mirror of
https://github.com/mozilla/gecko-dev.git
synced 2024-11-30 00:01:50 +00:00
2e2a504271
--HG-- extra : source : 7468f9a3aa03520a29e138d4df431f0b5d90967c
365 lines
8.8 KiB
C++
365 lines
8.8 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
//
|
|
// Implement TimeStamp::Now() with POSIX clocks.
|
|
//
|
|
// The "tick" unit for POSIX clocks is simply a nanosecond, as this is
|
|
// the smallest unit of time representable by struct timespec. That
|
|
// doesn't mean that a nanosecond is the resolution of TimeDurations
|
|
// obtained with this API; see TimeDuration::Resolution;
|
|
//
|
|
|
|
#include <sys/syscall.h>
|
|
#include <time.h>
|
|
#include <unistd.h>
|
|
|
|
#if defined(__DragonFly__) || defined(__FreeBSD__) \
|
|
|| defined(__NetBSD__) || defined(__OpenBSD__)
|
|
#include <sys/param.h>
|
|
#include <sys/sysctl.h>
|
|
#endif
|
|
|
|
#if defined(__DragonFly__) || defined(__FreeBSD__)
|
|
#include <sys/user.h>
|
|
#endif
|
|
|
|
#if defined(__NetBSD__)
|
|
#undef KERN_PROC
|
|
#define KERN_PROC KERN_PROC2
|
|
#define KINFO_PROC struct kinfo_proc2
|
|
#else
|
|
#define KINFO_PROC struct kinfo_proc
|
|
#endif
|
|
|
|
#if defined(__DragonFly__)
|
|
#define KP_START_SEC kp_start.tv_sec
|
|
#define KP_START_USEC kp_start.tv_usec
|
|
#elif defined(__FreeBSD__)
|
|
#define KP_START_SEC ki_start.tv_sec
|
|
#define KP_START_USEC ki_start.tv_usec
|
|
#else
|
|
#define KP_START_SEC p_ustart_sec
|
|
#define KP_START_USEC p_ustart_usec
|
|
#endif
|
|
|
|
#include "mozilla/Snprintf.h"
|
|
#include "mozilla/TimeStamp.h"
|
|
#include "nsCRT.h"
|
|
#include "prprf.h"
|
|
#include "prthread.h"
|
|
#include "nsDebug.h"
|
|
|
|
// Estimate of the smallest duration of time we can measure.
|
|
static uint64_t sResolution;
|
|
static uint64_t sResolutionSigDigs;
|
|
|
|
static const uint16_t kNsPerUs = 1000;
|
|
static const uint64_t kNsPerMs = 1000000;
|
|
static const uint64_t kNsPerSec = 1000000000;
|
|
static const double kNsPerMsd = 1000000.0;
|
|
static const double kNsPerSecd = 1000000000.0;
|
|
|
|
static uint64_t
|
|
TimespecToNs(const struct timespec& aTs)
|
|
{
|
|
uint64_t baseNs = uint64_t(aTs.tv_sec) * kNsPerSec;
|
|
return baseNs + uint64_t(aTs.tv_nsec);
|
|
}
|
|
|
|
static uint64_t
|
|
ClockTimeNs()
|
|
{
|
|
struct timespec ts;
|
|
// this can't fail: we know &ts is valid, and TimeStamp::Startup()
|
|
// checks that CLOCK_MONOTONIC is supported (and aborts if not)
|
|
clock_gettime(CLOCK_MONOTONIC, &ts);
|
|
|
|
// tv_sec is defined to be relative to an arbitrary point in time,
|
|
// but it would be madness for that point in time to be earlier than
|
|
// the Epoch. So we can safely assume that even if time_t is 32
|
|
// bits, tv_sec won't overflow while the browser is open. Revisit
|
|
// this argument if we're still building with 32-bit time_t around
|
|
// the year 2037.
|
|
return TimespecToNs(ts);
|
|
}
|
|
|
|
static uint64_t
|
|
ClockResolutionNs()
|
|
{
|
|
// NB: why not rely on clock_getres()? Two reasons: (i) it might
|
|
// lie, and (ii) it might return an "ideal" resolution that while
|
|
// theoretically true, could never be measured in practice. Since
|
|
// clock_gettime() likely involves a system call on your platform,
|
|
// the "actual" timing resolution shouldn't be lower than syscall
|
|
// overhead.
|
|
|
|
uint64_t start = ClockTimeNs();
|
|
uint64_t end = ClockTimeNs();
|
|
uint64_t minres = (end - start);
|
|
|
|
// 10 total trials is arbitrary: what we're trying to avoid by
|
|
// looping is getting unlucky and being interrupted by a context
|
|
// switch or signal, or being bitten by paging/cache effects
|
|
for (int i = 0; i < 9; ++i) {
|
|
start = ClockTimeNs();
|
|
end = ClockTimeNs();
|
|
|
|
uint64_t candidate = (start - end);
|
|
if (candidate < minres) {
|
|
minres = candidate;
|
|
}
|
|
}
|
|
|
|
if (0 == minres) {
|
|
// measurable resolution is either incredibly low, ~1ns, or very
|
|
// high. fall back on clock_getres()
|
|
struct timespec ts;
|
|
if (0 == clock_getres(CLOCK_MONOTONIC, &ts)) {
|
|
minres = TimespecToNs(ts);
|
|
}
|
|
}
|
|
|
|
if (0 == minres) {
|
|
// clock_getres probably failed. fall back on NSPR's resolution
|
|
// assumption
|
|
minres = 1 * kNsPerMs;
|
|
}
|
|
|
|
return minres;
|
|
}
|
|
|
|
namespace mozilla {
|
|
|
|
double
|
|
BaseTimeDurationPlatformUtils::ToSeconds(int64_t aTicks)
|
|
{
|
|
return double(aTicks) / kNsPerSecd;
|
|
}
|
|
|
|
double
|
|
BaseTimeDurationPlatformUtils::ToSecondsSigDigits(int64_t aTicks)
|
|
{
|
|
// don't report a value < mResolution ...
|
|
int64_t valueSigDigs = sResolution * (aTicks / sResolution);
|
|
// and chop off insignificant digits
|
|
valueSigDigs = sResolutionSigDigs * (valueSigDigs / sResolutionSigDigs);
|
|
return double(valueSigDigs) / kNsPerSecd;
|
|
}
|
|
|
|
int64_t
|
|
BaseTimeDurationPlatformUtils::TicksFromMilliseconds(double aMilliseconds)
|
|
{
|
|
double result = aMilliseconds * kNsPerMsd;
|
|
if (result > INT64_MAX) {
|
|
return INT64_MAX;
|
|
} else if (result < INT64_MIN) {
|
|
return INT64_MIN;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
int64_t
|
|
BaseTimeDurationPlatformUtils::ResolutionInTicks()
|
|
{
|
|
return static_cast<int64_t>(sResolution);
|
|
}
|
|
|
|
static bool gInitialized = false;
|
|
|
|
nsresult
|
|
TimeStamp::Startup()
|
|
{
|
|
if (gInitialized) {
|
|
return NS_OK;
|
|
}
|
|
|
|
struct timespec dummy;
|
|
if (clock_gettime(CLOCK_MONOTONIC, &dummy) != 0) {
|
|
NS_RUNTIMEABORT("CLOCK_MONOTONIC is absent!");
|
|
}
|
|
|
|
sResolution = ClockResolutionNs();
|
|
|
|
// find the number of significant digits in sResolution, for the
|
|
// sake of ToSecondsSigDigits()
|
|
for (sResolutionSigDigs = 1;
|
|
!(sResolutionSigDigs == sResolution ||
|
|
10 * sResolutionSigDigs > sResolution);
|
|
sResolutionSigDigs *= 10);
|
|
|
|
gInitialized = true;
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
void
|
|
TimeStamp::Shutdown()
|
|
{
|
|
}
|
|
|
|
TimeStamp
|
|
TimeStamp::Now(bool aHighResolution)
|
|
{
|
|
return TimeStamp(ClockTimeNs());
|
|
}
|
|
|
|
#if defined(LINUX) || defined(ANDROID)
|
|
|
|
// Calculates the amount of jiffies that have elapsed since boot and up to the
|
|
// starttime value of a specific process as found in its /proc/*/stat file.
|
|
// Returns 0 if an error occurred.
|
|
|
|
static uint64_t
|
|
JiffiesSinceBoot(const char* aFile)
|
|
{
|
|
char stat[512];
|
|
|
|
FILE* f = fopen(aFile, "r");
|
|
if (!f) {
|
|
return 0;
|
|
}
|
|
|
|
int n = fread(&stat, 1, sizeof(stat) - 1, f);
|
|
|
|
fclose(f);
|
|
|
|
if (n <= 0) {
|
|
return 0;
|
|
}
|
|
|
|
stat[n] = 0;
|
|
|
|
long long unsigned startTime = 0; // instead of uint64_t to keep GCC quiet
|
|
char* s = strrchr(stat, ')');
|
|
|
|
if (!s) {
|
|
return 0;
|
|
}
|
|
|
|
int rv = sscanf(s + 2,
|
|
"%*c %*d %*d %*d %*d %*d %*u %*u %*u %*u "
|
|
"%*u %*u %*u %*d %*d %*d %*d %*d %*d %llu",
|
|
&startTime);
|
|
|
|
if (rv != 1 || !startTime) {
|
|
return 0;
|
|
}
|
|
|
|
return startTime;
|
|
}
|
|
|
|
// Computes the interval that has elapsed between the thread creation and the
|
|
// process creation by comparing the starttime fields in the respective
|
|
// /proc/*/stat files. The resulting value will be a good approximation of the
|
|
// process uptime. This value will be stored at the address pointed by aTime;
|
|
// if an error occurred 0 will be stored instead.
|
|
|
|
static void
|
|
ComputeProcessUptimeThread(void* aTime)
|
|
{
|
|
uint64_t* uptime = static_cast<uint64_t*>(aTime);
|
|
long hz = sysconf(_SC_CLK_TCK);
|
|
|
|
*uptime = 0;
|
|
|
|
if (!hz) {
|
|
return;
|
|
}
|
|
|
|
char threadStat[40];
|
|
snprintf_literal(threadStat, "/proc/self/task/%d/stat", (pid_t)syscall(__NR_gettid));
|
|
|
|
uint64_t threadJiffies = JiffiesSinceBoot(threadStat);
|
|
uint64_t selfJiffies = JiffiesSinceBoot("/proc/self/stat");
|
|
|
|
if (!threadJiffies || !selfJiffies) {
|
|
return;
|
|
}
|
|
|
|
*uptime = ((threadJiffies - selfJiffies) * kNsPerSec) / hz;
|
|
}
|
|
|
|
// Computes and returns the process uptime in us on Linux & its derivatives.
|
|
// Returns 0 if an error was encountered.
|
|
|
|
uint64_t
|
|
TimeStamp::ComputeProcessUptime()
|
|
{
|
|
uint64_t uptime = 0;
|
|
PRThread* thread = PR_CreateThread(PR_USER_THREAD,
|
|
ComputeProcessUptimeThread,
|
|
&uptime,
|
|
PR_PRIORITY_NORMAL,
|
|
PR_GLOBAL_THREAD,
|
|
PR_JOINABLE_THREAD,
|
|
0);
|
|
|
|
PR_JoinThread(thread);
|
|
|
|
return uptime / kNsPerUs;
|
|
}
|
|
|
|
#elif defined(__DragonFly__) || defined(__FreeBSD__) \
|
|
|| defined(__NetBSD__) || defined(__OpenBSD__)
|
|
|
|
// Computes and returns the process uptime in us on various BSD flavors.
|
|
// Returns 0 if an error was encountered.
|
|
|
|
uint64_t
|
|
TimeStamp::ComputeProcessUptime()
|
|
{
|
|
struct timespec ts;
|
|
int rv = clock_gettime(CLOCK_REALTIME, &ts);
|
|
|
|
if (rv == -1) {
|
|
return 0;
|
|
}
|
|
|
|
int mib[] = {
|
|
CTL_KERN,
|
|
KERN_PROC,
|
|
KERN_PROC_PID,
|
|
getpid(),
|
|
#if defined(__NetBSD__) || defined(__OpenBSD__)
|
|
sizeof(KINFO_PROC),
|
|
1,
|
|
#endif
|
|
};
|
|
u_int mibLen = sizeof(mib) / sizeof(mib[0]);
|
|
|
|
KINFO_PROC proc;
|
|
size_t bufferSize = sizeof(proc);
|
|
rv = sysctl(mib, mibLen, &proc, &bufferSize, nullptr, 0);
|
|
|
|
if (rv == -1) {
|
|
return 0;
|
|
}
|
|
|
|
uint64_t startTime = ((uint64_t)proc.KP_START_SEC * kNsPerSec) +
|
|
(proc.KP_START_USEC * kNsPerUs);
|
|
uint64_t now = ((uint64_t)ts.tv_sec * kNsPerSec) + ts.tv_nsec;
|
|
|
|
if (startTime > now) {
|
|
return 0;
|
|
}
|
|
|
|
return (now - startTime) / kNsPerUs;
|
|
}
|
|
|
|
#else
|
|
|
|
uint64_t
|
|
TimeStamp::ComputeProcessUptime()
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
} // namespace mozilla
|