mirror of
https://github.com/mozilla/gecko-dev.git
synced 2024-11-30 08:12:05 +00:00
6e1293b5f7
Differential Revision: https://phabricator.services.mozilla.com/D197302
421 lines
14 KiB
C++
421 lines
14 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
/* Utilities for hashing. */
|
|
|
|
/*
|
|
* This file exports functions for hashing data down to a uint32_t (a.k.a.
|
|
* mozilla::HashNumber), including:
|
|
*
|
|
* - HashString Hash a char* or char16_t/wchar_t* of known or unknown
|
|
* length.
|
|
*
|
|
* - HashBytes Hash a byte array of known length.
|
|
*
|
|
* - HashGeneric Hash one or more values. Currently, we support uint32_t,
|
|
* types which can be implicitly cast to uint32_t, data
|
|
* pointers, and function pointers.
|
|
*
|
|
* - AddToHash Add one or more values to the given hash. This supports the
|
|
* same list of types as HashGeneric.
|
|
*
|
|
*
|
|
* You can chain these functions together to hash complex objects. For example:
|
|
*
|
|
* class ComplexObject
|
|
* {
|
|
* char* mStr;
|
|
* uint32_t mUint1, mUint2;
|
|
* void (*mCallbackFn)();
|
|
*
|
|
* public:
|
|
* HashNumber hash()
|
|
* {
|
|
* HashNumber hash = HashString(mStr);
|
|
* hash = AddToHash(hash, mUint1, mUint2);
|
|
* return AddToHash(hash, mCallbackFn);
|
|
* }
|
|
* };
|
|
*
|
|
* If you want to hash an nsAString or nsACString, use the HashString functions
|
|
* in nsHashKeys.h.
|
|
*/
|
|
|
|
#ifndef mozilla_HashFunctions_h
|
|
#define mozilla_HashFunctions_h
|
|
|
|
#include "mozilla/Assertions.h"
|
|
#include "mozilla/Attributes.h"
|
|
#include "mozilla/Char16.h"
|
|
#include "mozilla/MathAlgorithms.h"
|
|
#include "mozilla/Types.h"
|
|
#include "mozilla/WrappingOperations.h"
|
|
|
|
#include <stdint.h>
|
|
#include <type_traits>
|
|
|
|
namespace mozilla {
|
|
|
|
using HashNumber = uint32_t;
|
|
static const uint32_t kHashNumberBits = 32;
|
|
|
|
/**
|
|
* The golden ratio as a 32-bit fixed-point value.
|
|
*/
|
|
static const HashNumber kGoldenRatioU32 = 0x9E3779B9U;
|
|
|
|
/*
|
|
* Given a raw hash code, h, return a number that can be used to select a hash
|
|
* bucket.
|
|
*
|
|
* This function aims to produce as uniform an output distribution as possible,
|
|
* especially in the most significant (leftmost) bits, even though the input
|
|
* distribution may be highly nonrandom, given the constraints that this must
|
|
* be deterministic and quick to compute.
|
|
*
|
|
* Since the leftmost bits of the result are best, the hash bucket index is
|
|
* computed by doing ScrambleHashCode(h) / (2^32/N) or the equivalent
|
|
* right-shift, not ScrambleHashCode(h) % N or the equivalent bit-mask.
|
|
*/
|
|
constexpr HashNumber ScrambleHashCode(HashNumber h) {
|
|
/*
|
|
* Simply returning h would not cause any hash tables to produce wrong
|
|
* answers. But it can produce pathologically bad performance: The caller
|
|
* right-shifts the result, keeping only the highest bits. The high bits of
|
|
* hash codes are very often completely entropy-free. (So are the lowest
|
|
* bits.)
|
|
*
|
|
* So we use Fibonacci hashing, as described in Knuth, The Art of Computer
|
|
* Programming, 6.4. This mixes all the bits of the input hash code h.
|
|
*
|
|
* The value of goldenRatio is taken from the hex expansion of the golden
|
|
* ratio, which starts 1.9E3779B9.... This value is especially good if
|
|
* values with consecutive hash codes are stored in a hash table; see Knuth
|
|
* for details.
|
|
*/
|
|
return mozilla::WrappingMultiply(h, kGoldenRatioU32);
|
|
}
|
|
|
|
namespace detail {
|
|
|
|
MOZ_NO_SANITIZE_UNSIGNED_OVERFLOW
|
|
constexpr HashNumber RotateLeft5(HashNumber aValue) {
|
|
return (aValue << 5) | (aValue >> 27);
|
|
}
|
|
|
|
constexpr HashNumber AddU32ToHash(HashNumber aHash, uint32_t aValue) {
|
|
/*
|
|
* This is the meat of all our hash routines. This hash function is not
|
|
* particularly sophisticated, but it seems to work well for our mostly
|
|
* plain-text inputs. Implementation notes follow.
|
|
*
|
|
* Our use of the golden ratio here is arbitrary; we could pick almost any
|
|
* number which:
|
|
*
|
|
* * is odd (because otherwise, all our hash values will be even)
|
|
*
|
|
* * has a reasonably-even mix of 1's and 0's (consider the extreme case
|
|
* where we multiply by 0x3 or 0xeffffff -- this will not produce good
|
|
* mixing across all bits of the hash).
|
|
*
|
|
* The rotation length of 5 is also arbitrary, although an odd number is again
|
|
* preferable so our hash explores the whole universe of possible rotations.
|
|
*
|
|
* Finally, we multiply by the golden ratio *after* xor'ing, not before.
|
|
* Otherwise, if |aHash| is 0 (as it often is for the beginning of a
|
|
* message), the expression
|
|
*
|
|
* mozilla::WrappingMultiply(kGoldenRatioU32, RotateLeft5(aHash))
|
|
* |xor|
|
|
* aValue
|
|
*
|
|
* evaluates to |aValue|.
|
|
*
|
|
* (Number-theoretic aside: Because any odd number |m| is relatively prime to
|
|
* our modulus (2**32), the list
|
|
*
|
|
* [x * m (mod 2**32) for 0 <= x < 2**32]
|
|
*
|
|
* has no duplicate elements. This means that multiplying by |m| does not
|
|
* cause us to skip any possible hash values.
|
|
*
|
|
* It's also nice if |m| has large-ish order mod 2**32 -- that is, if the
|
|
* smallest k such that m**k == 1 (mod 2**32) is large -- so we can safely
|
|
* multiply our hash value by |m| a few times without negating the
|
|
* multiplicative effect. Our golden ratio constant has order 2**29, which is
|
|
* more than enough for our purposes.)
|
|
*/
|
|
return mozilla::WrappingMultiply(kGoldenRatioU32,
|
|
RotateLeft5(aHash) ^ aValue);
|
|
}
|
|
|
|
/**
|
|
* AddUintNToHash takes sizeof(int_type) as a template parameter.
|
|
* Changes to these functions need to be propagated to
|
|
* MacroAssembler::prepareHashNonGCThing, which inlines them manually for
|
|
* the JIT.
|
|
*/
|
|
template <size_t Size>
|
|
constexpr HashNumber AddUintNToHash(HashNumber aHash, uint64_t aValue) {
|
|
return AddU32ToHash(aHash, static_cast<uint32_t>(aValue));
|
|
}
|
|
|
|
template <>
|
|
inline HashNumber AddUintNToHash<8>(HashNumber aHash, uint64_t aValue) {
|
|
uint32_t v1 = static_cast<uint32_t>(aValue);
|
|
uint32_t v2 = static_cast<uint32_t>(aValue >> 32);
|
|
return AddU32ToHash(AddU32ToHash(aHash, v1), v2);
|
|
}
|
|
|
|
} /* namespace detail */
|
|
|
|
/**
|
|
* AddToHash takes a hash and some values and returns a new hash based on the
|
|
* inputs.
|
|
*
|
|
* Currently, we support hashing uint32_t's, values which we can implicitly
|
|
* convert to uint32_t, data pointers, and function pointers.
|
|
*/
|
|
template <typename T, bool TypeIsNotIntegral = !std::is_integral_v<T>,
|
|
bool TypeIsNotEnum = !std::is_enum_v<T>,
|
|
std::enable_if_t<TypeIsNotIntegral && TypeIsNotEnum, int> = 0>
|
|
[[nodiscard]] inline HashNumber AddToHash(HashNumber aHash, T aA) {
|
|
/*
|
|
* Try to convert |A| to uint32_t implicitly. If this works, great. If not,
|
|
* we'll error out.
|
|
*/
|
|
return detail::AddU32ToHash(aHash, aA);
|
|
}
|
|
|
|
template <typename A>
|
|
[[nodiscard]] inline HashNumber AddToHash(HashNumber aHash, A* aA) {
|
|
/*
|
|
* You might think this function should just take a void*. But then we'd only
|
|
* catch data pointers and couldn't handle function pointers.
|
|
*/
|
|
|
|
static_assert(sizeof(aA) == sizeof(uintptr_t), "Strange pointer!");
|
|
|
|
return detail::AddUintNToHash<sizeof(uintptr_t)>(aHash, uintptr_t(aA));
|
|
}
|
|
|
|
// We use AddUintNToHash() for hashing all integral types. 8-byte integral
|
|
// types are treated the same as 64-bit pointers, and smaller integral types are
|
|
// first implicitly converted to 32 bits and then passed to AddUintNToHash()
|
|
// to be hashed.
|
|
template <typename T, std::enable_if_t<std::is_integral_v<T>, int> = 0>
|
|
[[nodiscard]] constexpr HashNumber AddToHash(HashNumber aHash, T aA) {
|
|
return detail::AddUintNToHash<sizeof(T)>(aHash, aA);
|
|
}
|
|
|
|
template <typename T, std::enable_if_t<std::is_enum_v<T>, int> = 0>
|
|
[[nodiscard]] constexpr HashNumber AddToHash(HashNumber aHash, T aA) {
|
|
// Hash using AddUintNToHash with the underlying type of the enum type
|
|
using UnderlyingType = typename std::underlying_type<T>::type;
|
|
return detail::AddUintNToHash<sizeof(UnderlyingType)>(
|
|
aHash, static_cast<UnderlyingType>(aA));
|
|
}
|
|
|
|
template <typename A, typename... Args>
|
|
[[nodiscard]] HashNumber AddToHash(HashNumber aHash, A aArg, Args... aArgs) {
|
|
return AddToHash(AddToHash(aHash, aArg), aArgs...);
|
|
}
|
|
|
|
/**
|
|
* The HashGeneric class of functions let you hash one or more values.
|
|
*
|
|
* If you want to hash together two values x and y, calling HashGeneric(x, y) is
|
|
* much better than calling AddToHash(x, y), because AddToHash(x, y) assumes
|
|
* that x has already been hashed.
|
|
*/
|
|
template <typename... Args>
|
|
[[nodiscard]] inline HashNumber HashGeneric(Args... aArgs) {
|
|
return AddToHash(0, aArgs...);
|
|
}
|
|
|
|
/**
|
|
* Hash successive |*aIter| until |!*aIter|, i.e. til null-termination.
|
|
*
|
|
* This function is *not* named HashString like the non-template overloads
|
|
* below. Some users define HashString overloads and pass inexactly-matching
|
|
* values to them -- but an inexactly-matching value would match this overload
|
|
* instead! We follow the general rule and don't mix and match template and
|
|
* regular overloads to avoid this.
|
|
*
|
|
* If you have the string's length, call HashStringKnownLength: it may be
|
|
* marginally faster.
|
|
*/
|
|
template <typename Iterator>
|
|
[[nodiscard]] constexpr HashNumber HashStringUntilZero(Iterator aIter) {
|
|
HashNumber hash = 0;
|
|
for (; auto c = *aIter; ++aIter) {
|
|
hash = AddToHash(hash, c);
|
|
}
|
|
return hash;
|
|
}
|
|
|
|
/**
|
|
* Hash successive |aIter[i]| up to |i == aLength|.
|
|
*/
|
|
template <typename Iterator>
|
|
[[nodiscard]] constexpr HashNumber HashStringKnownLength(Iterator aIter,
|
|
size_t aLength) {
|
|
HashNumber hash = 0;
|
|
for (size_t i = 0; i < aLength; i++) {
|
|
hash = AddToHash(hash, aIter[i]);
|
|
}
|
|
return hash;
|
|
}
|
|
|
|
/**
|
|
* The HashString overloads below do just what you'd expect.
|
|
*
|
|
* These functions are non-template functions so that users can 1) overload them
|
|
* with their own types 2) in a way that allows implicit conversions to happen.
|
|
*/
|
|
[[nodiscard]] inline HashNumber HashString(const char* aStr) {
|
|
// Use the |const unsigned char*| version of the above so that all ordinary
|
|
// character data hashes identically.
|
|
return HashStringUntilZero(reinterpret_cast<const unsigned char*>(aStr));
|
|
}
|
|
|
|
[[nodiscard]] inline HashNumber HashString(const char* aStr, size_t aLength) {
|
|
// Delegate to the |const unsigned char*| version of the above to share
|
|
// template instantiations.
|
|
return HashStringKnownLength(reinterpret_cast<const unsigned char*>(aStr),
|
|
aLength);
|
|
}
|
|
|
|
[[nodiscard]] inline HashNumber HashString(const unsigned char* aStr,
|
|
size_t aLength) {
|
|
return HashStringKnownLength(aStr, aLength);
|
|
}
|
|
|
|
[[nodiscard]] constexpr HashNumber HashString(const char16_t* aStr) {
|
|
return HashStringUntilZero(aStr);
|
|
}
|
|
|
|
[[nodiscard]] inline HashNumber HashString(const char16_t* aStr,
|
|
size_t aLength) {
|
|
return HashStringKnownLength(aStr, aLength);
|
|
}
|
|
|
|
/**
|
|
* HashString overloads for |wchar_t| on platforms where it isn't |char16_t|.
|
|
*/
|
|
template <typename WCharT, typename = typename std::enable_if<
|
|
std::is_same<WCharT, wchar_t>::value &&
|
|
!std::is_same<wchar_t, char16_t>::value>::type>
|
|
[[nodiscard]] inline HashNumber HashString(const WCharT* aStr) {
|
|
return HashStringUntilZero(aStr);
|
|
}
|
|
|
|
template <typename WCharT, typename = typename std::enable_if<
|
|
std::is_same<WCharT, wchar_t>::value &&
|
|
!std::is_same<wchar_t, char16_t>::value>::type>
|
|
[[nodiscard]] inline HashNumber HashString(const WCharT* aStr, size_t aLength) {
|
|
return HashStringKnownLength(aStr, aLength);
|
|
}
|
|
|
|
/**
|
|
* Hash some number of bytes.
|
|
*
|
|
* This hash walks word-by-word, rather than byte-by-byte, so you won't get the
|
|
* same result out of HashBytes as you would out of HashString.
|
|
*/
|
|
[[nodiscard]] extern MFBT_API HashNumber HashBytes(const void* bytes,
|
|
size_t aLength);
|
|
|
|
/**
|
|
* A pseudorandom function mapping 32-bit integers to 32-bit integers.
|
|
*
|
|
* This is for when you're feeding private data (like pointer values or credit
|
|
* card numbers) to a non-crypto hash function (like HashBytes) and then using
|
|
* the hash code for something that untrusted parties could observe (like a JS
|
|
* Map). Plug in a HashCodeScrambler before that last step to avoid leaking the
|
|
* private data.
|
|
*
|
|
* By itself, this does not prevent hash-flooding DoS attacks, because an
|
|
* attacker can still generate many values with exactly equal hash codes by
|
|
* attacking the non-crypto hash function alone. Equal hash codes will, of
|
|
* course, still be equal however much you scramble them.
|
|
*
|
|
* The algorithm is SipHash-1-3. See <https://131002.net/siphash/>.
|
|
*/
|
|
class HashCodeScrambler {
|
|
struct SipHasher;
|
|
|
|
uint64_t mK0, mK1;
|
|
|
|
public:
|
|
/** Creates a new scrambler with the given 128-bit key. */
|
|
constexpr HashCodeScrambler(uint64_t aK0, uint64_t aK1)
|
|
: mK0(aK0), mK1(aK1) {}
|
|
|
|
/**
|
|
* Scramble a hash code. Always produces the same result for the same
|
|
* combination of key and hash code.
|
|
*/
|
|
HashNumber scramble(HashNumber aHashCode) const {
|
|
SipHasher hasher(mK0, mK1);
|
|
return HashNumber(hasher.sipHash(aHashCode));
|
|
}
|
|
|
|
static constexpr size_t offsetOfMK0() {
|
|
return offsetof(HashCodeScrambler, mK0);
|
|
}
|
|
|
|
static constexpr size_t offsetOfMK1() {
|
|
return offsetof(HashCodeScrambler, mK1);
|
|
}
|
|
|
|
private:
|
|
struct SipHasher {
|
|
SipHasher(uint64_t aK0, uint64_t aK1) {
|
|
// 1. Initialization.
|
|
mV0 = aK0 ^ UINT64_C(0x736f6d6570736575);
|
|
mV1 = aK1 ^ UINT64_C(0x646f72616e646f6d);
|
|
mV2 = aK0 ^ UINT64_C(0x6c7967656e657261);
|
|
mV3 = aK1 ^ UINT64_C(0x7465646279746573);
|
|
}
|
|
|
|
uint64_t sipHash(uint64_t aM) {
|
|
// 2. Compression.
|
|
mV3 ^= aM;
|
|
sipRound();
|
|
mV0 ^= aM;
|
|
|
|
// 3. Finalization.
|
|
mV2 ^= 0xff;
|
|
for (int i = 0; i < 3; i++) sipRound();
|
|
return mV0 ^ mV1 ^ mV2 ^ mV3;
|
|
}
|
|
|
|
void sipRound() {
|
|
mV0 = WrappingAdd(mV0, mV1);
|
|
mV1 = RotateLeft(mV1, 13);
|
|
mV1 ^= mV0;
|
|
mV0 = RotateLeft(mV0, 32);
|
|
mV2 = WrappingAdd(mV2, mV3);
|
|
mV3 = RotateLeft(mV3, 16);
|
|
mV3 ^= mV2;
|
|
mV0 = WrappingAdd(mV0, mV3);
|
|
mV3 = RotateLeft(mV3, 21);
|
|
mV3 ^= mV0;
|
|
mV2 = WrappingAdd(mV2, mV1);
|
|
mV1 = RotateLeft(mV1, 17);
|
|
mV1 ^= mV2;
|
|
mV2 = RotateLeft(mV2, 32);
|
|
}
|
|
|
|
uint64_t mV0, mV1, mV2, mV3;
|
|
};
|
|
};
|
|
|
|
} /* namespace mozilla */
|
|
|
|
#endif /* mozilla_HashFunctions_h */
|