gecko-dev/image/AnimationSurfaceProvider.cpp
Andrew Osmond c3618a0b1b Bug 1444537 - Part 2. Shutting down the decode pool should make animated decoders bail early. r=tnikkel
When we shutdown the decode pool threads, it does not do a simple join
with the main thread. It will actually process the main thread event
loop, which can cause a bad series of events. The refresh tick could
still be running and advancing our animated images, causing the animated
decoders to continue running, which in turn prevents the decoder threads
from finishing shutting down, and the main thread from joining them.

Now we check on each frame whether or not the decoder should just stop
decoding more frames because the decode pool has started shutdown. If it
has, it will stop immediately.
2018-03-27 10:57:01 -04:00

416 lines
13 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "AnimationSurfaceProvider.h"
#include "gfxPrefs.h"
#include "nsProxyRelease.h"
#include "DecodePool.h"
#include "Decoder.h"
using namespace mozilla::gfx;
namespace mozilla {
namespace image {
AnimationSurfaceProvider::AnimationSurfaceProvider(NotNull<RasterImage*> aImage,
const SurfaceKey& aSurfaceKey,
NotNull<Decoder*> aDecoder,
size_t aCurrentFrame)
: ISurfaceProvider(ImageKey(aImage.get()), aSurfaceKey,
AvailabilityState::StartAsPlaceholder())
, mImage(aImage.get())
, mDecodingMutex("AnimationSurfaceProvider::mDecoder")
, mDecoder(aDecoder.get())
, mFramesMutex("AnimationSurfaceProvider::mFrames")
{
MOZ_ASSERT(!mDecoder->IsMetadataDecode(),
"Use MetadataDecodingTask for metadata decodes");
MOZ_ASSERT(!mDecoder->IsFirstFrameDecode(),
"Use DecodedSurfaceProvider for single-frame image decodes");
// We still produce paletted surfaces for GIF which means the frames are
// smaller than one would expect for APNG. This may be removed if/when
// bug 1337111 lands and it is enabled by default.
size_t pixelSize = aDecoder->GetType() == DecoderType::GIF
? sizeof(uint8_t) : sizeof(uint32_t);
// Calculate how many frames we need to decode in this animation before we
// enter decode-on-demand mode.
IntSize frameSize = aSurfaceKey.Size();
size_t threshold =
(size_t(gfxPrefs::ImageAnimatedDecodeOnDemandThresholdKB()) * 1024) /
(pixelSize * frameSize.width * frameSize.height);
size_t batch = gfxPrefs::ImageAnimatedDecodeOnDemandBatchSize();
mFrames.Initialize(threshold, batch, aCurrentFrame);
}
AnimationSurfaceProvider::~AnimationSurfaceProvider()
{
DropImageReference();
}
void
AnimationSurfaceProvider::DropImageReference()
{
if (!mImage) {
return; // Nothing to do.
}
// RasterImage objects need to be destroyed on the main thread.
NS_ReleaseOnMainThreadSystemGroup("AnimationSurfaceProvider::mImage",
mImage.forget());
}
void
AnimationSurfaceProvider::Reset()
{
// We want to go back to the beginning.
bool mayDiscard;
bool restartDecoder;
{
MutexAutoLock lock(mFramesMutex);
// If we have not crossed the threshold, we know we haven't discarded any
// frames, and thus we know it is safe move our display index back to the
// very beginning. It would be cleaner to let the frame buffer make this
// decision inside the AnimationFrameBuffer::Reset method, but if we have
// crossed the threshold, we need to hold onto the decoding mutex too. We
// should avoid blocking the main thread on the decoder threads.
mayDiscard = mFrames.MayDiscard();
if (!mayDiscard) {
restartDecoder = mFrames.Reset();
}
}
if (mayDiscard) {
// We are over the threshold and have started discarding old frames. In
// that case we need to seize the decoding mutex. Thankfully we know that
// we are in the process of decoding at most the batch size frames, so
// this should not take too long to acquire.
MutexAutoLock lock(mDecodingMutex);
// Recreate the decoder so we can regenerate the frames again.
mDecoder = DecoderFactory::CloneAnimationDecoder(mDecoder);
MOZ_ASSERT(mDecoder);
MutexAutoLock lock2(mFramesMutex);
restartDecoder = mFrames.Reset();
}
if (restartDecoder) {
DecodePool::Singleton()->AsyncRun(this);
}
}
void
AnimationSurfaceProvider::Advance(size_t aFrame)
{
bool restartDecoder;
{
// Typical advancement of a frame.
MutexAutoLock lock(mFramesMutex);
restartDecoder = mFrames.AdvanceTo(aFrame);
}
if (restartDecoder) {
DecodePool::Singleton()->AsyncRun(this);
}
}
DrawableFrameRef
AnimationSurfaceProvider::DrawableRef(size_t aFrame)
{
MutexAutoLock lock(mFramesMutex);
if (Availability().IsPlaceholder()) {
MOZ_ASSERT_UNREACHABLE("Calling DrawableRef() on a placeholder");
return DrawableFrameRef();
}
return mFrames.Get(aFrame);
}
bool
AnimationSurfaceProvider::IsFinished() const
{
MutexAutoLock lock(mFramesMutex);
if (Availability().IsPlaceholder()) {
MOZ_ASSERT_UNREACHABLE("Calling IsFinished() on a placeholder");
return false;
}
if (mFrames.Frames().IsEmpty()) {
MOZ_ASSERT_UNREACHABLE("Calling IsFinished() when we have no frames");
return false;
}
// As long as we have at least one finished frame, we're finished.
return mFrames.Frames()[0]->IsFinished();
}
bool
AnimationSurfaceProvider::IsFullyDecoded() const
{
MutexAutoLock lock(mFramesMutex);
return mFrames.SizeKnown() && !mFrames.MayDiscard();
}
size_t
AnimationSurfaceProvider::LogicalSizeInBytes() const
{
// When decoding animated images, we need at most three live surfaces: the
// composited surface, the previous composited surface for
// DisposalMethod::RESTORE_PREVIOUS, and the surface we're currently decoding
// into. The composited surfaces are always BGRA. Although the surface we're
// decoding into may be paletted, and may be smaller than the real size of the
// image, we assume the worst case here.
// XXX(seth): Note that this is actually not accurate yet; we're storing the
// full sequence of frames, not just the three live surfaces mentioned above.
// Unfortunately there's no way to know in advance how many frames an
// animation has, so we really can't do better here. This will become correct
// once bug 1289954 is complete.
IntSize size = GetSurfaceKey().Size();
return 3 * size.width * size.height * sizeof(uint32_t);
}
void
AnimationSurfaceProvider::AddSizeOfExcludingThis(MallocSizeOf aMallocSizeOf,
size_t& aHeapSizeOut,
size_t& aNonHeapSizeOut,
size_t& aExtHandlesOut)
{
// Note that the surface cache lock is already held here, and then we acquire
// mFramesMutex. For this method, this ordering is unavoidable, which means
// that we must be careful to always use the same ordering elsewhere.
MutexAutoLock lock(mFramesMutex);
for (const RawAccessFrameRef& frame : mFrames.Frames()) {
if (frame) {
frame->AddSizeOfExcludingThis(aMallocSizeOf, aHeapSizeOut,
aNonHeapSizeOut, aExtHandlesOut);
}
}
}
void
AnimationSurfaceProvider::Run()
{
MutexAutoLock lock(mDecodingMutex);
if (!mDecoder) {
MOZ_ASSERT_UNREACHABLE("Running after decoding finished?");
return;
}
while (true) {
// Run the decoder.
LexerResult result = mDecoder->Decode(WrapNotNull(this));
if (result.is<TerminalState>()) {
// We may have a new frame now, but it's not guaranteed - a decoding
// failure or truncated data may mean that no new frame got produced.
// Since we're not sure, rather than call CheckForNewFrameAtYield() here
// we call CheckForNewFrameAtTerminalState(), which handles both of these
// possibilities.
bool continueDecoding = CheckForNewFrameAtTerminalState();
FinishDecoding();
// Even if it is the last frame, we may not have enough frames buffered
// ahead of the current.
if (continueDecoding) {
MOZ_ASSERT(mDecoder);
continue;
}
return;
}
// Notify for the progress we've made so far.
if (mImage && mDecoder->HasProgress()) {
NotifyProgress(WrapNotNull(mImage), WrapNotNull(mDecoder));
}
if (result == LexerResult(Yield::NEED_MORE_DATA)) {
// We can't make any more progress right now. The decoder itself will ensure
// that we get reenqueued when more data is available; just return for now.
return;
}
// There's new output available - a new frame! Grab it. If we don't need any
// more for the moment we can break out of the loop.
MOZ_ASSERT(result == LexerResult(Yield::OUTPUT_AVAILABLE));
if (!CheckForNewFrameAtYield()) {
return;
}
}
}
bool
AnimationSurfaceProvider::CheckForNewFrameAtYield()
{
mDecodingMutex.AssertCurrentThreadOwns();
MOZ_ASSERT(mDecoder);
bool justGotFirstFrame = false;
bool continueDecoding;
{
MutexAutoLock lock(mFramesMutex);
// Try to get the new frame from the decoder.
RawAccessFrameRef frame = mDecoder->GetCurrentFrameRef();
MOZ_ASSERT(mDecoder->HasFrameToTake());
mDecoder->ClearHasFrameToTake();
if (!frame) {
MOZ_ASSERT_UNREACHABLE("Decoder yielded but didn't produce a frame?");
return true;
}
// We should've gotten a different frame than last time.
MOZ_ASSERT_IF(!mFrames.Frames().IsEmpty(),
mFrames.Frames().LastElement().get() != frame.get());
// Append the new frame to the list.
continueDecoding = mFrames.Insert(Move(frame));
// We only want to handle the first frame if it is the first pass for the
// animation decoder. The owning image will be cleared after that.
size_t frameCount = mFrames.Frames().Length();
if (frameCount == 1 && mImage) {
justGotFirstFrame = true;
}
}
if (justGotFirstFrame) {
AnnounceSurfaceAvailable();
}
// If we are shutting down, we want to ensure we release the thread as soon
// as possible. The animation may advance even during shutdown, which keeps
// us decoding, and thus blocking the decode pool during teardown.
return continueDecoding && !DecodePool::Singleton()->IsShuttingDown();
}
bool
AnimationSurfaceProvider::CheckForNewFrameAtTerminalState()
{
mDecodingMutex.AssertCurrentThreadOwns();
MOZ_ASSERT(mDecoder);
bool justGotFirstFrame = false;
bool continueDecoding;
{
MutexAutoLock lock(mFramesMutex);
// The decoder may or may not have a new frame for us at this point. Avoid
// reinserting the same frame again.
RawAccessFrameRef frame = mDecoder->GetCurrentFrameRef();
// If the decoder didn't finish a new frame (ie if, after starting the
// frame, it got an error and aborted the frame and the rest of the decode)
// that means it won't be reporting it to the image or FrameAnimator so we
// should ignore it too, that's what HasFrameToTake tracks basically.
if (!mDecoder->HasFrameToTake()) {
frame = RawAccessFrameRef();
} else {
MOZ_ASSERT(frame);
mDecoder->ClearHasFrameToTake();
}
if (!frame || (!mFrames.Frames().IsEmpty() &&
mFrames.Frames().LastElement().get() == frame.get())) {
return mFrames.MarkComplete();
}
// Append the new frame to the list.
mFrames.Insert(Move(frame));
continueDecoding = mFrames.MarkComplete();
// We only want to handle the first frame if it is the first pass for the
// animation decoder. The owning image will be cleared after that.
if (mFrames.Frames().Length() == 1 && mImage) {
justGotFirstFrame = true;
}
}
if (justGotFirstFrame) {
AnnounceSurfaceAvailable();
}
// If we are shutting down, we want to ensure we release the thread as soon
// as possible. The animation may advance even during shutdown, which keeps
// us decoding, and thus blocking the decode pool during teardown.
return continueDecoding && !DecodePool::Singleton()->IsShuttingDown();
}
void
AnimationSurfaceProvider::AnnounceSurfaceAvailable()
{
mFramesMutex.AssertNotCurrentThreadOwns();
MOZ_ASSERT(mImage);
// We just got the first frame; let the surface cache know. We deliberately do
// this outside of mFramesMutex to avoid a potential deadlock with
// AddSizeOfExcludingThis(), since otherwise we'd be acquiring mFramesMutex
// and then the surface cache lock, while the memory reporting code would
// acquire the surface cache lock and then mFramesMutex.
SurfaceCache::SurfaceAvailable(WrapNotNull(this));
}
void
AnimationSurfaceProvider::FinishDecoding()
{
mDecodingMutex.AssertCurrentThreadOwns();
MOZ_ASSERT(mDecoder);
if (mImage) {
// Send notifications.
NotifyDecodeComplete(WrapNotNull(mImage), WrapNotNull(mDecoder));
}
// Destroy our decoder; we don't need it anymore.
bool mayDiscard;
{
MutexAutoLock lock(mFramesMutex);
mayDiscard = mFrames.MayDiscard();
}
if (mayDiscard) {
// Recreate the decoder so we can regenerate the frames again.
mDecoder = DecoderFactory::CloneAnimationDecoder(mDecoder);
MOZ_ASSERT(mDecoder);
} else {
mDecoder = nullptr;
}
// We don't need a reference to our image anymore, either, and we don't want
// one. We may be stored in the surface cache for a long time after decoding
// finishes. If we don't drop our reference to the image, we'll end up
// keeping it alive as long as we remain in the surface cache, which could
// greatly extend the image's lifetime - in fact, if the image isn't
// discardable, it'd result in a leak!
DropImageReference();
}
bool
AnimationSurfaceProvider::ShouldPreferSyncRun() const
{
MutexAutoLock lock(mDecodingMutex);
MOZ_ASSERT(mDecoder);
return mDecoder->ShouldSyncDecode(gfxPrefs::ImageMemDecodeBytesAtATime());
}
} // namespace image
} // namespace mozilla