gecko-dev/gfx/2d/HelpersD2D.h

982 lines
31 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef MOZILLA_GFX_HELPERSD2D_H_
#define MOZILLA_GFX_HELPERSD2D_H_
#include <d2d1_1.h>
#include <vector>
#include <dwrite.h>
#include "2D.h"
#include "Logging.h"
#include "ImageScaling.h"
#include "ScaledFontDWrite.h"
#undef min
#undef max
namespace mozilla {
namespace gfx {
RefPtr<ID2D1Factory1> D2DFactory();
static inline D2D1_POINT_2F D2DPoint(const Point& aPoint) {
return D2D1::Point2F(aPoint.x, aPoint.y);
}
static inline D2D1_SIZE_U D2DIntSize(const IntSize& aSize) {
return D2D1::SizeU(aSize.width, aSize.height);
}
template <typename T>
static inline D2D1_RECT_F D2DRect(const T& aRect) {
return D2D1::RectF(aRect.X(), aRect.Y(), aRect.XMost(), aRect.YMost());
}
static inline D2D1_ROUNDED_RECT D2DRoundedRect(const RoundedRect& aRect) {
return D2D1::RoundedRect(D2DRect(aRect.rect),
aRect.corners.BottomLeft().width,
aRect.corners.BottomLeft().height);
}
static inline D2D1_EXTEND_MODE D2DExtend(ExtendMode aExtendMode, Axis aAxis) {
D2D1_EXTEND_MODE extend;
switch (aExtendMode) {
case ExtendMode::REPEAT:
extend = D2D1_EXTEND_MODE_WRAP;
break;
case ExtendMode::REPEAT_X: {
extend = aAxis == Axis::X_AXIS ? D2D1_EXTEND_MODE_WRAP
: D2D1_EXTEND_MODE_CLAMP;
break;
}
case ExtendMode::REPEAT_Y: {
extend = aAxis == Axis::Y_AXIS ? D2D1_EXTEND_MODE_WRAP
: D2D1_EXTEND_MODE_CLAMP;
break;
}
case ExtendMode::REFLECT:
extend = D2D1_EXTEND_MODE_MIRROR;
break;
default:
extend = D2D1_EXTEND_MODE_CLAMP;
}
return extend;
}
static inline D2D1_BITMAP_INTERPOLATION_MODE D2DFilter(
const SamplingFilter aSamplingFilter) {
switch (aSamplingFilter) {
case SamplingFilter::POINT:
return D2D1_BITMAP_INTERPOLATION_MODE_NEAREST_NEIGHBOR;
default:
return D2D1_BITMAP_INTERPOLATION_MODE_LINEAR;
}
}
static inline D2D1_INTERPOLATION_MODE D2DInterpolationMode(
const SamplingFilter aSamplingFilter) {
switch (aSamplingFilter) {
case SamplingFilter::POINT:
return D2D1_INTERPOLATION_MODE_NEAREST_NEIGHBOR;
default:
return D2D1_INTERPOLATION_MODE_LINEAR;
}
}
static inline D2D1_MATRIX_5X4_F D2DMatrix5x4(const Matrix5x4& aMatrix) {
return D2D1::Matrix5x4F(aMatrix._11, aMatrix._12, aMatrix._13, aMatrix._14,
aMatrix._21, aMatrix._22, aMatrix._23, aMatrix._24,
aMatrix._31, aMatrix._32, aMatrix._33, aMatrix._34,
aMatrix._41, aMatrix._42, aMatrix._43, aMatrix._44,
aMatrix._51, aMatrix._52, aMatrix._53, aMatrix._54);
}
static inline D2D1_VECTOR_3F D2DVector3D(const Point3D& aPoint) {
return D2D1::Vector3F(aPoint.x, aPoint.y, aPoint.z);
}
static inline D2D1_ANTIALIAS_MODE D2DAAMode(AntialiasMode aMode) {
switch (aMode) {
case AntialiasMode::NONE:
return D2D1_ANTIALIAS_MODE_ALIASED;
default:
return D2D1_ANTIALIAS_MODE_PER_PRIMITIVE;
}
}
static inline D2D1_MATRIX_3X2_F D2DMatrix(const Matrix& aTransform) {
return D2D1::Matrix3x2F(aTransform._11, aTransform._12, aTransform._21,
aTransform._22, aTransform._31, aTransform._32);
}
static inline D2D1_COLOR_F D2DColor(const DeviceColor& aColor) {
return D2D1::ColorF(aColor.r, aColor.g, aColor.b, aColor.a);
}
static inline IntSize ToIntSize(const D2D1_SIZE_U& aSize) {
return IntSize(aSize.width, aSize.height);
}
static inline SurfaceFormat ToPixelFormat(const DXGI_FORMAT& aFormat) {
switch (aFormat) {
case DXGI_FORMAT_A8_UNORM:
case DXGI_FORMAT_R8_UNORM:
return SurfaceFormat::A8;
default:
return SurfaceFormat::B8G8R8A8;
}
}
static inline SurfaceFormat ToPixelFormat(const D2D1_PIXEL_FORMAT& aFormat) {
switch (aFormat.format) {
case DXGI_FORMAT_A8_UNORM:
case DXGI_FORMAT_R8_UNORM:
return SurfaceFormat::A8;
case DXGI_FORMAT_B8G8R8A8_UNORM:
if (aFormat.alphaMode == D2D1_ALPHA_MODE_IGNORE) {
return SurfaceFormat::B8G8R8X8;
} else {
return SurfaceFormat::B8G8R8A8;
}
default:
return SurfaceFormat::B8G8R8A8;
}
}
static inline Rect ToRect(const D2D1_RECT_F& aRect) {
return Rect(aRect.left, aRect.top, aRect.right - aRect.left,
aRect.bottom - aRect.top);
}
static inline Matrix ToMatrix(const D2D1_MATRIX_3X2_F& aTransform) {
return Matrix(aTransform._11, aTransform._12, aTransform._21, aTransform._22,
aTransform._31, aTransform._32);
}
static inline Point ToPoint(const D2D1_POINT_2F& aPoint) {
return Point(aPoint.x, aPoint.y);
}
static inline DXGI_FORMAT DXGIFormat(SurfaceFormat aFormat) {
switch (aFormat) {
case SurfaceFormat::B8G8R8A8:
return DXGI_FORMAT_B8G8R8A8_UNORM;
case SurfaceFormat::B8G8R8X8:
return DXGI_FORMAT_B8G8R8A8_UNORM;
case SurfaceFormat::A8:
return DXGI_FORMAT_A8_UNORM;
default:
return DXGI_FORMAT_UNKNOWN;
}
}
static inline D2D1_ALPHA_MODE D2DAlphaModeForFormat(SurfaceFormat aFormat) {
switch (aFormat) {
case SurfaceFormat::B8G8R8X8:
return D2D1_ALPHA_MODE_IGNORE;
default:
return D2D1_ALPHA_MODE_PREMULTIPLIED;
}
}
static inline D2D1_PIXEL_FORMAT D2DPixelFormat(SurfaceFormat aFormat) {
return D2D1::PixelFormat(DXGIFormat(aFormat), D2DAlphaModeForFormat(aFormat));
}
static inline bool D2DSupportsCompositeMode(CompositionOp aOp) {
switch (aOp) {
case CompositionOp::OP_OVER:
case CompositionOp::OP_ADD:
case CompositionOp::OP_ATOP:
case CompositionOp::OP_OUT:
case CompositionOp::OP_IN:
case CompositionOp::OP_SOURCE:
case CompositionOp::OP_DEST_IN:
case CompositionOp::OP_DEST_OUT:
case CompositionOp::OP_DEST_OVER:
case CompositionOp::OP_DEST_ATOP:
case CompositionOp::OP_XOR:
case CompositionOp::OP_CLEAR:
return true;
default:
return false;
}
}
static inline D2D1_COMPOSITE_MODE D2DCompositionMode(CompositionOp aOp) {
switch (aOp) {
case CompositionOp::OP_OVER:
return D2D1_COMPOSITE_MODE_SOURCE_OVER;
case CompositionOp::OP_ADD:
return D2D1_COMPOSITE_MODE_PLUS;
case CompositionOp::OP_ATOP:
return D2D1_COMPOSITE_MODE_SOURCE_ATOP;
case CompositionOp::OP_OUT:
return D2D1_COMPOSITE_MODE_SOURCE_OUT;
case CompositionOp::OP_IN:
return D2D1_COMPOSITE_MODE_SOURCE_IN;
case CompositionOp::OP_SOURCE:
return D2D1_COMPOSITE_MODE_SOURCE_COPY;
case CompositionOp::OP_DEST_IN:
return D2D1_COMPOSITE_MODE_DESTINATION_IN;
case CompositionOp::OP_DEST_OUT:
return D2D1_COMPOSITE_MODE_DESTINATION_OUT;
case CompositionOp::OP_DEST_OVER:
return D2D1_COMPOSITE_MODE_DESTINATION_OVER;
case CompositionOp::OP_DEST_ATOP:
return D2D1_COMPOSITE_MODE_DESTINATION_ATOP;
case CompositionOp::OP_XOR:
return D2D1_COMPOSITE_MODE_XOR;
case CompositionOp::OP_CLEAR:
return D2D1_COMPOSITE_MODE_DESTINATION_OUT;
default:
return D2D1_COMPOSITE_MODE_SOURCE_OVER;
}
}
static inline D2D1_BLEND_MODE D2DBlendMode(CompositionOp aOp) {
switch (aOp) {
case CompositionOp::OP_MULTIPLY:
return D2D1_BLEND_MODE_MULTIPLY;
case CompositionOp::OP_SCREEN:
return D2D1_BLEND_MODE_SCREEN;
case CompositionOp::OP_OVERLAY:
return D2D1_BLEND_MODE_OVERLAY;
case CompositionOp::OP_DARKEN:
return D2D1_BLEND_MODE_DARKEN;
case CompositionOp::OP_LIGHTEN:
return D2D1_BLEND_MODE_LIGHTEN;
case CompositionOp::OP_COLOR_DODGE:
return D2D1_BLEND_MODE_COLOR_DODGE;
case CompositionOp::OP_COLOR_BURN:
return D2D1_BLEND_MODE_COLOR_BURN;
case CompositionOp::OP_HARD_LIGHT:
return D2D1_BLEND_MODE_HARD_LIGHT;
case CompositionOp::OP_SOFT_LIGHT:
return D2D1_BLEND_MODE_SOFT_LIGHT;
case CompositionOp::OP_DIFFERENCE:
return D2D1_BLEND_MODE_DIFFERENCE;
case CompositionOp::OP_EXCLUSION:
return D2D1_BLEND_MODE_EXCLUSION;
case CompositionOp::OP_HUE:
return D2D1_BLEND_MODE_HUE;
case CompositionOp::OP_SATURATION:
return D2D1_BLEND_MODE_SATURATION;
case CompositionOp::OP_COLOR:
return D2D1_BLEND_MODE_COLOR;
case CompositionOp::OP_LUMINOSITY:
return D2D1_BLEND_MODE_LUMINOSITY;
default:
return D2D1_BLEND_MODE_MULTIPLY;
}
}
static inline bool D2DSupportsPrimitiveBlendMode(CompositionOp aOp) {
switch (aOp) {
case CompositionOp::OP_OVER:
// case CompositionOp::OP_SOURCE:
// case CompositionOp::OP_DARKEN:
case CompositionOp::OP_ADD:
return true;
default:
return false;
}
}
static inline D2D1_PRIMITIVE_BLEND D2DPrimitiveBlendMode(CompositionOp aOp) {
switch (aOp) {
case CompositionOp::OP_OVER:
return D2D1_PRIMITIVE_BLEND_SOURCE_OVER;
// D2D1_PRIMITIVE_BLEND_COPY should leave pixels out of the source's
// bounds unchanged, but doesn't- breaking unbounded ops.
// D2D1_PRIMITIVE_BLEND_MIN doesn't quite work like darken either, as it
// accounts for the source alpha.
//
// case CompositionOp::OP_SOURCE:
// return D2D1_PRIMITIVE_BLEND_COPY;
// case CompositionOp::OP_DARKEN:
// return D2D1_PRIMITIVE_BLEND_MIN;
case CompositionOp::OP_ADD:
return D2D1_PRIMITIVE_BLEND_ADD;
default:
return D2D1_PRIMITIVE_BLEND_SOURCE_OVER;
}
}
static inline bool IsPatternSupportedByD2D(
const Pattern& aPattern, CompositionOp aOp = CompositionOp::OP_OVER) {
if (aOp == CompositionOp::OP_CLEAR) {
return true;
}
if (aPattern.GetType() == PatternType::CONIC_GRADIENT) {
return false;
}
if (aPattern.GetType() != PatternType::RADIAL_GRADIENT) {
return true;
}
const RadialGradientPattern* pat =
static_cast<const RadialGradientPattern*>(&aPattern);
if (pat->mRadius1 != 0) {
return false;
}
Point diff = pat->mCenter2 - pat->mCenter1;
if (sqrt(diff.x.value * diff.x.value + diff.y.value * diff.y.value) >=
pat->mRadius2) {
// Inner point lies outside the circle.
return false;
}
return true;
}
/**
* This structure is used to pass rectangles to our shader constant. We can use
* this for passing rectangular areas to SetVertexShaderConstant. In the format
* of a 4 component float(x,y,width,height). Our vertex shader can then use
* this to construct rectangular positions from the 0,0-1,1 quad that we source
* it with.
*/
struct ShaderConstantRectD3D10 {
float mX, mY, mWidth, mHeight;
ShaderConstantRectD3D10(float aX, float aY, float aWidth, float aHeight)
: mX(aX), mY(aY), mWidth(aWidth), mHeight(aHeight) {}
// For easy passing to SetVertexShaderConstantF.
operator float*() { return &mX; }
};
static inline DWRITE_MATRIX DWriteMatrixFromMatrix(Matrix& aMatrix) {
DWRITE_MATRIX mat;
mat.m11 = aMatrix._11;
mat.m12 = aMatrix._12;
mat.m21 = aMatrix._21;
mat.m22 = aMatrix._22;
mat.dx = aMatrix._31;
mat.dy = aMatrix._32;
return mat;
}
class AutoDWriteGlyphRun : public DWRITE_GLYPH_RUN {
static const unsigned kNumAutoGlyphs = 256;
public:
AutoDWriteGlyphRun() { glyphCount = 0; }
~AutoDWriteGlyphRun() {
if (glyphCount > kNumAutoGlyphs) {
delete[] glyphIndices;
delete[] glyphAdvances;
delete[] glyphOffsets;
}
}
void allocate(unsigned aNumGlyphs) {
glyphCount = aNumGlyphs;
if (aNumGlyphs <= kNumAutoGlyphs) {
glyphIndices = &mAutoIndices[0];
glyphAdvances = &mAutoAdvances[0];
glyphOffsets = &mAutoOffsets[0];
} else {
glyphIndices = new UINT16[aNumGlyphs];
glyphAdvances = new FLOAT[aNumGlyphs];
glyphOffsets = new DWRITE_GLYPH_OFFSET[aNumGlyphs];
}
}
private:
DWRITE_GLYPH_OFFSET mAutoOffsets[kNumAutoGlyphs];
FLOAT mAutoAdvances[kNumAutoGlyphs];
UINT16 mAutoIndices[kNumAutoGlyphs];
};
static inline void DWriteGlyphRunFromGlyphs(const GlyphBuffer& aGlyphs,
ScaledFontDWrite* aFont,
AutoDWriteGlyphRun* run) {
run->allocate(aGlyphs.mNumGlyphs);
FLOAT* advances = const_cast<FLOAT*>(run->glyphAdvances);
UINT16* indices = const_cast<UINT16*>(run->glyphIndices);
DWRITE_GLYPH_OFFSET* offsets =
const_cast<DWRITE_GLYPH_OFFSET*>(run->glyphOffsets);
memset(advances, 0, sizeof(FLOAT) * aGlyphs.mNumGlyphs);
for (unsigned int i = 0; i < aGlyphs.mNumGlyphs; i++) {
indices[i] = aGlyphs.mGlyphs[i].mIndex;
offsets[i].advanceOffset = aGlyphs.mGlyphs[i].mPosition.x;
offsets[i].ascenderOffset = -aGlyphs.mGlyphs[i].mPosition.y;
}
run->bidiLevel = 0;
run->fontFace = aFont->mFontFace;
run->fontEmSize = aFont->GetSize();
run->glyphCount = aGlyphs.mNumGlyphs;
run->isSideways = FALSE;
}
static inline already_AddRefed<ID2D1Geometry> ConvertRectToGeometry(
const D2D1_RECT_F& aRect) {
RefPtr<ID2D1RectangleGeometry> rectGeom;
D2DFactory()->CreateRectangleGeometry(&aRect, getter_AddRefs(rectGeom));
return rectGeom.forget();
}
static inline already_AddRefed<ID2D1Geometry> GetTransformedGeometry(
ID2D1Geometry* aGeometry, const D2D1_MATRIX_3X2_F& aTransform) {
RefPtr<ID2D1PathGeometry> tmpGeometry;
D2DFactory()->CreatePathGeometry(getter_AddRefs(tmpGeometry));
RefPtr<ID2D1GeometrySink> currentSink;
tmpGeometry->Open(getter_AddRefs(currentSink));
aGeometry->Simplify(D2D1_GEOMETRY_SIMPLIFICATION_OPTION_CUBICS_AND_LINES,
aTransform, currentSink);
currentSink->Close();
return tmpGeometry.forget();
}
static inline already_AddRefed<ID2D1Geometry> IntersectGeometry(
ID2D1Geometry* aGeometryA, ID2D1Geometry* aGeometryB) {
RefPtr<ID2D1PathGeometry> pathGeom;
D2DFactory()->CreatePathGeometry(getter_AddRefs(pathGeom));
RefPtr<ID2D1GeometrySink> sink;
pathGeom->Open(getter_AddRefs(sink));
aGeometryA->CombineWithGeometry(aGeometryB, D2D1_COMBINE_MODE_INTERSECT,
nullptr, sink);
sink->Close();
return pathGeom.forget();
}
static inline already_AddRefed<ID2D1StrokeStyle> CreateStrokeStyleForOptions(
const StrokeOptions& aStrokeOptions) {
RefPtr<ID2D1StrokeStyle> style;
D2D1_CAP_STYLE capStyle;
D2D1_LINE_JOIN joinStyle;
switch (aStrokeOptions.mLineCap) {
case CapStyle::BUTT:
capStyle = D2D1_CAP_STYLE_FLAT;
break;
case CapStyle::ROUND:
capStyle = D2D1_CAP_STYLE_ROUND;
break;
case CapStyle::SQUARE:
capStyle = D2D1_CAP_STYLE_SQUARE;
break;
}
switch (aStrokeOptions.mLineJoin) {
case JoinStyle::MITER:
joinStyle = D2D1_LINE_JOIN_MITER;
break;
case JoinStyle::MITER_OR_BEVEL:
joinStyle = D2D1_LINE_JOIN_MITER_OR_BEVEL;
break;
case JoinStyle::ROUND:
joinStyle = D2D1_LINE_JOIN_ROUND;
break;
case JoinStyle::BEVEL:
joinStyle = D2D1_LINE_JOIN_BEVEL;
break;
}
HRESULT hr;
// We need to check mDashLength in addition to mDashPattern here since if
// mDashPattern is set but mDashLength is zero then the stroke will fail to
// paint.
if (aStrokeOptions.mDashLength > 0 && aStrokeOptions.mDashPattern) {
typedef std::vector<Float> FloatVector;
// D2D "helpfully" multiplies the dash pattern by the line width.
// That's not what cairo does, or is what <canvas>'s dash wants.
// So fix the multiplication in advance.
Float lineWidth = aStrokeOptions.mLineWidth;
FloatVector dash(aStrokeOptions.mDashPattern,
aStrokeOptions.mDashPattern + aStrokeOptions.mDashLength);
for (FloatVector::iterator it = dash.begin(); it != dash.end(); ++it) {
*it /= lineWidth;
}
hr = D2DFactory()->CreateStrokeStyle(
D2D1::StrokeStyleProperties(
capStyle, capStyle, capStyle, joinStyle, aStrokeOptions.mMiterLimit,
D2D1_DASH_STYLE_CUSTOM, aStrokeOptions.mDashOffset / lineWidth),
&dash[0], // data() is not C++98, although it's in recent gcc
// and VC10's STL
dash.size(), getter_AddRefs(style));
} else {
hr = D2DFactory()->CreateStrokeStyle(
D2D1::StrokeStyleProperties(capStyle, capStyle, capStyle, joinStyle,
aStrokeOptions.mMiterLimit),
nullptr, 0, getter_AddRefs(style));
}
if (FAILED(hr)) {
gfxWarning() << "Failed to create Direct2D stroke style.";
}
return style.forget();
}
// This creates a (partially) uploaded bitmap for a DataSourceSurface. It
// uploads the minimum requirement and possibly downscales. It adjusts the
// input Matrix to compensate.
static inline already_AddRefed<ID2D1Bitmap> CreatePartialBitmapForSurface(
DataSourceSurface* aSurface, const Matrix& aDestinationTransform,
const IntSize& aDestinationSize, ExtendMode aExtendMode,
Matrix& aSourceTransform, ID2D1RenderTarget* aRT,
const IntRect* aSourceRect = nullptr) {
RefPtr<ID2D1Bitmap> bitmap;
// This is where things get complicated. The source surface was
// created for a surface that was too large to fit in a texture.
// We'll need to figure out if we can work with a partial upload
// or downsample in software.
Matrix transform = aDestinationTransform;
Matrix invTransform = transform = aSourceTransform * transform;
if (!invTransform.Invert()) {
// Singular transform, nothing to be drawn.
return nullptr;
}
Rect rect(0, 0, Float(aDestinationSize.width),
Float(aDestinationSize.height));
// Calculate the rectangle of the source mapped to our surface.
rect = invTransform.TransformBounds(rect);
rect.RoundOut();
IntSize size = aSurface->GetSize();
Rect uploadRect(0, 0, Float(size.width), Float(size.height));
if (aSourceRect) {
uploadRect = Rect(aSourceRect->X(), aSourceRect->Y(), aSourceRect->Width(),
aSourceRect->Height());
}
// Limit the uploadRect as much as possible without supporting discontiguous
// uploads
//
// clang-format off
// region we will paint from
// uploadRect
// .---------------. .---------------. resulting uploadRect
// | |rect | |
// | .---------. .----. .----. .---------------.
// | | | ----> | | | | ----> | |
// | '---------' '----' '----' '---------------'
// '---------------' '---------------'
// clang-format on
//
//
int Bpp = BytesPerPixel(aSurface->GetFormat());
if (uploadRect.Contains(rect)) {
// Extend mode is irrelevant, the displayed rect is completely contained
// by the source bitmap.
uploadRect = rect;
} else if (aExtendMode == ExtendMode::CLAMP && uploadRect.Intersects(rect)) {
// Calculate the rectangle on the source bitmap that touches our
// surface, and upload that, for ExtendMode::CLAMP we can actually guarantee
// correct behaviour in this case.
uploadRect = uploadRect.Intersect(rect);
// We now proceed to check if we can limit at least one dimension of the
// upload rect safely without looking at extend mode.
} else if (rect.X() >= 0 && rect.XMost() < size.width) {
uploadRect.MoveToX(rect.X());
uploadRect.SetWidth(rect.Width());
} else if (rect.Y() >= 0 && rect.YMost() < size.height) {
uploadRect.MoveToY(rect.Y());
uploadRect.SetHeight(rect.Height());
}
if (uploadRect.IsEmpty()) {
// Nothing to be drawn.
return nullptr;
}
if (uploadRect.Width() <= aRT->GetMaximumBitmapSize() &&
uploadRect.Height() <= aRT->GetMaximumBitmapSize()) {
{
// Scope to auto-Unmap() |mapping|.
DataSourceSurface::ScopedMap mapping(aSurface, DataSourceSurface::READ);
if (MOZ2D_WARN_IF(!mapping.IsMapped())) {
return nullptr;
}
// A partial upload will suffice.
aRT->CreateBitmap(
D2D1::SizeU(uint32_t(uploadRect.Width()),
uint32_t(uploadRect.Height())),
mapping.GetData() + int(uploadRect.X()) * Bpp +
int(uploadRect.Y()) * mapping.GetStride(),
mapping.GetStride(),
D2D1::BitmapProperties(D2DPixelFormat(aSurface->GetFormat())),
getter_AddRefs(bitmap));
}
aSourceTransform.PreTranslate(uploadRect.X(), uploadRect.Y());
return bitmap.forget();
} else {
if (Bpp != 4) {
// This shouldn't actually happen in practice!
MOZ_ASSERT(false);
return nullptr;
}
{
// Scope to auto-Unmap() |mapping|.
DataSourceSurface::ScopedMap mapping(aSurface, DataSourceSurface::READ);
if (MOZ2D_WARN_IF(!mapping.IsMapped())) {
return nullptr;
}
ImageHalfScaler scaler(mapping.GetData(), mapping.GetStride(), size);
// Calculate the maximum width/height of the image post transform.
Point topRight = transform.TransformPoint(Point(Float(size.width), 0));
Point topLeft = transform.TransformPoint(Point(0, 0));
Point bottomRight = transform.TransformPoint(
Point(Float(size.width), Float(size.height)));
Point bottomLeft = transform.TransformPoint(Point(0, Float(size.height)));
IntSize scaleSize;
scaleSize.width = int32_t(std::max(Distance(topRight, topLeft),
Distance(bottomRight, bottomLeft)));
scaleSize.height = int32_t(std::max(Distance(topRight, bottomRight),
Distance(topLeft, bottomLeft)));
if (unsigned(scaleSize.width) > aRT->GetMaximumBitmapSize()) {
// Ok, in this case we'd really want a downscale of a part of the
// bitmap, perhaps we can do this later but for simplicity let's do
// something different here and assume it's good enough, this should be
// rare!
scaleSize.width = 4095;
}
if (unsigned(scaleSize.height) > aRT->GetMaximumBitmapSize()) {
scaleSize.height = 4095;
}
scaler.ScaleForSize(scaleSize);
IntSize newSize = scaler.GetSize();
if (newSize.IsEmpty()) {
return nullptr;
}
aRT->CreateBitmap(
D2D1::SizeU(newSize.width, newSize.height), scaler.GetScaledData(),
scaler.GetStride(),
D2D1::BitmapProperties(D2DPixelFormat(aSurface->GetFormat())),
getter_AddRefs(bitmap));
aSourceTransform.PreScale(Float(size.width) / newSize.width,
Float(size.height) / newSize.height);
}
return bitmap.forget();
}
}
static inline void AddRectToSink(ID2D1GeometrySink* aSink,
const D2D1_RECT_F& aRect) {
aSink->BeginFigure(D2D1::Point2F(aRect.left, aRect.top),
D2D1_FIGURE_BEGIN_FILLED);
aSink->AddLine(D2D1::Point2F(aRect.right, aRect.top));
aSink->AddLine(D2D1::Point2F(aRect.right, aRect.bottom));
aSink->AddLine(D2D1::Point2F(aRect.left, aRect.bottom));
aSink->EndFigure(D2D1_FIGURE_END_CLOSED);
}
class DCCommandSink : public ID2D1CommandSink {
public:
explicit DCCommandSink(ID2D1DeviceContext* aCtx) : mCtx(aCtx) {}
HRESULT STDMETHODCALLTYPE QueryInterface(const IID& aIID, void** aPtr) {
if (!aPtr) {
return E_POINTER;
}
if (aIID == IID_IUnknown) {
*aPtr = static_cast<IUnknown*>(this);
return S_OK;
} else if (aIID == IID_ID2D1CommandSink) {
*aPtr = static_cast<ID2D1CommandSink*>(this);
return S_OK;
}
return E_NOINTERFACE;
}
ULONG STDMETHODCALLTYPE AddRef() { return 1; }
ULONG STDMETHODCALLTYPE Release() { return 1; }
STDMETHODIMP BeginDraw() {
// We don't want to do anything here!
return S_OK;
}
STDMETHODIMP EndDraw() {
// We don't want to do anything here!
return S_OK;
}
STDMETHODIMP SetAntialiasMode(D2D1_ANTIALIAS_MODE antialiasMode) {
mCtx->SetAntialiasMode(antialiasMode);
return S_OK;
}
STDMETHODIMP SetTags(D2D1_TAG tag1, D2D1_TAG tag2) {
mCtx->SetTags(tag1, tag2);
return S_OK;
}
STDMETHODIMP SetTextAntialiasMode(
D2D1_TEXT_ANTIALIAS_MODE textAntialiasMode) {
mCtx->SetTextAntialiasMode(textAntialiasMode);
return S_OK;
}
STDMETHODIMP SetTextRenderingParams(
_In_opt_ IDWriteRenderingParams* textRenderingParams) {
mCtx->SetTextRenderingParams(textRenderingParams);
return S_OK;
}
STDMETHODIMP SetTransform(_In_ CONST D2D1_MATRIX_3X2_F* transform) {
mCtx->SetTransform(transform);
return S_OK;
}
STDMETHODIMP SetPrimitiveBlend(D2D1_PRIMITIVE_BLEND primitiveBlend) {
mCtx->SetPrimitiveBlend(primitiveBlend);
return S_OK;
}
STDMETHODIMP SetUnitMode(D2D1_UNIT_MODE unitMode) {
mCtx->SetUnitMode(unitMode);
return S_OK;
}
STDMETHODIMP Clear(_In_opt_ CONST D2D1_COLOR_F* color) {
mCtx->Clear(color);
return S_OK;
}
STDMETHODIMP DrawGlyphRun(
D2D1_POINT_2F baselineOrigin, _In_ CONST DWRITE_GLYPH_RUN* glyphRun,
_In_opt_ CONST DWRITE_GLYPH_RUN_DESCRIPTION* glyphRunDescription,
_In_ ID2D1Brush* foregroundBrush, DWRITE_MEASURING_MODE measuringMode) {
mCtx->DrawGlyphRun(baselineOrigin, glyphRun, glyphRunDescription,
foregroundBrush, measuringMode);
return S_OK;
}
STDMETHODIMP DrawLine(D2D1_POINT_2F point0, D2D1_POINT_2F point1,
_In_ ID2D1Brush* brush, FLOAT strokeWidth,
_In_opt_ ID2D1StrokeStyle* strokeStyle) {
mCtx->DrawLine(point0, point1, brush, strokeWidth, strokeStyle);
return S_OK;
}
STDMETHODIMP DrawGeometry(_In_ ID2D1Geometry* geometry,
_In_ ID2D1Brush* brush, FLOAT strokeWidth,
_In_opt_ ID2D1StrokeStyle* strokeStyle) {
mCtx->DrawGeometry(geometry, brush, strokeWidth, strokeStyle);
return S_OK;
}
STDMETHODIMP DrawRectangle(_In_ CONST D2D1_RECT_F* rect,
_In_ ID2D1Brush* brush, FLOAT strokeWidth,
_In_opt_ ID2D1StrokeStyle* strokeStyle) {
mCtx->DrawRectangle(rect, brush, strokeWidth, strokeStyle);
return S_OK;
}
STDMETHODIMP DrawBitmap(
_In_ ID2D1Bitmap* bitmap,
_In_opt_ CONST D2D1_RECT_F* destinationRectangle, FLOAT opacity,
D2D1_INTERPOLATION_MODE interpolationMode,
_In_opt_ CONST D2D1_RECT_F* sourceRectangle,
_In_opt_ CONST D2D1_MATRIX_4X4_F* perspectiveTransform) {
mCtx->DrawBitmap(bitmap, destinationRectangle, opacity, interpolationMode,
sourceRectangle, perspectiveTransform);
return S_OK;
}
STDMETHODIMP DrawImage(_In_ ID2D1Image* image,
_In_opt_ CONST D2D1_POINT_2F* targetOffset,
_In_opt_ CONST D2D1_RECT_F* imageRectangle,
D2D1_INTERPOLATION_MODE interpolationMode,
D2D1_COMPOSITE_MODE compositeMode) {
mCtx->DrawImage(image, targetOffset, imageRectangle, interpolationMode,
compositeMode);
return S_OK;
}
STDMETHODIMP DrawGdiMetafile(_In_ ID2D1GdiMetafile* gdiMetafile,
_In_opt_ CONST D2D1_POINT_2F* targetOffset) {
mCtx->DrawGdiMetafile(gdiMetafile, targetOffset);
return S_OK;
}
STDMETHODIMP FillMesh(_In_ ID2D1Mesh* mesh, _In_ ID2D1Brush* brush) {
mCtx->FillMesh(mesh, brush);
return S_OK;
}
STDMETHODIMP FillOpacityMask(_In_ ID2D1Bitmap* opacityMask,
_In_ ID2D1Brush* brush,
_In_opt_ CONST D2D1_RECT_F* destinationRectangle,
_In_opt_ CONST D2D1_RECT_F* sourceRectangle) {
mCtx->FillOpacityMask(opacityMask, brush, destinationRectangle,
sourceRectangle);
return S_OK;
}
STDMETHODIMP FillGeometry(_In_ ID2D1Geometry* geometry,
_In_ ID2D1Brush* brush,
_In_opt_ ID2D1Brush* opacityBrush) {
mCtx->FillGeometry(geometry, brush, opacityBrush);
return S_OK;
}
STDMETHODIMP FillRectangle(_In_ CONST D2D1_RECT_F* rect,
_In_ ID2D1Brush* brush) {
mCtx->FillRectangle(rect, brush);
return S_OK;
}
STDMETHODIMP PushAxisAlignedClip(_In_ CONST D2D1_RECT_F* clipRect,
D2D1_ANTIALIAS_MODE antialiasMode) {
mCtx->PushAxisAlignedClip(clipRect, antialiasMode);
return S_OK;
}
STDMETHODIMP PushLayer(_In_ CONST D2D1_LAYER_PARAMETERS1* layerParameters1,
_In_opt_ ID2D1Layer* layer) {
mCtx->PushLayer(layerParameters1, layer);
return S_OK;
}
STDMETHODIMP PopAxisAlignedClip() {
mCtx->PopAxisAlignedClip();
return S_OK;
}
STDMETHODIMP PopLayer() {
mCtx->PopLayer();
return S_OK;
}
ID2D1DeviceContext* mCtx;
};
class MOZ_STACK_CLASS AutoRestoreFP final {
public:
AutoRestoreFP() {
// save the current floating point control word
_controlfp_s(&savedFPSetting, 0, 0);
UINT unused;
// set the floating point control word to its default value
_controlfp_s(&unused, _CW_DEFAULT, MCW_PC);
}
~AutoRestoreFP() {
UINT unused;
// restore the saved floating point control word
_controlfp_s(&unused, savedFPSetting, MCW_PC);
}
private:
UINT savedFPSetting;
};
// Note that overrides of ID2D1SimplifiedGeometrySink methods in this class may
// get called from D2D with nonstandard floating point settings (see comments in
// bug 1134549) - use AutoRestoreFP to reset the floating point control word to
// what we expect
class StreamingGeometrySink : public ID2D1SimplifiedGeometrySink {
public:
explicit StreamingGeometrySink(PathSink* aSink) : mSink(aSink) {}
HRESULT STDMETHODCALLTYPE QueryInterface(const IID& aIID, void** aPtr) {
if (!aPtr) {
return E_POINTER;
}
if (aIID == IID_IUnknown) {
*aPtr = static_cast<IUnknown*>(this);
return S_OK;
} else if (aIID == IID_ID2D1SimplifiedGeometrySink) {
*aPtr = static_cast<ID2D1SimplifiedGeometrySink*>(this);
return S_OK;
}
return E_NOINTERFACE;
}
ULONG STDMETHODCALLTYPE AddRef() { return 1; }
ULONG STDMETHODCALLTYPE Release() { return 1; }
// We ignore SetFillMode, this depends on the destination sink.
STDMETHOD_(void, SetFillMode)(D2D1_FILL_MODE aMode) { return; }
STDMETHOD_(void, BeginFigure)
(D2D1_POINT_2F aPoint, D2D1_FIGURE_BEGIN aBegin) {
AutoRestoreFP resetFloatingPoint;
mSink->MoveTo(ToPoint(aPoint));
}
STDMETHOD_(void, AddLines)(const D2D1_POINT_2F* aLines, UINT aCount) {
AutoRestoreFP resetFloatingPoint;
for (UINT i = 0; i < aCount; i++) {
mSink->LineTo(ToPoint(aLines[i]));
}
}
STDMETHOD_(void, AddBeziers)
(const D2D1_BEZIER_SEGMENT* aSegments, UINT aCount) {
AutoRestoreFP resetFloatingPoint;
for (UINT i = 0; i < aCount; i++) {
mSink->BezierTo(ToPoint(aSegments[i].point1),
ToPoint(aSegments[i].point2),
ToPoint(aSegments[i].point3));
}
}
STDMETHOD(Close)() { /* Should never be called! */
return S_OK;
}
STDMETHOD_(void, SetSegmentFlags)
(D2D1_PATH_SEGMENT aFlags) { /* Should never be called! */
}
STDMETHOD_(void, EndFigure)(D2D1_FIGURE_END aEnd) {
AutoRestoreFP resetFloatingPoint;
if (aEnd == D2D1_FIGURE_END_CLOSED) {
return mSink->Close();
}
}
private:
PathSink* mSink;
};
} // namespace gfx
} // namespace mozilla
#endif /* MOZILLA_GFX_HELPERSD2D_H_ */