frame[!idx] = cm->comp_var_ref[bit];
} else if (mode == SINGLE_PREDICTION_ONLY) {
const int ctx0 = vp9_get_pred_context_single_ref_p1(xd);
const int bit0 = vp9_read(r, fc->single_ref_prob[ctx0][0]);
if (!cm->frame_parallel_decoding_mode)
++counts->single_ref[ctx0][0][bit0];
if (bit0) {
const int ctx1 = vp9_get_pred_context_single_ref_p2(xd);
const int bit1 = vp9_read(r, fc->single_ref_prob[ctx1][1]);
if (!cm->frame_parallel_decoding_mode)
++counts->single_ref[ctx1][1][bit1];
ref_frame[0] = bit1 ? ALTREF_FRAME : GOLDEN_FRAME;
} else {
ref_frame[0] = LAST_FRAME;
}
ref_frame[1] = NONE;
} else {
assert(!"Invalid prediction mode.");
}
}
}
static INLINE INTERPOLATION_TYPE read_switchable_filter_type(
VP9_COMMON *const cm, MACROBLOCKD *const xd, vp9_reader *r) {
const int ctx = vp9_get_pred_context_switchable_interp(xd);
const int type = treed_read(r, vp9_switchable_interp_tree,
cm->fc.switchable_interp_prob[ctx]);
if (!cm->frame_parallel_decoding_mode)
++cm->counts.switchable_interp[ctx][type];
return type;
}
static void read_intra_block_mode_info(VP9_COMMON *const cm, MODE_INFO *mi,
vp9_reader *r) {
MB_MODE_INFO *const mbmi = &mi->mbmi;
const BLOCK_SIZE bsize = mi->mbmi.sb_type;
mbmi->ref_frame[0] = INTRA_FRAME;
mbmi->ref_frame[1] = NONE;
if (bsize >= BLOCK_8X8) {
mbmi->mode = read_intra_mode_y(cm, r, size_group_lookup[bsize]);
} else {
// Only 4x4, 4x8, 8x4 blocks
const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize]; // 1 or 2
const int num_4x4_h = num_4x4_blocks_high_lookup[bsize]; // 1 or 2
int idx, idy;
for (idy = 0; idy < 2; idy += num_4x4_h) {
for (idx = 0; idx < 2; idx += num_4x4_w) {
const int ib = idy * 2 + idx;
const int b_mode = read_intra_mode_y(cm, r, 0);
mi->bmi[ib].as_mode = b_mode;
if (num_4x4_h == 2)
mi->bmi[ib + 2].as_mode = b_mode;
if (num_4x4_w == 2)
mi->bmi[ib + 1].as_mode = b_mode;
}
}
mbmi->mode = mi->bmi[3].as_mode;
}
mbmi->uv_mode = read_intra_mode_uv(cm, r, mbmi->mode);
}
static INLINE int assign_mv(VP9_COMMON *cm, MB_PREDICTION_MODE mode,
int_mv mv[2], int_mv best_mv[2],
int_mv nearest_mv[2], int_mv near_mv[2],
int is_compound, int allow_hp, vp9_reader *r) {
int i;
int ret = 1;
switch (mode) {
case NEWMV: {
nmv_context_counts *const mv_counts = cm->frame_parallel_decoding_mode ?
NULL : &cm->counts.mv;
read_mv(r, &mv[0].as_mv, &best_mv[0].as_mv,
&cm->fc.nmvc, mv_counts, allow_hp);
if (is_compound)
read_mv(r, &mv[1].as_mv, &best_mv[1].as_mv,
&cm->fc.nmvc, mv_counts, allow_hp);
for (i = 0; i < 1 + is_compound; ++i) {
ret = ret && mv[i].as_mv.row < MV_UPP && mv[i].as_mv.row > MV_LOW;
ret = ret && mv[i].as_mv.col < MV_UPP && mv[i].as_mv.col > MV_LOW;
}
break;
}
case NEARESTMV: {
mv[0].as_int = nearest_mv[0].as_int;
if (is_compound) mv[1].as_int = nearest_mv[1].as_int;
break;
}
case NEARMV: {
mv[0].as_int = near_mv[0].as_int;
if (is_compound) mv[1].as_int = near_mv[1].as_int;
break;
}
case ZEROMV: {
mv[0].as_int = 0;
if (is_compound) mv[1].as_int = 0;
break;
}
default: {
return 0;
}
}
return ret;
}
static int read_is_inter_block(VP9_COMMON *const cm, MACROBLOCKD *const xd,
int segment_id, vp9_reader *r) {
if (vp9_segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
return vp9_get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME) !=
INTRA_FRAME;
} else {
const int ctx = vp9_get_pred_context_intra_inter(xd);
const int is_inter = vp9_read(r, vp9_get_pred_prob_intra_inter(cm, xd));
if (!cm->frame_parallel_decoding_mode)
++cm->counts.intra_inter[ctx][is_inter];
return is_inter;
}
}
static void read_inter_block_mode_info(VP9_COMMON *const cm,
MACROBLOCKD *const xd,
const TileInfo *const tile,
MODE_INFO *const mi,
int mi_row, int mi_col, vp9_reader *r) {
MB_MODE_INFO *const mbmi = &mi->mbmi;
const BLOCK_SIZE bsize = mbmi->sb_type;
const int allow_hp = cm->allow_high_precision_mv;
int_mv nearest[2], nearmv[2], best[2];
uint8_t inter_mode_ctx;
MV_REFERENCE_FRAME ref0;
int is_compound;
mbmi->uv_mode = DC_PRED;
read_ref_frames(cm, xd, r, mbmi->segment_id, mbmi->ref_frame);
ref0 = mbmi->ref_frame[0];
is_compound = has_second_ref(mbmi);
vp9_find_mv_refs(cm, xd, tile, mi, xd->last_mi, ref0, mbmi->ref_mvs[ref0],
mi_row, mi_col);
inter_mode_ctx = mbmi->mode_context[ref0];
if (vp9_segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
mbmi->mode = ZEROMV;
if (bsize < BLOCK_8X8) {
vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
"Invalid usage of segement feature on small blocks");
return;
}
} else {
if (bsize >= BLOCK_8X8)
mbmi->mode = read_inter_mode(cm, r, inter_mode_ctx);
}
// nearest, nearby
if (bsize < BLOCK_8X8 || mbmi->mode != ZEROMV) {
vp9_find_best_ref_mvs(xd, allow_hp,
mbmi->ref_mvs[ref0], &nearest[0], &nearmv[0]);
best[0].as_int = nearest[0].as_int;
}
if (is_compound) {
const MV_REFERENCE_FRAME ref1 = mbmi->ref_frame[1];
vp9_find_mv_refs(cm, xd, tile, mi, xd->last_mi,
ref1, mbmi->ref_mvs[ref1], mi_row, mi_col);
if (bsize < BLOCK_8X8 || mbmi->mode != ZEROMV) {
vp9_find_best_ref_mvs(xd, allow_hp,
mbmi->ref_mvs[ref1], &nearest[1], &nearmv[1]);
best[1].as_int = nearest[1].as_int;
}
}
mbmi->interp_filter = (cm->mcomp_filter_type == SWITCHABLE)
? read_switchable_filter_type(cm, xd, r)
: cm->mcomp_filter_type;
if (bsize < BLOCK_8X8) {
const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize]; // 1 or 2
const int num_4x4_h = num_4x4_blocks_high_lookup[bsize]; // 1 or 2
int idx, idy;
int b_mode;
for (idy = 0; idy < 2; idy += num_4x4_h) {
for (idx = 0; idx < 2; idx += num_4x4_w) {
int_mv block[2];
const int j = idy * 2 + idx;
b_mode = read_inter_mode(cm, r, inter_mode_ctx);
if (b_mode == NEARESTMV || b_mode == NEARMV) {
vp9_append_sub8x8_mvs_for_idx(cm, xd, tile, &nearest[0],
&nearmv[0], j, 0,
mi_row, mi_col);
if (is_compound)
vp9_append_sub8x8_mvs_for_idx(cm, xd, tile, &nearest[1],
&nearmv[1], j, 1,
mi_row, mi_col);
}
if (!assign_mv(cm, b_mode, block, best, nearest, nearmv,
is_compound, allow_hp, r)) {
xd->corrupted |= 1;
break;
};
mi->bmi[j].as_mv[0].as_int = block[0].as_int;
if (is_compound)
mi->bmi[j].as_mv[1].as_int = block[1].as_int;
if (num_4x4_h == 2)
mi->bmi[j + 2] = mi->bmi[j];
if (num_4x4_w == 2)
mi->bmi[j + 1] = mi->bmi[j];
}
}
mi->mbmi.mode = b_mode;
mbmi->mv[0].as_int = mi->bmi[3].as_mv[0].as_int;
mbmi->mv[1].as_int = mi->bmi[3].as_mv[1].as_int;
} else {
xd->corrupted |= !assign_mv(cm, mbmi->mode, mbmi->mv,
best, nearest, nearmv,
is_compound, allow_hp, r);
}
}
static void read_inter_frame_mode_info(VP9_COMMON *const cm,
MACROBLOCKD *const xd,
const TileInfo *const tile,
MODE_INFO *const mi,
int mi_row, int mi_col, vp9_reader *r) {
MB_MODE_INFO *const mbmi = &mi->mbmi;
int inter_block;
mbmi->mv[0].as_int = 0;
mbmi->mv[1].as_int = 0;
mbmi->segment_id = read_inter_segment_id(cm, xd, mi_row, mi_col, r);
mbmi->skip_coeff = read_skip_coeff(cm, xd, mbmi->segment_id, r);
inter_block = read_is_inter_block(cm, xd, mbmi->segment_id, r);
mbmi->tx_size = read_tx_size(cm, xd, cm->tx_mode, mbmi->sb_type,
!mbmi->skip_coeff || !inter_block, r);
if (inter_block)
read_inter_block_mode_info(cm, xd, tile, mi, mi_row, mi_col, r);
else
read_intra_block_mode_info(cm, mi, r);
}
void vp9_read_mode_info(VP9_COMMON *cm, MACROBLOCKD *xd,
const TileInfo *const tile,
int mi_row, int mi_col, vp9_reader *r) {
MODE_INFO *const mi = xd->mi_8x8[0];
const BLOCK_SIZE bsize = mi->mbmi.sb_type;
const int bw = num_8x8_blocks_wide_lookup[bsize];
const int bh = num_8x8_blocks_high_lookup[bsize];
const int y_mis = MIN(bh, cm->mi_rows - mi_row);
const int x_mis = MIN(bw, cm->mi_cols - mi_col);
int x, y, z;
if (frame_is_intra_only(cm))
read_intra_frame_mode_info(cm, xd, mi, mi_row, mi_col, r);
else
read_inter_frame_mode_info(cm, xd, tile, mi, mi_row, mi_col, r);
for (y = 0, z = 0; y < y_mis; y++, z += cm->mode_info_stride) {
for (x = !y; x < x_mis; x++) {
xd->mi_8x8[z + x] = mi;
}
}
}