mirror of
https://github.com/mozilla/gecko-dev.git
synced 2025-02-26 04:09:50 +00:00

When reading Dwarf unwind info, `CallFrameInfo::State::DoInstruction` is called once per CFI instruction. At both call sites, the call is driven by a simple loop. Because each call doesn't do much work, the call overhead is quite high, and there are huge numbers of CFI instructions to be processed. This patch moves the loop into its own method `DoInstructions`, and adds annotations in the hope of getting `DoInstruction` inlined into the loop. On an Intel Core i5 1135G7 at circa 4 GHz, this reduces the Dwarf read time from 0.27 seconds (after bugs 1754932, 1777540 and 1777949 have landed) to 0.26 seconds. Not much of a win, but on the other hand, the insn count falls from 3906 million to 3640 million, which seems like a worthwhile win for what is a trivial change. Differential Revision: https://phabricator.services.mozilla.com/D151262
2539 lines
85 KiB
C++
2539 lines
85 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
|
|
|
|
// Copyright (c) 2010 Google Inc. All Rights Reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
// CFI reader author: Jim Blandy <jimb@mozilla.com> <jimb@red-bean.com>
|
|
// Original author: Jim Blandy <jimb@mozilla.com> <jimb@red-bean.com>
|
|
|
|
// Implementation of dwarf2reader::LineInfo, dwarf2reader::CompilationUnit,
|
|
// and dwarf2reader::CallFrameInfo. See dwarf2reader.h for details.
|
|
|
|
// This file is derived from the following files in
|
|
// toolkit/crashreporter/google-breakpad:
|
|
// src/common/dwarf/bytereader.cc
|
|
// src/common/dwarf/dwarf2reader.cc
|
|
// src/common/dwarf_cfi_to_module.cc
|
|
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <stdlib.h>
|
|
|
|
#include <stack>
|
|
#include <string>
|
|
|
|
#include "mozilla/Assertions.h"
|
|
#include "mozilla/Attributes.h"
|
|
#include "mozilla/Sprintf.h"
|
|
#include "mozilla/Vector.h"
|
|
|
|
#include "LulCommonExt.h"
|
|
#include "LulDwarfInt.h"
|
|
|
|
// Set this to 1 for verbose logging
|
|
#define DEBUG_DWARF 0
|
|
|
|
namespace lul {
|
|
|
|
using std::pair;
|
|
using std::string;
|
|
|
|
ByteReader::ByteReader(enum Endianness endian)
|
|
: offset_reader_(NULL),
|
|
address_reader_(NULL),
|
|
endian_(endian),
|
|
address_size_(0),
|
|
offset_size_(0),
|
|
have_section_base_(),
|
|
have_text_base_(),
|
|
have_data_base_(),
|
|
have_function_base_() {}
|
|
|
|
ByteReader::~ByteReader() {}
|
|
|
|
void ByteReader::SetOffsetSize(uint8 size) {
|
|
offset_size_ = size;
|
|
MOZ_ASSERT(size == 4 || size == 8);
|
|
if (size == 4) {
|
|
this->offset_reader_ = &ByteReader::ReadFourBytes;
|
|
} else {
|
|
this->offset_reader_ = &ByteReader::ReadEightBytes;
|
|
}
|
|
}
|
|
|
|
void ByteReader::SetAddressSize(uint8 size) {
|
|
address_size_ = size;
|
|
MOZ_ASSERT(size == 4 || size == 8);
|
|
if (size == 4) {
|
|
this->address_reader_ = &ByteReader::ReadFourBytes;
|
|
} else {
|
|
this->address_reader_ = &ByteReader::ReadEightBytes;
|
|
}
|
|
}
|
|
|
|
uint64 ByteReader::ReadInitialLength(const char* start, size_t* len) {
|
|
const uint64 initial_length = ReadFourBytes(start);
|
|
start += 4;
|
|
|
|
// In DWARF2/3, if the initial length is all 1 bits, then the offset
|
|
// size is 8 and we need to read the next 8 bytes for the real length.
|
|
if (initial_length == 0xffffffff) {
|
|
SetOffsetSize(8);
|
|
*len = 12;
|
|
return ReadOffset(start);
|
|
} else {
|
|
SetOffsetSize(4);
|
|
*len = 4;
|
|
}
|
|
return initial_length;
|
|
}
|
|
|
|
bool ByteReader::ValidEncoding(DwarfPointerEncoding encoding) const {
|
|
if (encoding == DW_EH_PE_omit) return true;
|
|
if (encoding == DW_EH_PE_aligned) return true;
|
|
if ((encoding & 0x7) > DW_EH_PE_udata8) return false;
|
|
if ((encoding & 0x70) > DW_EH_PE_funcrel) return false;
|
|
return true;
|
|
}
|
|
|
|
bool ByteReader::UsableEncoding(DwarfPointerEncoding encoding) const {
|
|
switch (encoding & 0x70) {
|
|
case DW_EH_PE_absptr:
|
|
return true;
|
|
case DW_EH_PE_pcrel:
|
|
return have_section_base_;
|
|
case DW_EH_PE_textrel:
|
|
return have_text_base_;
|
|
case DW_EH_PE_datarel:
|
|
return have_data_base_;
|
|
case DW_EH_PE_funcrel:
|
|
return have_function_base_;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
uint64 ByteReader::ReadEncodedPointer(const char* buffer,
|
|
DwarfPointerEncoding encoding,
|
|
size_t* len) const {
|
|
// UsableEncoding doesn't approve of DW_EH_PE_omit, so we shouldn't
|
|
// see it here.
|
|
MOZ_ASSERT(encoding != DW_EH_PE_omit);
|
|
|
|
// The Linux Standards Base 4.0 does not make this clear, but the
|
|
// GNU tools (gcc/unwind-pe.h; readelf/dwarf.c; gdb/dwarf2-frame.c)
|
|
// agree that aligned pointers are always absolute, machine-sized,
|
|
// machine-signed pointers.
|
|
if (encoding == DW_EH_PE_aligned) {
|
|
MOZ_ASSERT(have_section_base_);
|
|
|
|
// We don't need to align BUFFER in *our* address space. Rather, we
|
|
// need to find the next position in our buffer that would be aligned
|
|
// when the .eh_frame section the buffer contains is loaded into the
|
|
// program's memory. So align assuming that buffer_base_ gets loaded at
|
|
// address section_base_, where section_base_ itself may or may not be
|
|
// aligned.
|
|
|
|
// First, find the offset to START from the closest prior aligned
|
|
// address.
|
|
uint64 skew = section_base_ & (AddressSize() - 1);
|
|
// Now find the offset from that aligned address to buffer.
|
|
uint64 offset = skew + (buffer - buffer_base_);
|
|
// Round up to the next boundary.
|
|
uint64 aligned = (offset + AddressSize() - 1) & -AddressSize();
|
|
// Convert back to a pointer.
|
|
const char* aligned_buffer = buffer_base_ + (aligned - skew);
|
|
// Finally, store the length and actually fetch the pointer.
|
|
*len = aligned_buffer - buffer + AddressSize();
|
|
return ReadAddress(aligned_buffer);
|
|
}
|
|
|
|
// Extract the value first, ignoring whether it's a pointer or an
|
|
// offset relative to some base.
|
|
uint64 offset;
|
|
switch (encoding & 0x0f) {
|
|
case DW_EH_PE_absptr:
|
|
// DW_EH_PE_absptr is weird, as it is used as a meaningful value for
|
|
// both the high and low nybble of encoding bytes. When it appears in
|
|
// the high nybble, it means that the pointer is absolute, not an
|
|
// offset from some base address. When it appears in the low nybble,
|
|
// as here, it means that the pointer is stored as a normal
|
|
// machine-sized and machine-signed address. A low nybble of
|
|
// DW_EH_PE_absptr does not imply that the pointer is absolute; it is
|
|
// correct for us to treat the value as an offset from a base address
|
|
// if the upper nybble is not DW_EH_PE_absptr.
|
|
offset = ReadAddress(buffer);
|
|
*len = AddressSize();
|
|
break;
|
|
|
|
case DW_EH_PE_uleb128:
|
|
offset = ReadUnsignedLEB128(buffer, len);
|
|
break;
|
|
|
|
case DW_EH_PE_udata2:
|
|
offset = ReadTwoBytes(buffer);
|
|
*len = 2;
|
|
break;
|
|
|
|
case DW_EH_PE_udata4:
|
|
offset = ReadFourBytes(buffer);
|
|
*len = 4;
|
|
break;
|
|
|
|
case DW_EH_PE_udata8:
|
|
offset = ReadEightBytes(buffer);
|
|
*len = 8;
|
|
break;
|
|
|
|
case DW_EH_PE_sleb128:
|
|
offset = ReadSignedLEB128(buffer, len);
|
|
break;
|
|
|
|
case DW_EH_PE_sdata2:
|
|
offset = ReadTwoBytes(buffer);
|
|
// Sign-extend from 16 bits.
|
|
offset = (offset ^ 0x8000) - 0x8000;
|
|
*len = 2;
|
|
break;
|
|
|
|
case DW_EH_PE_sdata4:
|
|
offset = ReadFourBytes(buffer);
|
|
// Sign-extend from 32 bits.
|
|
offset = (offset ^ 0x80000000ULL) - 0x80000000ULL;
|
|
*len = 4;
|
|
break;
|
|
|
|
case DW_EH_PE_sdata8:
|
|
// No need to sign-extend; this is the full width of our type.
|
|
offset = ReadEightBytes(buffer);
|
|
*len = 8;
|
|
break;
|
|
|
|
default:
|
|
abort();
|
|
}
|
|
|
|
// Find the appropriate base address.
|
|
uint64 base;
|
|
switch (encoding & 0x70) {
|
|
case DW_EH_PE_absptr:
|
|
base = 0;
|
|
break;
|
|
|
|
case DW_EH_PE_pcrel:
|
|
MOZ_ASSERT(have_section_base_);
|
|
base = section_base_ + (buffer - buffer_base_);
|
|
break;
|
|
|
|
case DW_EH_PE_textrel:
|
|
MOZ_ASSERT(have_text_base_);
|
|
base = text_base_;
|
|
break;
|
|
|
|
case DW_EH_PE_datarel:
|
|
MOZ_ASSERT(have_data_base_);
|
|
base = data_base_;
|
|
break;
|
|
|
|
case DW_EH_PE_funcrel:
|
|
MOZ_ASSERT(have_function_base_);
|
|
base = function_base_;
|
|
break;
|
|
|
|
default:
|
|
abort();
|
|
}
|
|
|
|
uint64 pointer = base + offset;
|
|
|
|
// Remove inappropriate upper bits.
|
|
if (AddressSize() == 4)
|
|
pointer = pointer & 0xffffffff;
|
|
else
|
|
MOZ_ASSERT(AddressSize() == sizeof(uint64));
|
|
|
|
return pointer;
|
|
}
|
|
|
|
// A DWARF rule for recovering the address or value of a register, or
|
|
// computing the canonical frame address. This is an 8-way sum-of-products
|
|
// type. Excluding the INVALID variant, there is one subclass of this for
|
|
// each '*Rule' member function in CallFrameInfo::Handler.
|
|
//
|
|
// This could logically be nested within State, but then the qualified names
|
|
// get horrendous.
|
|
|
|
class CallFrameInfo::Rule final {
|
|
public:
|
|
enum Tag {
|
|
INVALID,
|
|
Undefined,
|
|
SameValue,
|
|
Offset,
|
|
ValOffset,
|
|
Register,
|
|
Expression,
|
|
ValExpression
|
|
};
|
|
|
|
private:
|
|
// tag_ (below) indicates the form of the expression. There are 7 forms
|
|
// plus INVALID. All non-INVALID expressions denote a machine-word-sized
|
|
// value at unwind time. The description below assumes the presence of, at
|
|
// unwind time:
|
|
//
|
|
// * a function R, which takes a Dwarf register number and returns its value
|
|
// in the callee frame (the one we are unwinding out of).
|
|
//
|
|
// * a function EvalDwarfExpr, which evaluates a Dwarf expression.
|
|
//
|
|
// Register numbers are encoded using the target ABI's Dwarf
|
|
// register-numbering conventions. Except where otherwise noted, a register
|
|
// value may also be the special value CallFrameInfo::Handler::kCFARegister
|
|
// ("the CFA").
|
|
//
|
|
// The expression forms are represented using tag_, word1_ and word2_. The
|
|
// forms and denoted values are as follows:
|
|
//
|
|
// * INVALID: not a valid expression.
|
|
// valid fields: (none)
|
|
// denotes: no value
|
|
//
|
|
// * Undefined: denotes no value. This is used for a register whose value
|
|
// cannot be recovered.
|
|
// valid fields: (none)
|
|
// denotes: no value
|
|
//
|
|
// * SameValue: the register's value is the same as in the callee.
|
|
// valid fields: (none)
|
|
// denotes: R(the register that this Rule is associated with,
|
|
// not stored here)
|
|
//
|
|
// * Offset: the register's value is in memory at word2_ bytes away from
|
|
// Dwarf register number word1_. word2_ is interpreted as a *signed*
|
|
// offset.
|
|
// valid fields: word1_=DwarfReg, word2=Offset
|
|
// denotes: *(R(word1_) + word2_)
|
|
//
|
|
// * ValOffset: same as Offset, without the dereference.
|
|
// valid fields: word1_=DwarfReg, word2=Offset
|
|
// denotes: R(word1_) + word2_
|
|
//
|
|
// * Register: the register's value is in some other register,
|
|
// which may not be the CFA.
|
|
// valid fields: word1_=DwarfReg
|
|
// denotes: R(word1_)
|
|
//
|
|
// * Expression: the register's value is in memory at a location that can be
|
|
// computed from the Dwarf expression contained in the word2_ bytes
|
|
// starting at word1_. Note these locations are into the area of the .so
|
|
// temporarily mmaped info for debuginfo reading and have no validity once
|
|
// debuginfo reading has finished.
|
|
// valid fields: ExprStart=word1_, ExprLen=word2_
|
|
// denotes: *(EvalDwarfExpr(word1_, word2_))
|
|
//
|
|
// * ValExpression: same as Expression, without the dereference.
|
|
// valid fields: ExprStart=word1_, ExprLen=word2_
|
|
// denotes: EvalDwarfExpr(word1_, word2_)
|
|
//
|
|
|
|
// 3 words (or less) for representation. Unused word1_/word2_ fields must
|
|
// be set to zero.
|
|
Tag tag_;
|
|
uintptr_t word1_;
|
|
uintptr_t word2_;
|
|
|
|
// To ensure that word1_ can hold a pointer to an expression string.
|
|
static_assert(sizeof(const char*) <= sizeof(word1_));
|
|
// To ensure that word2_ can hold any string length or memory offset.
|
|
static_assert(sizeof(size_t) <= sizeof(word2_));
|
|
|
|
// This class denotes an 8-way sum-of-product type, and accessing invalid
|
|
// fields is meaningless. The accessors and constructors below enforce
|
|
// that.
|
|
bool isCanonical() const {
|
|
switch (tag_) {
|
|
case Tag::INVALID:
|
|
case Tag::Undefined:
|
|
case Tag::SameValue:
|
|
return word1_ == 0 && word2_ == 0;
|
|
case Tag::Offset:
|
|
case Tag::ValOffset:
|
|
return true;
|
|
case Tag::Register:
|
|
return word2_ == 0;
|
|
case Tag::Expression:
|
|
case Tag::ValExpression:
|
|
return true;
|
|
default:
|
|
MOZ_CRASH();
|
|
}
|
|
}
|
|
|
|
public:
|
|
Tag tag() const { return tag_; }
|
|
int dwreg() const {
|
|
switch (tag_) {
|
|
case Tag::Offset:
|
|
case Tag::ValOffset:
|
|
case Tag::Register:
|
|
return (int)word1_;
|
|
default:
|
|
MOZ_CRASH();
|
|
}
|
|
}
|
|
intptr_t offset() const {
|
|
switch (tag_) {
|
|
case Tag::Offset:
|
|
case Tag::ValOffset:
|
|
return (intptr_t)word2_;
|
|
default:
|
|
MOZ_CRASH();
|
|
}
|
|
}
|
|
ImageSlice expr() const {
|
|
switch (tag_) {
|
|
case Tag::Expression:
|
|
case Tag::ValExpression:
|
|
return ImageSlice((const char*)word1_, (size_t)word2_);
|
|
default:
|
|
MOZ_CRASH();
|
|
}
|
|
}
|
|
|
|
// Constructor-y stuff
|
|
Rule() {
|
|
tag_ = Tag::INVALID;
|
|
word1_ = 0;
|
|
word2_ = 0;
|
|
}
|
|
|
|
static Rule mkINVALID() {
|
|
Rule r; // is initialised by Rule()
|
|
return r;
|
|
}
|
|
static Rule mkUndefinedRule() {
|
|
Rule r;
|
|
r.tag_ = Tag::Undefined;
|
|
r.word1_ = 0;
|
|
r.word2_ = 0;
|
|
return r;
|
|
}
|
|
static Rule mkSameValueRule() {
|
|
Rule r;
|
|
r.tag_ = Tag::SameValue;
|
|
r.word1_ = 0;
|
|
r.word2_ = 0;
|
|
return r;
|
|
}
|
|
static Rule mkOffsetRule(int dwreg, intptr_t offset) {
|
|
Rule r;
|
|
r.tag_ = Tag::Offset;
|
|
r.word1_ = (uintptr_t)dwreg;
|
|
r.word2_ = (uintptr_t)offset;
|
|
return r;
|
|
}
|
|
static Rule mkValOffsetRule(int dwreg, intptr_t offset) {
|
|
Rule r;
|
|
r.tag_ = Tag::ValOffset;
|
|
r.word1_ = (uintptr_t)dwreg;
|
|
r.word2_ = (uintptr_t)offset;
|
|
return r;
|
|
}
|
|
static Rule mkRegisterRule(int dwreg) {
|
|
Rule r;
|
|
r.tag_ = Tag::Register;
|
|
r.word1_ = (uintptr_t)dwreg;
|
|
r.word2_ = 0;
|
|
return r;
|
|
}
|
|
static Rule mkExpressionRule(ImageSlice expr) {
|
|
Rule r;
|
|
r.tag_ = Tag::Expression;
|
|
r.word1_ = (uintptr_t)expr.start_;
|
|
r.word2_ = (uintptr_t)expr.length_;
|
|
return r;
|
|
}
|
|
static Rule mkValExpressionRule(ImageSlice expr) {
|
|
Rule r;
|
|
r.tag_ = Tag::ValExpression;
|
|
r.word1_ = (uintptr_t)expr.start_;
|
|
r.word2_ = (uintptr_t)expr.length_;
|
|
return r;
|
|
}
|
|
|
|
// Misc
|
|
inline bool isVALID() const { return tag_ != Tag::INVALID; }
|
|
|
|
bool operator==(const Rule& rhs) const {
|
|
MOZ_ASSERT(isVALID() && rhs.isVALID());
|
|
MOZ_ASSERT(isCanonical());
|
|
MOZ_ASSERT(rhs.isCanonical());
|
|
if (tag_ != rhs.tag_) {
|
|
return false;
|
|
}
|
|
switch (tag_) {
|
|
case Tag::INVALID:
|
|
MOZ_CRASH();
|
|
case Tag::Undefined:
|
|
case Tag::SameValue:
|
|
return true;
|
|
case Tag::Offset:
|
|
case Tag::ValOffset:
|
|
return word1_ == rhs.word1_ && word2_ == rhs.word2_;
|
|
case Tag::Register:
|
|
return word1_ == rhs.word1_;
|
|
case Tag::Expression:
|
|
case Tag::ValExpression:
|
|
return expr() == rhs.expr();
|
|
default:
|
|
MOZ_CRASH();
|
|
}
|
|
}
|
|
|
|
bool operator!=(const Rule& rhs) const { return !(*this == rhs); }
|
|
|
|
// Tell HANDLER that, at ADDRESS in the program, REG can be
|
|
// recovered using this rule. If REG is kCFARegister, then this rule
|
|
// describes how to compute the canonical frame address. Return what the
|
|
// HANDLER member function returned.
|
|
bool Handle(Handler* handler, uint64 address, int reg) const {
|
|
MOZ_ASSERT(isVALID());
|
|
MOZ_ASSERT(isCanonical());
|
|
switch (tag_) {
|
|
case Tag::Undefined:
|
|
return handler->UndefinedRule(address, reg);
|
|
case Tag::SameValue:
|
|
return handler->SameValueRule(address, reg);
|
|
case Tag::Offset:
|
|
return handler->OffsetRule(address, reg, word1_, word2_);
|
|
case Tag::ValOffset:
|
|
return handler->ValOffsetRule(address, reg, word1_, word2_);
|
|
case Tag::Register:
|
|
return handler->RegisterRule(address, reg, word1_);
|
|
case Tag::Expression:
|
|
return handler->ExpressionRule(
|
|
address, reg, ImageSlice((const char*)word1_, (size_t)word2_));
|
|
case Tag::ValExpression:
|
|
return handler->ValExpressionRule(
|
|
address, reg, ImageSlice((const char*)word1_, (size_t)word2_));
|
|
default:
|
|
MOZ_CRASH();
|
|
}
|
|
}
|
|
|
|
void SetBaseRegister(unsigned reg) {
|
|
MOZ_ASSERT(isVALID());
|
|
MOZ_ASSERT(isCanonical());
|
|
switch (tag_) {
|
|
case Tag::ValOffset:
|
|
word1_ = reg;
|
|
break;
|
|
case Tag::Offset:
|
|
// We don't actually need SetBaseRegister or SetOffset here, since they
|
|
// are only ever applied to CFA rules, for DW_CFA_def_cfa_offset, and it
|
|
// doesn't make sense to use OffsetRule for computing the CFA: it
|
|
// computes the address at which a register is saved, not a value.
|
|
// (fallthrough)
|
|
case Tag::Undefined:
|
|
case Tag::SameValue:
|
|
case Tag::Register:
|
|
case Tag::Expression:
|
|
case Tag::ValExpression:
|
|
// Do nothing
|
|
break;
|
|
default:
|
|
MOZ_CRASH();
|
|
}
|
|
}
|
|
|
|
void SetOffset(long long offset) {
|
|
MOZ_ASSERT(isVALID());
|
|
MOZ_ASSERT(isCanonical());
|
|
switch (tag_) {
|
|
case Tag::ValOffset:
|
|
word2_ = offset;
|
|
break;
|
|
case Tag::Offset:
|
|
// Same comment as in SetBaseRegister applies
|
|
// (fallthrough)
|
|
case Tag::Undefined:
|
|
case Tag::SameValue:
|
|
case Tag::Register:
|
|
case Tag::Expression:
|
|
case Tag::ValExpression:
|
|
// Do nothing
|
|
break;
|
|
default:
|
|
MOZ_CRASH();
|
|
}
|
|
}
|
|
|
|
// For debugging only
|
|
string show() const {
|
|
char buf[100];
|
|
string s = "";
|
|
switch (tag_) {
|
|
case Tag::INVALID:
|
|
s = "INVALID";
|
|
break;
|
|
case Tag::Undefined:
|
|
s = "Undefined";
|
|
break;
|
|
case Tag::SameValue:
|
|
s = "SameValue";
|
|
break;
|
|
case Tag::Offset:
|
|
s = "Offset{..}";
|
|
break;
|
|
case Tag::ValOffset:
|
|
sprintf(buf, "ValOffset{reg=%d offs=%lld}", (int)word1_,
|
|
(long long int)word2_);
|
|
s = string(buf);
|
|
break;
|
|
case Tag::Register:
|
|
s = "Register{..}";
|
|
break;
|
|
case Tag::Expression:
|
|
s = "Expression{..}";
|
|
break;
|
|
case Tag::ValExpression:
|
|
s = "ValExpression{..}";
|
|
break;
|
|
default:
|
|
MOZ_CRASH();
|
|
}
|
|
return s;
|
|
}
|
|
};
|
|
|
|
// `RuleMapLowLevel` is a simple class that maps from `int` (register numbers)
|
|
// to `Rule`. This is implemented as a vector of `<int, Rule>` pairs, with a
|
|
// 12-element inline capacity. From a big-O perspective this is obviously a
|
|
// terrible way to implement an associative map. This workload is however
|
|
// quite special in that the maximum number of elements is normally 7 (on
|
|
// x86_64-linux), and so this implementation is much faster than one based on
|
|
// std::map with its attendant R-B-tree node allocation and balancing
|
|
// overheads.
|
|
//
|
|
// An iterator that enumerates the mapping in increasing order of the `int`
|
|
// keys is provided. This ordered iteration facility is required by
|
|
// CallFrameInfo::RuleMap::HandleTransitionTo, which needs to iterate through
|
|
// two such maps simultaneously and in-order so as to compare them.
|
|
|
|
// All `Rule`s in the map must satisfy `isVALID()`. That conveniently means
|
|
// that `Rule::mkINVALID()` can be used to indicate "not found` in `get()`.
|
|
|
|
class CallFrameInfo::RuleMapLowLevel {
|
|
using Entry = pair<int, Rule>;
|
|
|
|
// The inline capacity of 12 is carefully chosen. It would be wise to make
|
|
// careful measurements of time, instruction count, allocation count and
|
|
// allocated bytes before changing it. For x86_64-linux, a value of 8 is
|
|
// marginally better; using 12 increases the total heap bytes allocated by
|
|
// around 20%. For arm64-linux, a value of 24 is better; using 12 increases
|
|
// the total blocks allocated by around 20%. But it's a not bad tradeoff
|
|
// for both targets, and in any case is vastly superior to the previous
|
|
// scheme of using `std::map`.
|
|
mozilla::Vector<Entry, 12> entries_;
|
|
|
|
public:
|
|
void clear() { entries_.clear(); }
|
|
|
|
RuleMapLowLevel() { clear(); }
|
|
|
|
RuleMapLowLevel& operator=(const RuleMapLowLevel& rhs) {
|
|
entries_.clear();
|
|
for (size_t i = 0; i < rhs.entries_.length(); i++) {
|
|
bool ok = entries_.append(rhs.entries_[i]);
|
|
MOZ_RELEASE_ASSERT(ok);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
void set(int reg, Rule rule) {
|
|
MOZ_ASSERT(rule.isVALID());
|
|
// Find the place where it should go, if any
|
|
size_t i = 0;
|
|
size_t nEnt = entries_.length();
|
|
while (i < nEnt && entries_[i].first < reg) {
|
|
i++;
|
|
}
|
|
if (i == nEnt) {
|
|
// No entry exists, and all the existing ones are for lower register
|
|
// numbers. So just add it at the end.
|
|
bool ok = entries_.append(Entry(reg, rule));
|
|
MOZ_RELEASE_ASSERT(ok);
|
|
} else {
|
|
// It needs to live at location `i`, and ..
|
|
MOZ_ASSERT(i < nEnt);
|
|
if (entries_[i].first == reg) {
|
|
// .. there's already an old entry, so just update it.
|
|
entries_[i].second = rule;
|
|
} else {
|
|
// .. there's no previous entry, so shift `i` and all those following
|
|
// it one place to the right, and put the new entry at `i`. Doing it
|
|
// manually is measurably cheaper than using `Vector::insert`.
|
|
MOZ_ASSERT(entries_[i].first > reg);
|
|
bool ok = entries_.append(Entry(999999, Rule::mkINVALID()));
|
|
MOZ_RELEASE_ASSERT(ok);
|
|
for (size_t j = nEnt; j >= i + 1; j--) {
|
|
entries_[j] = entries_[j - 1];
|
|
}
|
|
entries_[i] = Entry(reg, rule);
|
|
}
|
|
}
|
|
// Check in-order-ness and validity.
|
|
for (size_t i = 0; i < entries_.length(); i++) {
|
|
MOZ_ASSERT(entries_[i].second.isVALID());
|
|
MOZ_ASSERT_IF(i > 0, entries_[i - 1].first < entries_[i].first);
|
|
}
|
|
MOZ_ASSERT(get(reg).isVALID());
|
|
}
|
|
|
|
// Find the entry for `reg`, or return `Rule::mkINVALID()` if not found.
|
|
Rule get(int reg) const {
|
|
size_t nEnt = entries_.length();
|
|
// "early exit" in the case where `entries_[i].first > reg` was tested on
|
|
// x86_64 and found to be slightly slower than just testing all entries,
|
|
// presumably because the reduced amount of searching was not offset by
|
|
// the cost of an extra test per iteration.
|
|
for (size_t i = 0; i < nEnt; i++) {
|
|
if (entries_[i].first == reg) {
|
|
CallFrameInfo::Rule ret = entries_[i].second;
|
|
MOZ_ASSERT(ret.isVALID());
|
|
return ret;
|
|
}
|
|
}
|
|
return CallFrameInfo::Rule::mkINVALID();
|
|
}
|
|
|
|
// A very simple in-order iteration facility.
|
|
class Iter {
|
|
const RuleMapLowLevel* rmll_;
|
|
size_t nextIx_;
|
|
|
|
public:
|
|
explicit Iter(const RuleMapLowLevel* rmll) : rmll_(rmll), nextIx_(0) {}
|
|
bool avail() const { return nextIx_ < rmll_->entries_.length(); }
|
|
bool finished() const { return !avail(); }
|
|
// Move the iterator to the next entry.
|
|
void step() {
|
|
MOZ_RELEASE_ASSERT(nextIx_ < rmll_->entries_.length());
|
|
nextIx_++;
|
|
}
|
|
// Get the value at the current iteration point, but don't advance to the
|
|
// next entry.
|
|
pair<int, Rule> peek() {
|
|
MOZ_RELEASE_ASSERT(nextIx_ < rmll_->entries_.length());
|
|
return rmll_->entries_[nextIx_];
|
|
}
|
|
};
|
|
};
|
|
|
|
// A map from register numbers to rules. This is a wrapper around
|
|
// `RuleMapLowLevel`, with added logic for dealing with the "special" CFA
|
|
// rule, and with `HandleTransitionTo`, which effectively computes the
|
|
// difference between two `RuleMaps`.
|
|
|
|
class CallFrameInfo::RuleMap {
|
|
public:
|
|
RuleMap() : cfa_rule_(Rule::mkINVALID()) {}
|
|
RuleMap(const RuleMap& rhs) : cfa_rule_(Rule::mkINVALID()) { *this = rhs; }
|
|
~RuleMap() { Clear(); }
|
|
|
|
RuleMap& operator=(const RuleMap& rhs);
|
|
|
|
// Set the rule for computing the CFA to RULE.
|
|
void SetCFARule(Rule rule) { cfa_rule_ = rule; }
|
|
|
|
// Return the current CFA rule. Be careful not to modify it -- it's returned
|
|
// by value. If you want to modify the CFA rule, use CFARuleRef() instead.
|
|
// We use these two for DW_CFA_def_cfa_offset and DW_CFA_def_cfa_register,
|
|
// and for detecting references to the CFA before a rule for it has been
|
|
// established.
|
|
Rule CFARule() const { return cfa_rule_; }
|
|
Rule* CFARuleRef() { return &cfa_rule_; }
|
|
|
|
// Return the rule for REG, or the INVALID rule if there is none.
|
|
Rule RegisterRule(int reg) const;
|
|
|
|
// Set the rule for computing REG to RULE.
|
|
void SetRegisterRule(int reg, Rule rule);
|
|
|
|
// Make all the appropriate calls to HANDLER as if we were changing from
|
|
// this RuleMap to NEW_RULES at ADDRESS. We use this to implement
|
|
// DW_CFA_restore_state, where lots of rules can change simultaneously.
|
|
// Return true if all handlers returned true; otherwise, return false.
|
|
bool HandleTransitionTo(Handler* handler, uint64 address,
|
|
const RuleMap& new_rules) const;
|
|
|
|
private:
|
|
// Remove all register rules and clear cfa_rule_.
|
|
void Clear();
|
|
|
|
// The rule for computing the canonical frame address.
|
|
Rule cfa_rule_;
|
|
|
|
// A map from register numbers to postfix expressions to recover
|
|
// their values.
|
|
RuleMapLowLevel registers_;
|
|
};
|
|
|
|
CallFrameInfo::RuleMap& CallFrameInfo::RuleMap::operator=(const RuleMap& rhs) {
|
|
Clear();
|
|
if (rhs.cfa_rule_.isVALID()) cfa_rule_ = rhs.cfa_rule_;
|
|
registers_ = rhs.registers_;
|
|
return *this;
|
|
}
|
|
|
|
CallFrameInfo::Rule CallFrameInfo::RuleMap::RegisterRule(int reg) const {
|
|
MOZ_ASSERT(reg != Handler::kCFARegister);
|
|
return registers_.get(reg);
|
|
}
|
|
|
|
void CallFrameInfo::RuleMap::SetRegisterRule(int reg, Rule rule) {
|
|
MOZ_ASSERT(reg != Handler::kCFARegister);
|
|
MOZ_ASSERT(rule.isVALID());
|
|
registers_.set(reg, rule);
|
|
}
|
|
|
|
bool CallFrameInfo::RuleMap::HandleTransitionTo(
|
|
Handler* handler, uint64 address, const RuleMap& new_rules) const {
|
|
// Transition from cfa_rule_ to new_rules.cfa_rule_.
|
|
if (cfa_rule_.isVALID() && new_rules.cfa_rule_.isVALID()) {
|
|
if (cfa_rule_ != new_rules.cfa_rule_ &&
|
|
!new_rules.cfa_rule_.Handle(handler, address, Handler::kCFARegister)) {
|
|
return false;
|
|
}
|
|
} else if (cfa_rule_.isVALID()) {
|
|
// this RuleMap has a CFA rule but new_rules doesn't.
|
|
// CallFrameInfo::Handler has no way to handle this --- and shouldn't;
|
|
// it's garbage input. The instruction interpreter should have
|
|
// detected this and warned, so take no action here.
|
|
} else if (new_rules.cfa_rule_.isVALID()) {
|
|
// This shouldn't be possible: NEW_RULES is some prior state, and
|
|
// there's no way to remove entries.
|
|
MOZ_ASSERT(0);
|
|
} else {
|
|
// Both CFA rules are empty. No action needed.
|
|
}
|
|
|
|
// Traverse the two maps in order by register number, and report
|
|
// whatever differences we find.
|
|
RuleMapLowLevel::Iter old_it(®isters_);
|
|
RuleMapLowLevel::Iter new_it(&new_rules.registers_);
|
|
while (!old_it.finished() && !new_it.finished()) {
|
|
pair<int, Rule> old_pair = old_it.peek();
|
|
pair<int, Rule> new_pair = new_it.peek();
|
|
if (old_pair.first < new_pair.first) {
|
|
// This RuleMap has an entry for old.first, but NEW_RULES doesn't.
|
|
//
|
|
// This isn't really the right thing to do, but since CFI generally
|
|
// only mentions callee-saves registers, and GCC's convention for
|
|
// callee-saves registers is that they are unchanged, it's a good
|
|
// approximation.
|
|
if (!handler->SameValueRule(address, old_pair.first)) {
|
|
return false;
|
|
}
|
|
old_it.step();
|
|
} else if (old_pair.first > new_pair.first) {
|
|
// NEW_RULES has an entry for new_pair.first, but this RuleMap
|
|
// doesn't. This shouldn't be possible: NEW_RULES is some prior
|
|
// state, and there's no way to remove entries.
|
|
MOZ_ASSERT(0);
|
|
} else {
|
|
// Both maps have an entry for this register. Report the new
|
|
// rule if it is different.
|
|
if (old_pair.second != new_pair.second &&
|
|
!new_pair.second.Handle(handler, address, new_pair.first)) {
|
|
return false;
|
|
}
|
|
new_it.step();
|
|
old_it.step();
|
|
}
|
|
}
|
|
// Finish off entries from this RuleMap with no counterparts in new_rules.
|
|
while (!old_it.finished()) {
|
|
pair<int, Rule> old_pair = old_it.peek();
|
|
if (!handler->SameValueRule(address, old_pair.first)) return false;
|
|
old_it.step();
|
|
}
|
|
// Since we only make transitions from a rule set to some previously
|
|
// saved rule set, and we can only add rules to the map, NEW_RULES
|
|
// must have fewer rules than *this.
|
|
MOZ_ASSERT(new_it.finished());
|
|
|
|
return true;
|
|
}
|
|
|
|
// Remove all register rules and clear cfa_rule_.
|
|
void CallFrameInfo::RuleMap::Clear() {
|
|
cfa_rule_ = Rule::mkINVALID();
|
|
registers_.clear();
|
|
}
|
|
|
|
// The state of the call frame information interpreter as it processes
|
|
// instructions from a CIE and FDE.
|
|
class CallFrameInfo::State {
|
|
public:
|
|
// Create a call frame information interpreter state with the given
|
|
// reporter, reader, handler, and initial call frame info address.
|
|
State(ByteReader* reader, Handler* handler, Reporter* reporter,
|
|
uint64 address)
|
|
: reader_(reader),
|
|
handler_(handler),
|
|
reporter_(reporter),
|
|
address_(address),
|
|
entry_(NULL),
|
|
cursor_(NULL),
|
|
saved_rules_(NULL) {}
|
|
|
|
~State() {
|
|
if (saved_rules_) delete saved_rules_;
|
|
}
|
|
|
|
// Interpret instructions from CIE, save the resulting rule set for
|
|
// DW_CFA_restore instructions, and return true. On error, report
|
|
// the problem to reporter_ and return false.
|
|
bool InterpretCIE(const CIE& cie);
|
|
|
|
// Interpret instructions from FDE, and return true. On error,
|
|
// report the problem to reporter_ and return false.
|
|
bool InterpretFDE(const FDE& fde);
|
|
|
|
private:
|
|
// The operands of a CFI instruction, for ParseOperands.
|
|
struct Operands {
|
|
unsigned register_number; // A register number.
|
|
uint64 offset; // An offset or address.
|
|
long signed_offset; // A signed offset.
|
|
ImageSlice expression; // A DWARF expression.
|
|
};
|
|
|
|
// Parse CFI instruction operands from STATE's instruction stream as
|
|
// described by FORMAT. On success, populate OPERANDS with the
|
|
// results, and return true. On failure, report the problem and
|
|
// return false.
|
|
//
|
|
// Each character of FORMAT should be one of the following:
|
|
//
|
|
// 'r' unsigned LEB128 register number (OPERANDS->register_number)
|
|
// 'o' unsigned LEB128 offset (OPERANDS->offset)
|
|
// 's' signed LEB128 offset (OPERANDS->signed_offset)
|
|
// 'a' machine-size address (OPERANDS->offset)
|
|
// (If the CIE has a 'z' augmentation string, 'a' uses the
|
|
// encoding specified by the 'R' argument.)
|
|
// '1' a one-byte offset (OPERANDS->offset)
|
|
// '2' a two-byte offset (OPERANDS->offset)
|
|
// '4' a four-byte offset (OPERANDS->offset)
|
|
// '8' an eight-byte offset (OPERANDS->offset)
|
|
// 'e' a DW_FORM_block holding a (OPERANDS->expression)
|
|
// DWARF expression
|
|
bool ParseOperands(const char* format, Operands* operands);
|
|
|
|
// Interpret one CFI instruction from STATE's instruction stream, update
|
|
// STATE, report any rule changes to handler_, and return true. On
|
|
// failure, report the problem and return false.
|
|
MOZ_ALWAYS_INLINE bool DoInstruction();
|
|
|
|
// Repeatedly call `DoInstruction`, until either:
|
|
// * it returns `false`, which indicates some kind of failure,
|
|
// in which case return `false` from here too, or
|
|
// * we've run out of instructions (that is, `cursor_ >= entry_->end`),
|
|
// in which case return `true`.
|
|
// This is marked as never-inline because it is the only place that
|
|
// `DoInstruction` is called from, and we want to maximise the chances that
|
|
// `DoInstruction` is inlined into this routine.
|
|
MOZ_NEVER_INLINE bool DoInstructions();
|
|
|
|
// The following Do* member functions are subroutines of DoInstruction,
|
|
// factoring out the actual work of operations that have several
|
|
// different encodings.
|
|
|
|
// Set the CFA rule to be the value of BASE_REGISTER plus OFFSET, and
|
|
// return true. On failure, report and return false. (Used for
|
|
// DW_CFA_def_cfa and DW_CFA_def_cfa_sf.)
|
|
bool DoDefCFA(unsigned base_register, long offset);
|
|
|
|
// Change the offset of the CFA rule to OFFSET, and return true. On
|
|
// failure, report and return false. (Subroutine for
|
|
// DW_CFA_def_cfa_offset and DW_CFA_def_cfa_offset_sf.)
|
|
bool DoDefCFAOffset(long offset);
|
|
|
|
// Specify that REG can be recovered using RULE, and return true. On
|
|
// failure, report and return false.
|
|
bool DoRule(unsigned reg, Rule rule);
|
|
|
|
// Specify that REG can be found at OFFSET from the CFA, and return true.
|
|
// On failure, report and return false. (Subroutine for DW_CFA_offset,
|
|
// DW_CFA_offset_extended, and DW_CFA_offset_extended_sf.)
|
|
bool DoOffset(unsigned reg, long offset);
|
|
|
|
// Specify that the caller's value for REG is the CFA plus OFFSET,
|
|
// and return true. On failure, report and return false. (Subroutine
|
|
// for DW_CFA_val_offset and DW_CFA_val_offset_sf.)
|
|
bool DoValOffset(unsigned reg, long offset);
|
|
|
|
// Restore REG to the rule established in the CIE, and return true. On
|
|
// failure, report and return false. (Subroutine for DW_CFA_restore and
|
|
// DW_CFA_restore_extended.)
|
|
bool DoRestore(unsigned reg);
|
|
|
|
// Return the section offset of the instruction at cursor. For use
|
|
// in error messages.
|
|
uint64 CursorOffset() { return entry_->offset + (cursor_ - entry_->start); }
|
|
|
|
// Report that entry_ is incomplete, and return false. For brevity.
|
|
bool ReportIncomplete() {
|
|
reporter_->Incomplete(entry_->offset, entry_->kind);
|
|
return false;
|
|
}
|
|
|
|
// For reading multi-byte values with the appropriate endianness.
|
|
ByteReader* reader_;
|
|
|
|
// The handler to which we should report the data we find.
|
|
Handler* handler_;
|
|
|
|
// For reporting problems in the info we're parsing.
|
|
Reporter* reporter_;
|
|
|
|
// The code address to which the next instruction in the stream applies.
|
|
uint64 address_;
|
|
|
|
// The entry whose instructions we are currently processing. This is
|
|
// first a CIE, and then an FDE.
|
|
const Entry* entry_;
|
|
|
|
// The next instruction to process.
|
|
const char* cursor_;
|
|
|
|
// The current set of rules.
|
|
RuleMap rules_;
|
|
|
|
// The set of rules established by the CIE, used by DW_CFA_restore
|
|
// and DW_CFA_restore_extended. We set this after interpreting the
|
|
// CIE's instructions.
|
|
RuleMap cie_rules_;
|
|
|
|
// A stack of saved states, for DW_CFA_remember_state and
|
|
// DW_CFA_restore_state.
|
|
std::stack<RuleMap>* saved_rules_;
|
|
};
|
|
|
|
bool CallFrameInfo::State::InterpretCIE(const CIE& cie) {
|
|
entry_ = &cie;
|
|
cursor_ = entry_->instructions;
|
|
if (!DoInstructions()) {
|
|
return false;
|
|
}
|
|
// Note the rules established by the CIE, for use by DW_CFA_restore
|
|
// and DW_CFA_restore_extended.
|
|
cie_rules_ = rules_;
|
|
return true;
|
|
}
|
|
|
|
bool CallFrameInfo::State::InterpretFDE(const FDE& fde) {
|
|
entry_ = &fde;
|
|
cursor_ = entry_->instructions;
|
|
return DoInstructions();
|
|
}
|
|
|
|
bool CallFrameInfo::State::ParseOperands(const char* format,
|
|
Operands* operands) {
|
|
size_t len;
|
|
const char* operand;
|
|
|
|
for (operand = format; *operand; operand++) {
|
|
size_t bytes_left = entry_->end - cursor_;
|
|
switch (*operand) {
|
|
case 'r':
|
|
operands->register_number = reader_->ReadUnsignedLEB128(cursor_, &len);
|
|
if (len > bytes_left) return ReportIncomplete();
|
|
cursor_ += len;
|
|
break;
|
|
|
|
case 'o':
|
|
operands->offset = reader_->ReadUnsignedLEB128(cursor_, &len);
|
|
if (len > bytes_left) return ReportIncomplete();
|
|
cursor_ += len;
|
|
break;
|
|
|
|
case 's':
|
|
operands->signed_offset = reader_->ReadSignedLEB128(cursor_, &len);
|
|
if (len > bytes_left) return ReportIncomplete();
|
|
cursor_ += len;
|
|
break;
|
|
|
|
case 'a':
|
|
operands->offset = reader_->ReadEncodedPointer(
|
|
cursor_, entry_->cie->pointer_encoding, &len);
|
|
if (len > bytes_left) return ReportIncomplete();
|
|
cursor_ += len;
|
|
break;
|
|
|
|
case '1':
|
|
if (1 > bytes_left) return ReportIncomplete();
|
|
operands->offset = static_cast<unsigned char>(*cursor_++);
|
|
break;
|
|
|
|
case '2':
|
|
if (2 > bytes_left) return ReportIncomplete();
|
|
operands->offset = reader_->ReadTwoBytes(cursor_);
|
|
cursor_ += 2;
|
|
break;
|
|
|
|
case '4':
|
|
if (4 > bytes_left) return ReportIncomplete();
|
|
operands->offset = reader_->ReadFourBytes(cursor_);
|
|
cursor_ += 4;
|
|
break;
|
|
|
|
case '8':
|
|
if (8 > bytes_left) return ReportIncomplete();
|
|
operands->offset = reader_->ReadEightBytes(cursor_);
|
|
cursor_ += 8;
|
|
break;
|
|
|
|
case 'e': {
|
|
size_t expression_length = reader_->ReadUnsignedLEB128(cursor_, &len);
|
|
if (len > bytes_left || expression_length > bytes_left - len)
|
|
return ReportIncomplete();
|
|
cursor_ += len;
|
|
operands->expression = ImageSlice(cursor_, expression_length);
|
|
cursor_ += expression_length;
|
|
break;
|
|
}
|
|
|
|
default:
|
|
MOZ_ASSERT(0);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
MOZ_ALWAYS_INLINE
|
|
bool CallFrameInfo::State::DoInstruction() {
|
|
CIE* cie = entry_->cie;
|
|
Operands ops;
|
|
|
|
// Our entry's kind should have been set by now.
|
|
MOZ_ASSERT(entry_->kind != kUnknown);
|
|
|
|
// We shouldn't have been invoked unless there were more
|
|
// instructions to parse.
|
|
MOZ_ASSERT(cursor_ < entry_->end);
|
|
|
|
unsigned opcode = *cursor_++;
|
|
if ((opcode & 0xc0) != 0) {
|
|
switch (opcode & 0xc0) {
|
|
// Advance the address.
|
|
case DW_CFA_advance_loc: {
|
|
size_t code_offset = opcode & 0x3f;
|
|
address_ += code_offset * cie->code_alignment_factor;
|
|
break;
|
|
}
|
|
|
|
// Find a register at an offset from the CFA.
|
|
case DW_CFA_offset:
|
|
if (!ParseOperands("o", &ops) ||
|
|
!DoOffset(opcode & 0x3f, ops.offset * cie->data_alignment_factor))
|
|
return false;
|
|
break;
|
|
|
|
// Restore the rule established for a register by the CIE.
|
|
case DW_CFA_restore:
|
|
if (!DoRestore(opcode & 0x3f)) return false;
|
|
break;
|
|
|
|
// The 'if' above should have excluded this possibility.
|
|
default:
|
|
MOZ_ASSERT(0);
|
|
}
|
|
|
|
// Return here, so the big switch below won't be indented.
|
|
return true;
|
|
}
|
|
|
|
switch (opcode) {
|
|
// Set the address.
|
|
case DW_CFA_set_loc:
|
|
if (!ParseOperands("a", &ops)) return false;
|
|
address_ = ops.offset;
|
|
break;
|
|
|
|
// Advance the address.
|
|
case DW_CFA_advance_loc1:
|
|
if (!ParseOperands("1", &ops)) return false;
|
|
address_ += ops.offset * cie->code_alignment_factor;
|
|
break;
|
|
|
|
// Advance the address.
|
|
case DW_CFA_advance_loc2:
|
|
if (!ParseOperands("2", &ops)) return false;
|
|
address_ += ops.offset * cie->code_alignment_factor;
|
|
break;
|
|
|
|
// Advance the address.
|
|
case DW_CFA_advance_loc4:
|
|
if (!ParseOperands("4", &ops)) return false;
|
|
address_ += ops.offset * cie->code_alignment_factor;
|
|
break;
|
|
|
|
// Advance the address.
|
|
case DW_CFA_MIPS_advance_loc8:
|
|
if (!ParseOperands("8", &ops)) return false;
|
|
address_ += ops.offset * cie->code_alignment_factor;
|
|
break;
|
|
|
|
// Compute the CFA by adding an offset to a register.
|
|
case DW_CFA_def_cfa:
|
|
if (!ParseOperands("ro", &ops) ||
|
|
!DoDefCFA(ops.register_number, ops.offset))
|
|
return false;
|
|
break;
|
|
|
|
// Compute the CFA by adding an offset to a register.
|
|
case DW_CFA_def_cfa_sf:
|
|
if (!ParseOperands("rs", &ops) ||
|
|
!DoDefCFA(ops.register_number,
|
|
ops.signed_offset * cie->data_alignment_factor))
|
|
return false;
|
|
break;
|
|
|
|
// Change the base register used to compute the CFA.
|
|
case DW_CFA_def_cfa_register: {
|
|
Rule* cfa_rule = rules_.CFARuleRef();
|
|
if (!cfa_rule->isVALID()) {
|
|
reporter_->NoCFARule(entry_->offset, entry_->kind, CursorOffset());
|
|
return false;
|
|
}
|
|
if (!ParseOperands("r", &ops)) return false;
|
|
cfa_rule->SetBaseRegister(ops.register_number);
|
|
if (!cfa_rule->Handle(handler_, address_, Handler::kCFARegister))
|
|
return false;
|
|
break;
|
|
}
|
|
|
|
// Change the offset used to compute the CFA.
|
|
case DW_CFA_def_cfa_offset:
|
|
if (!ParseOperands("o", &ops) || !DoDefCFAOffset(ops.offset))
|
|
return false;
|
|
break;
|
|
|
|
// Change the offset used to compute the CFA.
|
|
case DW_CFA_def_cfa_offset_sf:
|
|
if (!ParseOperands("s", &ops) ||
|
|
!DoDefCFAOffset(ops.signed_offset * cie->data_alignment_factor))
|
|
return false;
|
|
break;
|
|
|
|
// Specify an expression whose value is the CFA.
|
|
case DW_CFA_def_cfa_expression: {
|
|
if (!ParseOperands("e", &ops)) return false;
|
|
Rule rule = Rule::mkValExpressionRule(ops.expression);
|
|
rules_.SetCFARule(rule);
|
|
if (!rule.Handle(handler_, address_, Handler::kCFARegister)) return false;
|
|
break;
|
|
}
|
|
|
|
// The register's value cannot be recovered.
|
|
case DW_CFA_undefined: {
|
|
if (!ParseOperands("r", &ops) ||
|
|
!DoRule(ops.register_number, Rule::mkUndefinedRule()))
|
|
return false;
|
|
break;
|
|
}
|
|
|
|
// The register's value is unchanged from its value in the caller.
|
|
case DW_CFA_same_value: {
|
|
if (!ParseOperands("r", &ops) ||
|
|
!DoRule(ops.register_number, Rule::mkSameValueRule()))
|
|
return false;
|
|
break;
|
|
}
|
|
|
|
// Find a register at an offset from the CFA.
|
|
case DW_CFA_offset_extended:
|
|
if (!ParseOperands("ro", &ops) ||
|
|
!DoOffset(ops.register_number,
|
|
ops.offset * cie->data_alignment_factor))
|
|
return false;
|
|
break;
|
|
|
|
// The register is saved at an offset from the CFA.
|
|
case DW_CFA_offset_extended_sf:
|
|
if (!ParseOperands("rs", &ops) ||
|
|
!DoOffset(ops.register_number,
|
|
ops.signed_offset * cie->data_alignment_factor))
|
|
return false;
|
|
break;
|
|
|
|
// The register is saved at an offset from the CFA.
|
|
case DW_CFA_GNU_negative_offset_extended:
|
|
if (!ParseOperands("ro", &ops) ||
|
|
!DoOffset(ops.register_number,
|
|
-ops.offset * cie->data_alignment_factor))
|
|
return false;
|
|
break;
|
|
|
|
// The register's value is the sum of the CFA plus an offset.
|
|
case DW_CFA_val_offset:
|
|
if (!ParseOperands("ro", &ops) ||
|
|
!DoValOffset(ops.register_number,
|
|
ops.offset * cie->data_alignment_factor))
|
|
return false;
|
|
break;
|
|
|
|
// The register's value is the sum of the CFA plus an offset.
|
|
case DW_CFA_val_offset_sf:
|
|
if (!ParseOperands("rs", &ops) ||
|
|
!DoValOffset(ops.register_number,
|
|
ops.signed_offset * cie->data_alignment_factor))
|
|
return false;
|
|
break;
|
|
|
|
// The register has been saved in another register.
|
|
case DW_CFA_register: {
|
|
if (!ParseOperands("ro", &ops) ||
|
|
!DoRule(ops.register_number, Rule::mkRegisterRule(ops.offset)))
|
|
return false;
|
|
break;
|
|
}
|
|
|
|
// An expression yields the address at which the register is saved.
|
|
case DW_CFA_expression: {
|
|
if (!ParseOperands("re", &ops) ||
|
|
!DoRule(ops.register_number, Rule::mkExpressionRule(ops.expression)))
|
|
return false;
|
|
break;
|
|
}
|
|
|
|
// An expression yields the caller's value for the register.
|
|
case DW_CFA_val_expression: {
|
|
if (!ParseOperands("re", &ops) ||
|
|
!DoRule(ops.register_number,
|
|
Rule::mkValExpressionRule(ops.expression)))
|
|
return false;
|
|
break;
|
|
}
|
|
|
|
// Restore the rule established for a register by the CIE.
|
|
case DW_CFA_restore_extended:
|
|
if (!ParseOperands("r", &ops) || !DoRestore(ops.register_number))
|
|
return false;
|
|
break;
|
|
|
|
// Save the current set of rules on a stack.
|
|
case DW_CFA_remember_state:
|
|
if (!saved_rules_) {
|
|
saved_rules_ = new std::stack<RuleMap>();
|
|
}
|
|
saved_rules_->push(rules_);
|
|
break;
|
|
|
|
// Pop the current set of rules off the stack.
|
|
case DW_CFA_restore_state: {
|
|
if (!saved_rules_ || saved_rules_->empty()) {
|
|
reporter_->EmptyStateStack(entry_->offset, entry_->kind,
|
|
CursorOffset());
|
|
return false;
|
|
}
|
|
const RuleMap& new_rules = saved_rules_->top();
|
|
if (rules_.CFARule().isVALID() && !new_rules.CFARule().isVALID()) {
|
|
reporter_->ClearingCFARule(entry_->offset, entry_->kind,
|
|
CursorOffset());
|
|
return false;
|
|
}
|
|
rules_.HandleTransitionTo(handler_, address_, new_rules);
|
|
rules_ = new_rules;
|
|
saved_rules_->pop();
|
|
break;
|
|
}
|
|
|
|
// No operation. (Padding instruction.)
|
|
case DW_CFA_nop:
|
|
break;
|
|
|
|
// A SPARC register window save: Registers 8 through 15 (%o0-%o7)
|
|
// are saved in registers 24 through 31 (%i0-%i7), and registers
|
|
// 16 through 31 (%l0-%l7 and %i0-%i7) are saved at CFA offsets
|
|
// (0-15 * the register size). The register numbers must be
|
|
// hard-coded. A GNU extension, and not a pretty one.
|
|
case DW_CFA_GNU_window_save: {
|
|
// Save %o0-%o7 in %i0-%i7.
|
|
for (int i = 8; i < 16; i++)
|
|
if (!DoRule(i, Rule::mkRegisterRule(i + 16))) return false;
|
|
// Save %l0-%l7 and %i0-%i7 at the CFA.
|
|
for (int i = 16; i < 32; i++)
|
|
// Assume that the byte reader's address size is the same as
|
|
// the architecture's register size. !@#%*^ hilarious.
|
|
if (!DoRule(i, Rule::mkOffsetRule(Handler::kCFARegister,
|
|
(i - 16) * reader_->AddressSize())))
|
|
return false;
|
|
break;
|
|
}
|
|
|
|
// I'm not sure what this is. GDB doesn't use it for unwinding.
|
|
case DW_CFA_GNU_args_size:
|
|
if (!ParseOperands("o", &ops)) return false;
|
|
break;
|
|
|
|
// An opcode we don't recognize.
|
|
default: {
|
|
reporter_->BadInstruction(entry_->offset, entry_->kind, CursorOffset());
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// See declaration above for rationale re the no-inline directive.
|
|
MOZ_NEVER_INLINE
|
|
bool CallFrameInfo::State::DoInstructions() {
|
|
while (cursor_ < entry_->end) {
|
|
if (!DoInstruction()) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool CallFrameInfo::State::DoDefCFA(unsigned base_register, long offset) {
|
|
Rule rule = Rule::mkValOffsetRule(base_register, offset);
|
|
rules_.SetCFARule(rule);
|
|
return rule.Handle(handler_, address_, Handler::kCFARegister);
|
|
}
|
|
|
|
bool CallFrameInfo::State::DoDefCFAOffset(long offset) {
|
|
Rule* cfa_rule = rules_.CFARuleRef();
|
|
if (!cfa_rule->isVALID()) {
|
|
reporter_->NoCFARule(entry_->offset, entry_->kind, CursorOffset());
|
|
return false;
|
|
}
|
|
cfa_rule->SetOffset(offset);
|
|
return cfa_rule->Handle(handler_, address_, Handler::kCFARegister);
|
|
}
|
|
|
|
bool CallFrameInfo::State::DoRule(unsigned reg, Rule rule) {
|
|
rules_.SetRegisterRule(reg, rule);
|
|
return rule.Handle(handler_, address_, reg);
|
|
}
|
|
|
|
bool CallFrameInfo::State::DoOffset(unsigned reg, long offset) {
|
|
if (!rules_.CFARule().isVALID()) {
|
|
reporter_->NoCFARule(entry_->offset, entry_->kind, CursorOffset());
|
|
return false;
|
|
}
|
|
Rule rule = Rule::mkOffsetRule(Handler::kCFARegister, offset);
|
|
return DoRule(reg, rule);
|
|
}
|
|
|
|
bool CallFrameInfo::State::DoValOffset(unsigned reg, long offset) {
|
|
if (!rules_.CFARule().isVALID()) {
|
|
reporter_->NoCFARule(entry_->offset, entry_->kind, CursorOffset());
|
|
return false;
|
|
}
|
|
return DoRule(reg, Rule::mkValOffsetRule(Handler::kCFARegister, offset));
|
|
}
|
|
|
|
bool CallFrameInfo::State::DoRestore(unsigned reg) {
|
|
// DW_CFA_restore and DW_CFA_restore_extended don't make sense in a CIE.
|
|
if (entry_->kind == kCIE) {
|
|
reporter_->RestoreInCIE(entry_->offset, CursorOffset());
|
|
return false;
|
|
}
|
|
Rule rule = cie_rules_.RegisterRule(reg);
|
|
if (!rule.isVALID()) {
|
|
// This isn't really the right thing to do, but since CFI generally
|
|
// only mentions callee-saves registers, and GCC's convention for
|
|
// callee-saves registers is that they are unchanged, it's a good
|
|
// approximation.
|
|
rule = Rule::mkSameValueRule();
|
|
}
|
|
return DoRule(reg, rule);
|
|
}
|
|
|
|
bool CallFrameInfo::ReadEntryPrologue(const char* cursor, Entry* entry) {
|
|
const char* buffer_end = buffer_ + buffer_length_;
|
|
|
|
// Initialize enough of ENTRY for use in error reporting.
|
|
entry->offset = cursor - buffer_;
|
|
entry->start = cursor;
|
|
entry->kind = kUnknown;
|
|
entry->end = NULL;
|
|
|
|
// Read the initial length. This sets reader_'s offset size.
|
|
size_t length_size;
|
|
uint64 length = reader_->ReadInitialLength(cursor, &length_size);
|
|
if (length_size > size_t(buffer_end - cursor)) return ReportIncomplete(entry);
|
|
cursor += length_size;
|
|
|
|
// In a .eh_frame section, a length of zero marks the end of the series
|
|
// of entries.
|
|
if (length == 0 && eh_frame_) {
|
|
entry->kind = kTerminator;
|
|
entry->end = cursor;
|
|
return true;
|
|
}
|
|
|
|
// Validate the length.
|
|
if (length > size_t(buffer_end - cursor)) return ReportIncomplete(entry);
|
|
|
|
// The length is the number of bytes after the initial length field;
|
|
// we have that position handy at this point, so compute the end
|
|
// now. (If we're parsing 64-bit-offset DWARF on a 32-bit machine,
|
|
// and the length didn't fit in a size_t, we would have rejected it
|
|
// above.)
|
|
entry->end = cursor + length;
|
|
|
|
// Parse the next field: either the offset of a CIE or a CIE id.
|
|
size_t offset_size = reader_->OffsetSize();
|
|
if (offset_size > size_t(entry->end - cursor)) return ReportIncomplete(entry);
|
|
entry->id = reader_->ReadOffset(cursor);
|
|
|
|
// Don't advance cursor past id field yet; in .eh_frame data we need
|
|
// the id's position to compute the section offset of an FDE's CIE.
|
|
|
|
// Now we can decide what kind of entry this is.
|
|
if (eh_frame_) {
|
|
// In .eh_frame data, an ID of zero marks the entry as a CIE, and
|
|
// anything else is an offset from the id field of the FDE to the start
|
|
// of the CIE.
|
|
if (entry->id == 0) {
|
|
entry->kind = kCIE;
|
|
} else {
|
|
entry->kind = kFDE;
|
|
// Turn the offset from the id into an offset from the buffer's start.
|
|
entry->id = (cursor - buffer_) - entry->id;
|
|
}
|
|
} else {
|
|
// In DWARF CFI data, an ID of ~0 (of the appropriate width, given the
|
|
// offset size for the entry) marks the entry as a CIE, and anything
|
|
// else is the offset of the CIE from the beginning of the section.
|
|
if (offset_size == 4)
|
|
entry->kind = (entry->id == 0xffffffff) ? kCIE : kFDE;
|
|
else {
|
|
MOZ_ASSERT(offset_size == 8);
|
|
entry->kind = (entry->id == 0xffffffffffffffffULL) ? kCIE : kFDE;
|
|
}
|
|
}
|
|
|
|
// Now advance cursor past the id.
|
|
cursor += offset_size;
|
|
|
|
// The fields specific to this kind of entry start here.
|
|
entry->fields = cursor;
|
|
|
|
entry->cie = NULL;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool CallFrameInfo::ReadCIEFields(CIE* cie) {
|
|
const char* cursor = cie->fields;
|
|
size_t len;
|
|
|
|
MOZ_ASSERT(cie->kind == kCIE);
|
|
|
|
// Prepare for early exit.
|
|
cie->version = 0;
|
|
cie->augmentation.clear();
|
|
cie->code_alignment_factor = 0;
|
|
cie->data_alignment_factor = 0;
|
|
cie->return_address_register = 0;
|
|
cie->has_z_augmentation = false;
|
|
cie->pointer_encoding = DW_EH_PE_absptr;
|
|
cie->instructions = 0;
|
|
|
|
// Parse the version number.
|
|
if (cie->end - cursor < 1) return ReportIncomplete(cie);
|
|
cie->version = reader_->ReadOneByte(cursor);
|
|
cursor++;
|
|
|
|
// If we don't recognize the version, we can't parse any more fields of the
|
|
// CIE. For DWARF CFI, we handle versions 1 through 4 (there was never a
|
|
// version 2 of CFI data). For .eh_frame, we handle versions 1 and 4 as well;
|
|
// the difference between those versions seems to be the same as for
|
|
// .debug_frame.
|
|
if (cie->version < 1 || cie->version > 4) {
|
|
reporter_->UnrecognizedVersion(cie->offset, cie->version);
|
|
return false;
|
|
}
|
|
|
|
const char* augmentation_start = cursor;
|
|
const void* augmentation_end =
|
|
memchr(augmentation_start, '\0', cie->end - augmentation_start);
|
|
if (!augmentation_end) return ReportIncomplete(cie);
|
|
cursor = static_cast<const char*>(augmentation_end);
|
|
cie->augmentation = string(augmentation_start, cursor - augmentation_start);
|
|
// Skip the terminating '\0'.
|
|
cursor++;
|
|
|
|
// Is this CFI augmented?
|
|
if (!cie->augmentation.empty()) {
|
|
// Is it an augmentation we recognize?
|
|
if (cie->augmentation[0] == DW_Z_augmentation_start) {
|
|
// Linux C++ ABI 'z' augmentation, used for exception handling data.
|
|
cie->has_z_augmentation = true;
|
|
} else {
|
|
// Not an augmentation we recognize. Augmentations can have arbitrary
|
|
// effects on the form of rest of the content, so we have to give up.
|
|
reporter_->UnrecognizedAugmentation(cie->offset, cie->augmentation);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (cie->version >= 4) {
|
|
// Check that the address_size and segment_size fields are plausible.
|
|
if (cie->end - cursor < 2) {
|
|
return ReportIncomplete(cie);
|
|
}
|
|
uint8_t address_size = reader_->ReadOneByte(cursor);
|
|
cursor++;
|
|
if (address_size != sizeof(void*)) {
|
|
// This is not per-se invalid CFI. But we can reasonably expect to
|
|
// be running on a target of the same word size as the CFI is for,
|
|
// so we reject this case.
|
|
reporter_->InvalidDwarf4Artefact(cie->offset, "Invalid address_size");
|
|
return false;
|
|
}
|
|
uint8_t segment_size = reader_->ReadOneByte(cursor);
|
|
cursor++;
|
|
if (segment_size != 0) {
|
|
// This is also not per-se invalid CFI, but we don't currently handle
|
|
// the case of non-zero |segment_size|.
|
|
reporter_->InvalidDwarf4Artefact(cie->offset, "Invalid segment_size");
|
|
return false;
|
|
}
|
|
// We only continue parsing if |segment_size| is zero. If this routine
|
|
// is ever changed to allow non-zero |segment_size|, then
|
|
// ReadFDEFields() below will have to be changed to match, per comments
|
|
// there.
|
|
}
|
|
|
|
// Parse the code alignment factor.
|
|
cie->code_alignment_factor = reader_->ReadUnsignedLEB128(cursor, &len);
|
|
if (size_t(cie->end - cursor) < len) return ReportIncomplete(cie);
|
|
cursor += len;
|
|
|
|
// Parse the data alignment factor.
|
|
cie->data_alignment_factor = reader_->ReadSignedLEB128(cursor, &len);
|
|
if (size_t(cie->end - cursor) < len) return ReportIncomplete(cie);
|
|
cursor += len;
|
|
|
|
// Parse the return address register. This is a ubyte in version 1, and
|
|
// a ULEB128 in version 3.
|
|
if (cie->version == 1) {
|
|
if (cursor >= cie->end) return ReportIncomplete(cie);
|
|
cie->return_address_register = uint8(*cursor++);
|
|
} else {
|
|
cie->return_address_register = reader_->ReadUnsignedLEB128(cursor, &len);
|
|
if (size_t(cie->end - cursor) < len) return ReportIncomplete(cie);
|
|
cursor += len;
|
|
}
|
|
|
|
// If we have a 'z' augmentation string, find the augmentation data and
|
|
// use the augmentation string to parse it.
|
|
if (cie->has_z_augmentation) {
|
|
uint64_t data_size = reader_->ReadUnsignedLEB128(cursor, &len);
|
|
if (size_t(cie->end - cursor) < len + data_size)
|
|
return ReportIncomplete(cie);
|
|
cursor += len;
|
|
const char* data = cursor;
|
|
cursor += data_size;
|
|
const char* data_end = cursor;
|
|
|
|
cie->has_z_lsda = false;
|
|
cie->has_z_personality = false;
|
|
cie->has_z_signal_frame = false;
|
|
|
|
// Walk the augmentation string, and extract values from the
|
|
// augmentation data as the string directs.
|
|
for (size_t i = 1; i < cie->augmentation.size(); i++) {
|
|
switch (cie->augmentation[i]) {
|
|
case DW_Z_has_LSDA:
|
|
// The CIE's augmentation data holds the language-specific data
|
|
// area pointer's encoding, and the FDE's augmentation data holds
|
|
// the pointer itself.
|
|
cie->has_z_lsda = true;
|
|
// Fetch the LSDA encoding from the augmentation data.
|
|
if (data >= data_end) return ReportIncomplete(cie);
|
|
cie->lsda_encoding = DwarfPointerEncoding(*data++);
|
|
if (!reader_->ValidEncoding(cie->lsda_encoding)) {
|
|
reporter_->InvalidPointerEncoding(cie->offset, cie->lsda_encoding);
|
|
return false;
|
|
}
|
|
// Don't check if the encoding is usable here --- we haven't
|
|
// read the FDE's fields yet, so we're not prepared for
|
|
// DW_EH_PE_funcrel, although that's a fine encoding for the
|
|
// LSDA to use, since it appears in the FDE.
|
|
break;
|
|
|
|
case DW_Z_has_personality_routine:
|
|
// The CIE's augmentation data holds the personality routine
|
|
// pointer's encoding, followed by the pointer itself.
|
|
cie->has_z_personality = true;
|
|
// Fetch the personality routine pointer's encoding from the
|
|
// augmentation data.
|
|
if (data >= data_end) return ReportIncomplete(cie);
|
|
cie->personality_encoding = DwarfPointerEncoding(*data++);
|
|
if (!reader_->ValidEncoding(cie->personality_encoding)) {
|
|
reporter_->InvalidPointerEncoding(cie->offset,
|
|
cie->personality_encoding);
|
|
return false;
|
|
}
|
|
if (!reader_->UsableEncoding(cie->personality_encoding)) {
|
|
reporter_->UnusablePointerEncoding(cie->offset,
|
|
cie->personality_encoding);
|
|
return false;
|
|
}
|
|
// Fetch the personality routine's pointer itself from the data.
|
|
cie->personality_address = reader_->ReadEncodedPointer(
|
|
data, cie->personality_encoding, &len);
|
|
if (len > size_t(data_end - data)) return ReportIncomplete(cie);
|
|
data += len;
|
|
break;
|
|
|
|
case DW_Z_has_FDE_address_encoding:
|
|
// The CIE's augmentation data holds the pointer encoding to use
|
|
// for addresses in the FDE.
|
|
if (data >= data_end) return ReportIncomplete(cie);
|
|
cie->pointer_encoding = DwarfPointerEncoding(*data++);
|
|
if (!reader_->ValidEncoding(cie->pointer_encoding)) {
|
|
reporter_->InvalidPointerEncoding(cie->offset,
|
|
cie->pointer_encoding);
|
|
return false;
|
|
}
|
|
if (!reader_->UsableEncoding(cie->pointer_encoding)) {
|
|
reporter_->UnusablePointerEncoding(cie->offset,
|
|
cie->pointer_encoding);
|
|
return false;
|
|
}
|
|
break;
|
|
|
|
case DW_Z_is_signal_trampoline:
|
|
// Frames using this CIE are signal delivery frames.
|
|
cie->has_z_signal_frame = true;
|
|
break;
|
|
|
|
default:
|
|
// An augmentation we don't recognize.
|
|
reporter_->UnrecognizedAugmentation(cie->offset, cie->augmentation);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// The CIE's instructions start here.
|
|
cie->instructions = cursor;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool CallFrameInfo::ReadFDEFields(FDE* fde) {
|
|
const char* cursor = fde->fields;
|
|
size_t size;
|
|
|
|
// At this point, for Dwarf 4 and above, we are assuming that the
|
|
// associated CIE has its |segment_size| field equal to zero. This is
|
|
// checked for in ReadCIEFields() above. If ReadCIEFields() is ever
|
|
// changed to allow non-zero |segment_size| CIEs then we will have to read
|
|
// the segment_selector value at this point.
|
|
|
|
fde->address =
|
|
reader_->ReadEncodedPointer(cursor, fde->cie->pointer_encoding, &size);
|
|
if (size > size_t(fde->end - cursor)) return ReportIncomplete(fde);
|
|
cursor += size;
|
|
reader_->SetFunctionBase(fde->address);
|
|
|
|
// For the length, we strip off the upper nybble of the encoding used for
|
|
// the starting address.
|
|
DwarfPointerEncoding length_encoding =
|
|
DwarfPointerEncoding(fde->cie->pointer_encoding & 0x0f);
|
|
fde->size = reader_->ReadEncodedPointer(cursor, length_encoding, &size);
|
|
if (size > size_t(fde->end - cursor)) return ReportIncomplete(fde);
|
|
cursor += size;
|
|
|
|
// If the CIE has a 'z' augmentation string, then augmentation data
|
|
// appears here.
|
|
if (fde->cie->has_z_augmentation) {
|
|
uint64_t data_size = reader_->ReadUnsignedLEB128(cursor, &size);
|
|
if (size_t(fde->end - cursor) < size + data_size)
|
|
return ReportIncomplete(fde);
|
|
cursor += size;
|
|
|
|
// In the abstract, we should walk the augmentation string, and extract
|
|
// items from the FDE's augmentation data as we encounter augmentation
|
|
// string characters that specify their presence: the ordering of items
|
|
// in the augmentation string determines the arrangement of values in
|
|
// the augmentation data.
|
|
//
|
|
// In practice, there's only ever one value in FDE augmentation data
|
|
// that we support --- the LSDA pointer --- and we have to bail if we
|
|
// see any unrecognized augmentation string characters. So if there is
|
|
// anything here at all, we know what it is, and where it starts.
|
|
if (fde->cie->has_z_lsda) {
|
|
// Check whether the LSDA's pointer encoding is usable now: only once
|
|
// we've parsed the FDE's starting address do we call reader_->
|
|
// SetFunctionBase, so that the DW_EH_PE_funcrel encoding becomes
|
|
// usable.
|
|
if (!reader_->UsableEncoding(fde->cie->lsda_encoding)) {
|
|
reporter_->UnusablePointerEncoding(fde->cie->offset,
|
|
fde->cie->lsda_encoding);
|
|
return false;
|
|
}
|
|
|
|
fde->lsda_address =
|
|
reader_->ReadEncodedPointer(cursor, fde->cie->lsda_encoding, &size);
|
|
if (size > data_size) return ReportIncomplete(fde);
|
|
// Ideally, we would also complain here if there were unconsumed
|
|
// augmentation data.
|
|
}
|
|
|
|
cursor += data_size;
|
|
}
|
|
|
|
// The FDE's instructions start after those.
|
|
fde->instructions = cursor;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool CallFrameInfo::Start() {
|
|
const char* buffer_end = buffer_ + buffer_length_;
|
|
const char* cursor;
|
|
bool all_ok = true;
|
|
const char* entry_end;
|
|
bool ok;
|
|
|
|
// Traverse all the entries in buffer_, skipping CIEs and offering
|
|
// FDEs to the handler.
|
|
for (cursor = buffer_; cursor < buffer_end;
|
|
cursor = entry_end, all_ok = all_ok && ok) {
|
|
FDE fde;
|
|
|
|
// Make it easy to skip this entry with 'continue': assume that
|
|
// things are not okay until we've checked all the data, and
|
|
// prepare the address of the next entry.
|
|
ok = false;
|
|
|
|
// Read the entry's prologue.
|
|
if (!ReadEntryPrologue(cursor, &fde)) {
|
|
if (!fde.end) {
|
|
// If we couldn't even figure out this entry's extent, then we
|
|
// must stop processing entries altogether.
|
|
all_ok = false;
|
|
break;
|
|
}
|
|
entry_end = fde.end;
|
|
continue;
|
|
}
|
|
|
|
// The next iteration picks up after this entry.
|
|
entry_end = fde.end;
|
|
|
|
// Did we see an .eh_frame terminating mark?
|
|
if (fde.kind == kTerminator) {
|
|
// If there appears to be more data left in the section after the
|
|
// terminating mark, warn the user. But this is just a warning;
|
|
// we leave all_ok true.
|
|
if (fde.end < buffer_end) reporter_->EarlyEHTerminator(fde.offset);
|
|
break;
|
|
}
|
|
|
|
// In this loop, we skip CIEs. We only parse them fully when we
|
|
// parse an FDE that refers to them. This limits our memory
|
|
// consumption (beyond the buffer itself) to that needed to
|
|
// process the largest single entry.
|
|
if (fde.kind != kFDE) {
|
|
ok = true;
|
|
continue;
|
|
}
|
|
|
|
// Validate the CIE pointer.
|
|
if (fde.id > buffer_length_) {
|
|
reporter_->CIEPointerOutOfRange(fde.offset, fde.id);
|
|
continue;
|
|
}
|
|
|
|
CIE cie;
|
|
|
|
// Parse this FDE's CIE header.
|
|
if (!ReadEntryPrologue(buffer_ + fde.id, &cie)) continue;
|
|
// This had better be an actual CIE.
|
|
if (cie.kind != kCIE) {
|
|
reporter_->BadCIEId(fde.offset, fde.id);
|
|
continue;
|
|
}
|
|
if (!ReadCIEFields(&cie)) continue;
|
|
|
|
// We now have the values that govern both the CIE and the FDE.
|
|
cie.cie = &cie;
|
|
fde.cie = &cie;
|
|
|
|
// Parse the FDE's header.
|
|
if (!ReadFDEFields(&fde)) continue;
|
|
|
|
// Call Entry to ask the consumer if they're interested.
|
|
if (!handler_->Entry(fde.offset, fde.address, fde.size, cie.version,
|
|
cie.augmentation, cie.return_address_register)) {
|
|
// The handler isn't interested in this entry. That's not an error.
|
|
ok = true;
|
|
continue;
|
|
}
|
|
|
|
if (cie.has_z_augmentation) {
|
|
// Report the personality routine address, if we have one.
|
|
if (cie.has_z_personality) {
|
|
if (!handler_->PersonalityRoutine(
|
|
cie.personality_address,
|
|
IsIndirectEncoding(cie.personality_encoding)))
|
|
continue;
|
|
}
|
|
|
|
// Report the language-specific data area address, if we have one.
|
|
if (cie.has_z_lsda) {
|
|
if (!handler_->LanguageSpecificDataArea(
|
|
fde.lsda_address, IsIndirectEncoding(cie.lsda_encoding)))
|
|
continue;
|
|
}
|
|
|
|
// If this is a signal-handling frame, report that.
|
|
if (cie.has_z_signal_frame) {
|
|
if (!handler_->SignalHandler()) continue;
|
|
}
|
|
}
|
|
|
|
// Interpret the CIE's instructions, and then the FDE's instructions.
|
|
State state(reader_, handler_, reporter_, fde.address);
|
|
ok = state.InterpretCIE(cie) && state.InterpretFDE(fde);
|
|
|
|
// Tell the ByteReader that the function start address from the
|
|
// FDE header is no longer valid.
|
|
reader_->ClearFunctionBase();
|
|
|
|
// Report the end of the entry.
|
|
handler_->End();
|
|
}
|
|
|
|
return all_ok;
|
|
}
|
|
|
|
const char* CallFrameInfo::KindName(EntryKind kind) {
|
|
if (kind == CallFrameInfo::kUnknown)
|
|
return "entry";
|
|
else if (kind == CallFrameInfo::kCIE)
|
|
return "common information entry";
|
|
else if (kind == CallFrameInfo::kFDE)
|
|
return "frame description entry";
|
|
else {
|
|
MOZ_ASSERT(kind == CallFrameInfo::kTerminator);
|
|
return ".eh_frame sequence terminator";
|
|
}
|
|
}
|
|
|
|
bool CallFrameInfo::ReportIncomplete(Entry* entry) {
|
|
reporter_->Incomplete(entry->offset, entry->kind);
|
|
return false;
|
|
}
|
|
|
|
void CallFrameInfo::Reporter::Incomplete(uint64 offset,
|
|
CallFrameInfo::EntryKind kind) {
|
|
char buf[300];
|
|
SprintfLiteral(buf, "%s: CFI %s at offset 0x%llx in '%s': entry ends early\n",
|
|
filename_.c_str(), CallFrameInfo::KindName(kind), offset,
|
|
section_.c_str());
|
|
log_(buf);
|
|
}
|
|
|
|
void CallFrameInfo::Reporter::EarlyEHTerminator(uint64 offset) {
|
|
char buf[300];
|
|
SprintfLiteral(buf,
|
|
"%s: CFI at offset 0x%llx in '%s': saw end-of-data marker"
|
|
" before end of section contents\n",
|
|
filename_.c_str(), offset, section_.c_str());
|
|
log_(buf);
|
|
}
|
|
|
|
void CallFrameInfo::Reporter::CIEPointerOutOfRange(uint64 offset,
|
|
uint64 cie_offset) {
|
|
char buf[300];
|
|
SprintfLiteral(buf,
|
|
"%s: CFI frame description entry at offset 0x%llx in '%s':"
|
|
" CIE pointer is out of range: 0x%llx\n",
|
|
filename_.c_str(), offset, section_.c_str(), cie_offset);
|
|
log_(buf);
|
|
}
|
|
|
|
void CallFrameInfo::Reporter::BadCIEId(uint64 offset, uint64 cie_offset) {
|
|
char buf[300];
|
|
SprintfLiteral(buf,
|
|
"%s: CFI frame description entry at offset 0x%llx in '%s':"
|
|
" CIE pointer does not point to a CIE: 0x%llx\n",
|
|
filename_.c_str(), offset, section_.c_str(), cie_offset);
|
|
log_(buf);
|
|
}
|
|
|
|
void CallFrameInfo::Reporter::UnrecognizedVersion(uint64 offset, int version) {
|
|
char buf[300];
|
|
SprintfLiteral(buf,
|
|
"%s: CFI frame description entry at offset 0x%llx in '%s':"
|
|
" CIE specifies unrecognized version: %d\n",
|
|
filename_.c_str(), offset, section_.c_str(), version);
|
|
log_(buf);
|
|
}
|
|
|
|
void CallFrameInfo::Reporter::UnrecognizedAugmentation(uint64 offset,
|
|
const string& aug) {
|
|
char buf[300];
|
|
SprintfLiteral(buf,
|
|
"%s: CFI frame description entry at offset 0x%llx in '%s':"
|
|
" CIE specifies unrecognized augmentation: '%s'\n",
|
|
filename_.c_str(), offset, section_.c_str(), aug.c_str());
|
|
log_(buf);
|
|
}
|
|
|
|
void CallFrameInfo::Reporter::InvalidDwarf4Artefact(uint64 offset,
|
|
const char* what) {
|
|
char* what_safe = strndup(what, 100);
|
|
char buf[300];
|
|
SprintfLiteral(buf,
|
|
"%s: CFI frame description entry at offset 0x%llx in '%s':"
|
|
" CIE specifies invalid Dwarf4 artefact: %s\n",
|
|
filename_.c_str(), offset, section_.c_str(), what_safe);
|
|
log_(buf);
|
|
free(what_safe);
|
|
}
|
|
|
|
void CallFrameInfo::Reporter::InvalidPointerEncoding(uint64 offset,
|
|
uint8 encoding) {
|
|
char buf[300];
|
|
SprintfLiteral(buf,
|
|
"%s: CFI common information entry at offset 0x%llx in '%s':"
|
|
" 'z' augmentation specifies invalid pointer encoding: "
|
|
"0x%02x\n",
|
|
filename_.c_str(), offset, section_.c_str(), encoding);
|
|
log_(buf);
|
|
}
|
|
|
|
void CallFrameInfo::Reporter::UnusablePointerEncoding(uint64 offset,
|
|
uint8 encoding) {
|
|
char buf[300];
|
|
SprintfLiteral(buf,
|
|
"%s: CFI common information entry at offset 0x%llx in '%s':"
|
|
" 'z' augmentation specifies a pointer encoding for which"
|
|
" we have no base address: 0x%02x\n",
|
|
filename_.c_str(), offset, section_.c_str(), encoding);
|
|
log_(buf);
|
|
}
|
|
|
|
void CallFrameInfo::Reporter::RestoreInCIE(uint64 offset, uint64 insn_offset) {
|
|
char buf[300];
|
|
SprintfLiteral(buf,
|
|
"%s: CFI common information entry at offset 0x%llx in '%s':"
|
|
" the DW_CFA_restore instruction at offset 0x%llx"
|
|
" cannot be used in a common information entry\n",
|
|
filename_.c_str(), offset, section_.c_str(), insn_offset);
|
|
log_(buf);
|
|
}
|
|
|
|
void CallFrameInfo::Reporter::BadInstruction(uint64 offset,
|
|
CallFrameInfo::EntryKind kind,
|
|
uint64 insn_offset) {
|
|
char buf[300];
|
|
SprintfLiteral(buf,
|
|
"%s: CFI %s at offset 0x%llx in section '%s':"
|
|
" the instruction at offset 0x%llx is unrecognized\n",
|
|
filename_.c_str(), CallFrameInfo::KindName(kind), offset,
|
|
section_.c_str(), insn_offset);
|
|
log_(buf);
|
|
}
|
|
|
|
void CallFrameInfo::Reporter::NoCFARule(uint64 offset,
|
|
CallFrameInfo::EntryKind kind,
|
|
uint64 insn_offset) {
|
|
char buf[300];
|
|
SprintfLiteral(buf,
|
|
"%s: CFI %s at offset 0x%llx in section '%s':"
|
|
" the instruction at offset 0x%llx assumes that a CFA rule "
|
|
"has been set, but none has been set\n",
|
|
filename_.c_str(), CallFrameInfo::KindName(kind), offset,
|
|
section_.c_str(), insn_offset);
|
|
log_(buf);
|
|
}
|
|
|
|
void CallFrameInfo::Reporter::EmptyStateStack(uint64 offset,
|
|
CallFrameInfo::EntryKind kind,
|
|
uint64 insn_offset) {
|
|
char buf[300];
|
|
SprintfLiteral(buf,
|
|
"%s: CFI %s at offset 0x%llx in section '%s':"
|
|
" the DW_CFA_restore_state instruction at offset 0x%llx"
|
|
" should pop a saved state from the stack, but the stack "
|
|
"is empty\n",
|
|
filename_.c_str(), CallFrameInfo::KindName(kind), offset,
|
|
section_.c_str(), insn_offset);
|
|
log_(buf);
|
|
}
|
|
|
|
void CallFrameInfo::Reporter::ClearingCFARule(uint64 offset,
|
|
CallFrameInfo::EntryKind kind,
|
|
uint64 insn_offset) {
|
|
char buf[300];
|
|
SprintfLiteral(buf,
|
|
"%s: CFI %s at offset 0x%llx in section '%s':"
|
|
" the DW_CFA_restore_state instruction at offset 0x%llx"
|
|
" would clear the CFA rule in effect\n",
|
|
filename_.c_str(), CallFrameInfo::KindName(kind), offset,
|
|
section_.c_str(), insn_offset);
|
|
log_(buf);
|
|
}
|
|
|
|
unsigned int DwarfCFIToModule::RegisterNames::I386() {
|
|
/*
|
|
8 "$eax", "$ecx", "$edx", "$ebx", "$esp", "$ebp", "$esi", "$edi",
|
|
3 "$eip", "$eflags", "$unused1",
|
|
8 "$st0", "$st1", "$st2", "$st3", "$st4", "$st5", "$st6", "$st7",
|
|
2 "$unused2", "$unused3",
|
|
8 "$xmm0", "$xmm1", "$xmm2", "$xmm3", "$xmm4", "$xmm5", "$xmm6", "$xmm7",
|
|
8 "$mm0", "$mm1", "$mm2", "$mm3", "$mm4", "$mm5", "$mm6", "$mm7",
|
|
3 "$fcw", "$fsw", "$mxcsr",
|
|
8 "$es", "$cs", "$ss", "$ds", "$fs", "$gs", "$unused4", "$unused5",
|
|
2 "$tr", "$ldtr"
|
|
*/
|
|
return 8 + 3 + 8 + 2 + 8 + 8 + 3 + 8 + 2;
|
|
}
|
|
|
|
unsigned int DwarfCFIToModule::RegisterNames::X86_64() {
|
|
/*
|
|
8 "$rax", "$rdx", "$rcx", "$rbx", "$rsi", "$rdi", "$rbp", "$rsp",
|
|
8 "$r8", "$r9", "$r10", "$r11", "$r12", "$r13", "$r14", "$r15",
|
|
1 "$rip",
|
|
8 "$xmm0","$xmm1","$xmm2", "$xmm3", "$xmm4", "$xmm5", "$xmm6", "$xmm7",
|
|
8 "$xmm8","$xmm9","$xmm10","$xmm11","$xmm12","$xmm13","$xmm14","$xmm15",
|
|
8 "$st0", "$st1", "$st2", "$st3", "$st4", "$st5", "$st6", "$st7",
|
|
8 "$mm0", "$mm1", "$mm2", "$mm3", "$mm4", "$mm5", "$mm6", "$mm7",
|
|
1 "$rflags",
|
|
8 "$es", "$cs", "$ss", "$ds", "$fs", "$gs", "$unused1", "$unused2",
|
|
4 "$fs.base", "$gs.base", "$unused3", "$unused4",
|
|
2 "$tr", "$ldtr",
|
|
3 "$mxcsr", "$fcw", "$fsw"
|
|
*/
|
|
return 8 + 8 + 1 + 8 + 8 + 8 + 8 + 1 + 8 + 4 + 2 + 3;
|
|
}
|
|
|
|
// Per ARM IHI 0040A, section 3.1
|
|
unsigned int DwarfCFIToModule::RegisterNames::ARM() {
|
|
/*
|
|
8 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
|
8 "r8", "r9", "r10", "r11", "r12", "sp", "lr", "pc",
|
|
8 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
|
|
8 "fps", "cpsr", "", "", "", "", "", "",
|
|
8 "", "", "", "", "", "", "", "",
|
|
8 "", "", "", "", "", "", "", "",
|
|
8 "", "", "", "", "", "", "", "",
|
|
8 "", "", "", "", "", "", "", "",
|
|
8 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
|
|
8 "s8", "s9", "s10", "s11", "s12", "s13", "s14", "s15",
|
|
8 "s16", "s17", "s18", "s19", "s20", "s21", "s22", "s23",
|
|
8 "s24", "s25", "s26", "s27", "s28", "s29", "s30", "s31",
|
|
8 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7"
|
|
*/
|
|
return 13 * 8;
|
|
}
|
|
|
|
// Per ARM IHI 0057A, section 3.1
|
|
unsigned int DwarfCFIToModule::RegisterNames::ARM64() {
|
|
/*
|
|
8 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
|
|
8 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
|
|
8 "x16" "x17", "x18", "x19", "x20", "x21", "x22", "x23",
|
|
8 "x24", "x25", "x26", "x27", "x28", "x29", "x30","sp",
|
|
8 "", "", "", "", "", "", "", "",
|
|
8 "", "", "", "", "", "", "", "",
|
|
8 "", "", "", "", "", "", "", "",
|
|
8 "", "", "", "", "", "", "", "",
|
|
8 "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
|
|
8 "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15",
|
|
8 "v16", "v17", "v18", "v19", "v20", "v21", "v22, "v23",
|
|
8 "v24", "x25", "x26, "x27", "v28", "v29", "v30", "v31",
|
|
*/
|
|
return 12 * 8;
|
|
}
|
|
|
|
unsigned int DwarfCFIToModule::RegisterNames::MIPS() {
|
|
/*
|
|
8 "$zero", "$at", "$v0", "$v1", "$a0", "$a1", "$a2", "$a3",
|
|
8 "$t0", "$t1", "$t2", "$t3", "$t4", "$t5", "$t6", "$t7",
|
|
8 "$s0", "$s1", "$s2", "$s3", "$s4", "$s5", "$s6", "$s7",
|
|
8 "$t8", "$t9", "$k0", "$k1", "$gp", "$sp", "$fp", "$ra",
|
|
9 "$lo", "$hi", "$pc", "$f0", "$f1", "$f2", "$f3", "$f4", "$f5",
|
|
8 "$f6", "$f7", "$f8", "$f9", "$f10", "$f11", "$f12", "$f13",
|
|
7 "$f14", "$f15", "$f16", "$f17", "$f18", "$f19", "$f20",
|
|
7 "$f21", "$f22", "$f23", "$f24", "$f25", "$f26", "$f27",
|
|
6 "$f28", "$f29", "$f30", "$f31", "$fcsr", "$fir"
|
|
*/
|
|
return 8 + 8 + 8 + 8 + 9 + 8 + 7 + 7 + 6;
|
|
}
|
|
|
|
// See prototype for comments.
|
|
int32_t parseDwarfExpr(Summariser* summ, const ByteReader* reader,
|
|
ImageSlice expr, bool debug, bool pushCfaAtStart,
|
|
bool derefAtEnd) {
|
|
const char* cursor = expr.start_;
|
|
const char* end1 = cursor + expr.length_;
|
|
|
|
char buf[100];
|
|
if (debug) {
|
|
SprintfLiteral(buf, "LUL.DW << DwarfExpr, len is %d\n",
|
|
(int)(end1 - cursor));
|
|
summ->Log(buf);
|
|
}
|
|
|
|
// Add a marker for the start of this expression. In it, indicate
|
|
// whether or not the CFA should be pushed onto the stack prior to
|
|
// evaluation.
|
|
int32_t start_ix =
|
|
summ->AddPfxInstr(PfxInstr(PX_Start, pushCfaAtStart ? 1 : 0));
|
|
MOZ_ASSERT(start_ix >= 0);
|
|
|
|
while (cursor < end1) {
|
|
uint8 opc = reader->ReadOneByte(cursor);
|
|
cursor++;
|
|
|
|
const char* nm = nullptr;
|
|
PfxExprOp pxop = PX_End;
|
|
|
|
switch (opc) {
|
|
case DW_OP_lit0 ... DW_OP_lit31: {
|
|
int32_t simm32 = (int32_t)(opc - DW_OP_lit0);
|
|
if (debug) {
|
|
SprintfLiteral(buf, "LUL.DW DW_OP_lit%d\n", (int)simm32);
|
|
summ->Log(buf);
|
|
}
|
|
(void)summ->AddPfxInstr(PfxInstr(PX_SImm32, simm32));
|
|
break;
|
|
}
|
|
|
|
case DW_OP_breg0 ... DW_OP_breg31: {
|
|
size_t len;
|
|
int64_t n = reader->ReadSignedLEB128(cursor, &len);
|
|
cursor += len;
|
|
DW_REG_NUMBER reg = (DW_REG_NUMBER)(opc - DW_OP_breg0);
|
|
if (debug) {
|
|
SprintfLiteral(buf, "LUL.DW DW_OP_breg%d %lld\n", (int)reg,
|
|
(long long int)n);
|
|
summ->Log(buf);
|
|
}
|
|
// PfxInstr only allows a 32 bit signed offset. So we
|
|
// must fail if the immediate is out of range.
|
|
if (n < INT32_MIN || INT32_MAX < n) goto fail;
|
|
(void)summ->AddPfxInstr(PfxInstr(PX_DwReg, reg));
|
|
(void)summ->AddPfxInstr(PfxInstr(PX_SImm32, (int32_t)n));
|
|
(void)summ->AddPfxInstr(PfxInstr(PX_Add));
|
|
break;
|
|
}
|
|
|
|
case DW_OP_const4s: {
|
|
uint64_t u64 = reader->ReadFourBytes(cursor);
|
|
cursor += 4;
|
|
// u64 is guaranteed by |ReadFourBytes| to be in the
|
|
// range 0 .. FFFFFFFF inclusive. But to be safe:
|
|
uint32_t u32 = (uint32_t)(u64 & 0xFFFFFFFF);
|
|
int32_t s32 = (int32_t)u32;
|
|
if (debug) {
|
|
SprintfLiteral(buf, "LUL.DW DW_OP_const4s %d\n", (int)s32);
|
|
summ->Log(buf);
|
|
}
|
|
(void)summ->AddPfxInstr(PfxInstr(PX_SImm32, s32));
|
|
break;
|
|
}
|
|
|
|
case DW_OP_deref:
|
|
nm = "deref";
|
|
pxop = PX_Deref;
|
|
goto no_operands;
|
|
case DW_OP_and:
|
|
nm = "and";
|
|
pxop = PX_And;
|
|
goto no_operands;
|
|
case DW_OP_plus:
|
|
nm = "plus";
|
|
pxop = PX_Add;
|
|
goto no_operands;
|
|
case DW_OP_minus:
|
|
nm = "minus";
|
|
pxop = PX_Sub;
|
|
goto no_operands;
|
|
case DW_OP_shl:
|
|
nm = "shl";
|
|
pxop = PX_Shl;
|
|
goto no_operands;
|
|
case DW_OP_ge:
|
|
nm = "ge";
|
|
pxop = PX_CmpGES;
|
|
goto no_operands;
|
|
no_operands:
|
|
MOZ_ASSERT(nm && pxop != PX_End);
|
|
if (debug) {
|
|
SprintfLiteral(buf, "LUL.DW DW_OP_%s\n", nm);
|
|
summ->Log(buf);
|
|
}
|
|
(void)summ->AddPfxInstr(PfxInstr(pxop));
|
|
break;
|
|
|
|
default:
|
|
if (debug) {
|
|
SprintfLiteral(buf, "LUL.DW unknown opc %d\n", (int)opc);
|
|
summ->Log(buf);
|
|
}
|
|
goto fail;
|
|
|
|
} // switch (opc)
|
|
|
|
} // while (cursor < end1)
|
|
|
|
MOZ_ASSERT(cursor >= end1);
|
|
|
|
if (cursor > end1) {
|
|
// We overran the Dwarf expression. Give up.
|
|
goto fail;
|
|
}
|
|
|
|
// For DW_CFA_expression, what the expression denotes is the address
|
|
// of where the previous value is located. The caller of this routine
|
|
// may therefore request one last dereference before the end marker is
|
|
// inserted.
|
|
if (derefAtEnd) {
|
|
(void)summ->AddPfxInstr(PfxInstr(PX_Deref));
|
|
}
|
|
|
|
// Insert an end marker, and declare success.
|
|
(void)summ->AddPfxInstr(PfxInstr(PX_End));
|
|
if (debug) {
|
|
SprintfLiteral(buf,
|
|
"LUL.DW conversion of dwarf expression succeeded, "
|
|
"ix = %d\n",
|
|
(int)start_ix);
|
|
summ->Log(buf);
|
|
summ->Log("LUL.DW >>\n");
|
|
}
|
|
return start_ix;
|
|
|
|
fail:
|
|
if (debug) {
|
|
summ->Log("LUL.DW conversion of dwarf expression failed\n");
|
|
summ->Log("LUL.DW >>\n");
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
bool DwarfCFIToModule::Entry(size_t offset, uint64 address, uint64 length,
|
|
uint8 version, const string& augmentation,
|
|
unsigned return_address) {
|
|
if (DEBUG_DWARF) {
|
|
char buf[100];
|
|
SprintfLiteral(buf, "LUL.DW DwarfCFIToModule::Entry 0x%llx,+%lld\n",
|
|
address, length);
|
|
summ_->Log(buf);
|
|
}
|
|
|
|
summ_->Entry(address, length);
|
|
|
|
// If dwarf2reader::CallFrameInfo can handle this version and
|
|
// augmentation, then we should be okay with that, so there's no
|
|
// need to check them here.
|
|
|
|
// Get ready to collect entries.
|
|
return_address_ = return_address;
|
|
|
|
// Breakpad STACK CFI records must provide a .ra rule, but DWARF CFI
|
|
// may not establish any rule for .ra if the return address column
|
|
// is an ordinary register, and that register holds the return
|
|
// address on entry to the function. So establish an initial .ra
|
|
// rule citing the return address register.
|
|
if (return_address_ < num_dw_regs_) {
|
|
summ_->Rule(address, return_address_, NODEREF, return_address, 0);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
const UniqueString* DwarfCFIToModule::RegisterName(int i) {
|
|
if (i < 0) {
|
|
MOZ_ASSERT(i == kCFARegister);
|
|
return usu_->ToUniqueString(".cfa");
|
|
}
|
|
unsigned reg = i;
|
|
if (reg == return_address_) return usu_->ToUniqueString(".ra");
|
|
|
|
char buf[30];
|
|
SprintfLiteral(buf, "dwarf_reg_%u", reg);
|
|
return usu_->ToUniqueString(buf);
|
|
}
|
|
|
|
bool DwarfCFIToModule::UndefinedRule(uint64 address, int reg) {
|
|
reporter_->UndefinedNotSupported(entry_offset_, RegisterName(reg));
|
|
// Treat this as a non-fatal error.
|
|
return true;
|
|
}
|
|
|
|
bool DwarfCFIToModule::SameValueRule(uint64 address, int reg) {
|
|
if (DEBUG_DWARF) {
|
|
char buf[100];
|
|
SprintfLiteral(buf, "LUL.DW 0x%llx: old r%d = Same\n", address, reg);
|
|
summ_->Log(buf);
|
|
}
|
|
// reg + 0
|
|
summ_->Rule(address, reg, NODEREF, reg, 0);
|
|
return true;
|
|
}
|
|
|
|
bool DwarfCFIToModule::OffsetRule(uint64 address, int reg, int base_register,
|
|
long offset) {
|
|
if (DEBUG_DWARF) {
|
|
char buf[100];
|
|
SprintfLiteral(buf, "LUL.DW 0x%llx: old r%d = *(r%d + %ld)\n", address,
|
|
reg, base_register, offset);
|
|
summ_->Log(buf);
|
|
}
|
|
// *(base_register + offset)
|
|
summ_->Rule(address, reg, DEREF, base_register, offset);
|
|
return true;
|
|
}
|
|
|
|
bool DwarfCFIToModule::ValOffsetRule(uint64 address, int reg, int base_register,
|
|
long offset) {
|
|
if (DEBUG_DWARF) {
|
|
char buf[100];
|
|
SprintfLiteral(buf, "LUL.DW 0x%llx: old r%d = r%d + %ld\n", address, reg,
|
|
base_register, offset);
|
|
summ_->Log(buf);
|
|
}
|
|
// base_register + offset
|
|
summ_->Rule(address, reg, NODEREF, base_register, offset);
|
|
return true;
|
|
}
|
|
|
|
bool DwarfCFIToModule::RegisterRule(uint64 address, int reg,
|
|
int base_register) {
|
|
if (DEBUG_DWARF) {
|
|
char buf[100];
|
|
SprintfLiteral(buf, "LUL.DW 0x%llx: old r%d = r%d\n", address, reg,
|
|
base_register);
|
|
summ_->Log(buf);
|
|
}
|
|
// base_register + 0
|
|
summ_->Rule(address, reg, NODEREF, base_register, 0);
|
|
return true;
|
|
}
|
|
|
|
bool DwarfCFIToModule::ExpressionRule(uint64 address, int reg,
|
|
const ImageSlice& expression) {
|
|
bool debug = !!DEBUG_DWARF;
|
|
int32_t start_ix =
|
|
parseDwarfExpr(summ_, reader_, expression, debug, true /*pushCfaAtStart*/,
|
|
true /*derefAtEnd*/);
|
|
if (start_ix >= 0) {
|
|
summ_->Rule(address, reg, PFXEXPR, 0, start_ix);
|
|
} else {
|
|
// Parsing of the Dwarf expression failed. Treat this as a
|
|
// non-fatal error, hence return |true| even on this path.
|
|
reporter_->ExpressionCouldNotBeSummarised(entry_offset_, RegisterName(reg));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool DwarfCFIToModule::ValExpressionRule(uint64 address, int reg,
|
|
const ImageSlice& expression) {
|
|
bool debug = !!DEBUG_DWARF;
|
|
int32_t start_ix =
|
|
parseDwarfExpr(summ_, reader_, expression, debug, true /*pushCfaAtStart*/,
|
|
false /*!derefAtEnd*/);
|
|
if (start_ix >= 0) {
|
|
summ_->Rule(address, reg, PFXEXPR, 0, start_ix);
|
|
} else {
|
|
// Parsing of the Dwarf expression failed. Treat this as a
|
|
// non-fatal error, hence return |true| even on this path.
|
|
reporter_->ExpressionCouldNotBeSummarised(entry_offset_, RegisterName(reg));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool DwarfCFIToModule::End() {
|
|
// module_->AddStackFrameEntry(entry_);
|
|
if (DEBUG_DWARF) {
|
|
summ_->Log("LUL.DW DwarfCFIToModule::End()\n");
|
|
}
|
|
summ_->End();
|
|
return true;
|
|
}
|
|
|
|
void DwarfCFIToModule::Reporter::UndefinedNotSupported(
|
|
size_t offset, const UniqueString* reg) {
|
|
char buf[300];
|
|
SprintfLiteral(buf, "DwarfCFIToModule::Reporter::UndefinedNotSupported()\n");
|
|
log_(buf);
|
|
// BPLOG(INFO) << file_ << ", section '" << section_
|
|
// << "': the call frame entry at offset 0x"
|
|
// << std::setbase(16) << offset << std::setbase(10)
|
|
// << " sets the rule for register '" << FromUniqueString(reg)
|
|
// << "' to 'undefined', but the Breakpad symbol file format cannot "
|
|
// << " express this";
|
|
}
|
|
|
|
// FIXME: move this somewhere sensible
|
|
static bool is_power_of_2(uint64_t n) {
|
|
int i, nSetBits = 0;
|
|
for (i = 0; i < 8 * (int)sizeof(n); i++) {
|
|
if ((n & ((uint64_t)1) << i) != 0) nSetBits++;
|
|
}
|
|
return nSetBits <= 1;
|
|
}
|
|
|
|
void DwarfCFIToModule::Reporter::ExpressionCouldNotBeSummarised(
|
|
size_t offset, const UniqueString* reg) {
|
|
static uint64_t n_complaints = 0; // This isn't threadsafe
|
|
n_complaints++;
|
|
if (!is_power_of_2(n_complaints)) return;
|
|
char buf[300];
|
|
SprintfLiteral(buf,
|
|
"DwarfCFIToModule::Reporter::"
|
|
"ExpressionCouldNotBeSummarised(shown %llu times)\n",
|
|
(unsigned long long int)n_complaints);
|
|
log_(buf);
|
|
}
|
|
|
|
} // namespace lul
|