mirror of
https://github.com/mozilla/gecko-dev.git
synced 2024-11-08 12:37:37 +00:00
1871 lines
48 KiB
C
1871 lines
48 KiB
C
/*-
|
|
* See the file LICENSE for redistribution information.
|
|
*
|
|
* Copyright (c) 1996, 1997, 1998
|
|
* Sleepycat Software. All rights reserved.
|
|
*/
|
|
/*
|
|
* Copyright (c) 1990, 1993, 1994
|
|
* Margo Seltzer. All rights reserved.
|
|
*/
|
|
/*
|
|
* Copyright (c) 1990, 1993, 1994
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* Margo Seltzer.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#ifndef lint
|
|
static const char sccsid[] = "@(#)hash_page.c 10.40 (Sleepycat) 6/2/98";
|
|
#endif /* not lint */
|
|
|
|
/*
|
|
* PACKAGE: hashing
|
|
*
|
|
* DESCRIPTION:
|
|
* Page manipulation for hashing package.
|
|
*
|
|
* ROUTINES:
|
|
*
|
|
* External
|
|
* __get_page
|
|
* __add_ovflpage
|
|
* __overflow_page
|
|
* Internal
|
|
* open_temp
|
|
*/
|
|
|
|
#ifndef NO_SYSTEM_INCLUDES
|
|
#include <sys/types.h>
|
|
|
|
#include <errno.h>
|
|
#include <string.h>
|
|
#endif
|
|
|
|
#include "db_int.h"
|
|
#include "db_page.h"
|
|
#include "hash.h"
|
|
|
|
static int __ham_lock_bucket __P((DB *, HASH_CURSOR *, db_lockmode_t));
|
|
|
|
#ifdef DEBUG_SLOW
|
|
static void __account_page(HTAB *, db_pgno_t, int);
|
|
#endif
|
|
|
|
/*
|
|
* PUBLIC: int __ham_item __P((HTAB *, HASH_CURSOR *, db_lockmode_t));
|
|
*/
|
|
int
|
|
__ham_item(hashp, cursorp, mode)
|
|
HTAB *hashp;
|
|
HASH_CURSOR *cursorp;
|
|
db_lockmode_t mode;
|
|
{
|
|
db_pgno_t next_pgno;
|
|
int ret;
|
|
|
|
if (F_ISSET(cursorp, H_DELETED))
|
|
return (EINVAL);
|
|
F_CLR(cursorp, H_OK | H_NOMORE);
|
|
|
|
/* Check if we need to get a page for this cursor. */
|
|
if ((ret = __ham_get_cpage(hashp, cursorp, mode)) != 0)
|
|
return (ret);
|
|
|
|
/* Check if we are looking for space in which to insert an item. */
|
|
if (cursorp->seek_size && cursorp->seek_found_page == PGNO_INVALID
|
|
&& cursorp->seek_size < P_FREESPACE(cursorp->pagep))
|
|
cursorp->seek_found_page = cursorp->pgno;
|
|
|
|
/* Check if we need to go on to the next page. */
|
|
if (F_ISSET(cursorp, H_ISDUP) && cursorp->dpgno == PGNO_INVALID)
|
|
/*
|
|
* ISDUP is set, and offset is at the beginning of the datum.
|
|
* We need to grab the length of the datum, then set the datum
|
|
* pointer to be the beginning of the datum.
|
|
*/
|
|
memcpy(&cursorp->dup_len,
|
|
HKEYDATA_DATA(H_PAIRDATA(cursorp->pagep, cursorp->bndx)) +
|
|
cursorp->dup_off, sizeof(db_indx_t));
|
|
else if (F_ISSET(cursorp, H_ISDUP)) {
|
|
/* Make sure we're not about to run off the page. */
|
|
if (cursorp->dpagep == NULL && (ret = __ham_get_page(hashp->dbp,
|
|
cursorp->dpgno, &cursorp->dpagep)) != 0)
|
|
return (ret);
|
|
|
|
if (cursorp->dndx >= NUM_ENT(cursorp->dpagep)) {
|
|
if (NEXT_PGNO(cursorp->dpagep) == PGNO_INVALID) {
|
|
if ((ret = __ham_put_page(hashp->dbp,
|
|
cursorp->dpagep, 0)) != 0)
|
|
return (ret);
|
|
F_CLR(cursorp, H_ISDUP);
|
|
cursorp->dpagep = NULL;
|
|
cursorp->dpgno = PGNO_INVALID;
|
|
cursorp->dndx = NDX_INVALID;
|
|
cursorp->bndx++;
|
|
} else if ((ret = __ham_next_cpage(hashp, cursorp,
|
|
NEXT_PGNO(cursorp->dpagep), 0, H_ISDUP)) != 0)
|
|
return (ret);
|
|
}
|
|
}
|
|
|
|
if (cursorp->bndx >= (db_indx_t)H_NUMPAIRS(cursorp->pagep)) {
|
|
/* Fetch next page. */
|
|
if (NEXT_PGNO(cursorp->pagep) == PGNO_INVALID) {
|
|
F_SET(cursorp, H_NOMORE);
|
|
if (cursorp->dpagep != NULL &&
|
|
(ret = __ham_put_page(hashp->dbp,
|
|
cursorp->dpagep, 0)) != 0)
|
|
return (ret);
|
|
cursorp->dpgno = PGNO_INVALID;
|
|
return (DB_NOTFOUND);
|
|
}
|
|
next_pgno = NEXT_PGNO(cursorp->pagep);
|
|
cursorp->bndx = 0;
|
|
if ((ret = __ham_next_cpage(hashp,
|
|
cursorp, next_pgno, 0, 0)) != 0)
|
|
return (ret);
|
|
}
|
|
|
|
F_SET(cursorp, H_OK);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* PUBLIC: int __ham_item_reset __P((HTAB *, HASH_CURSOR *));
|
|
*/
|
|
int
|
|
__ham_item_reset(hashp, cursorp)
|
|
HTAB *hashp;
|
|
HASH_CURSOR *cursorp;
|
|
{
|
|
int ret;
|
|
|
|
if (cursorp->pagep)
|
|
ret = __ham_put_page(hashp->dbp, cursorp->pagep, 0);
|
|
else
|
|
ret = 0;
|
|
|
|
__ham_item_init(cursorp);
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* PUBLIC: void __ham_item_init __P((HASH_CURSOR *));
|
|
*/
|
|
void
|
|
__ham_item_init(cursorp)
|
|
HASH_CURSOR *cursorp;
|
|
{
|
|
cursorp->pagep = NULL;
|
|
cursorp->bucket = BUCKET_INVALID;
|
|
cursorp->lock = 0;
|
|
cursorp->bndx = NDX_INVALID;
|
|
cursorp->pgno = PGNO_INVALID;
|
|
cursorp->dpgno = PGNO_INVALID;
|
|
cursorp->dndx = NDX_INVALID;
|
|
cursorp->dpagep = NULL;
|
|
cursorp->flags = 0;
|
|
cursorp->seek_size = 0;
|
|
cursorp->seek_found_page = PGNO_INVALID;
|
|
}
|
|
|
|
/*
|
|
* PUBLIC: int __ham_item_done __P((HTAB *, HASH_CURSOR *, int));
|
|
*/
|
|
int
|
|
__ham_item_done(hashp, cursorp, dirty)
|
|
HTAB *hashp;
|
|
HASH_CURSOR *cursorp;
|
|
int dirty;
|
|
{
|
|
int ret, t_ret;
|
|
|
|
t_ret = ret = 0;
|
|
|
|
if (cursorp->pagep)
|
|
ret = __ham_put_page(hashp->dbp, cursorp->pagep,
|
|
dirty && cursorp->dpagep == NULL);
|
|
cursorp->pagep = NULL;
|
|
|
|
if (cursorp->dpagep)
|
|
t_ret = __ham_put_page(hashp->dbp, cursorp->dpagep, dirty);
|
|
cursorp->dpagep = NULL;
|
|
|
|
if (ret == 0 && t_ret != 0)
|
|
ret = t_ret;
|
|
|
|
/*
|
|
* If we are running with transactions, then we must
|
|
* not relinquish locks explicitly.
|
|
*/
|
|
if (cursorp->lock && hashp->dbp->txn == NULL)
|
|
t_ret = lock_put(hashp->dbp->dbenv->lk_info, cursorp->lock);
|
|
cursorp->lock = 0;
|
|
|
|
|
|
/*
|
|
* We don't throw out the page number since we might want to
|
|
* continue getting on this page.
|
|
*/
|
|
return (ret != 0 ? ret : t_ret);
|
|
}
|
|
|
|
/*
|
|
* Returns the last item in a bucket.
|
|
*
|
|
* PUBLIC: int __ham_item_last __P((HTAB *, HASH_CURSOR *, db_lockmode_t));
|
|
*/
|
|
int
|
|
__ham_item_last(hashp, cursorp, mode)
|
|
HTAB *hashp;
|
|
HASH_CURSOR *cursorp;
|
|
db_lockmode_t mode;
|
|
{
|
|
int ret;
|
|
|
|
if ((ret = __ham_item_reset(hashp, cursorp)) != 0)
|
|
return (ret);
|
|
|
|
cursorp->bucket = hashp->hdr->max_bucket;
|
|
F_SET(cursorp, H_OK);
|
|
return (__ham_item_prev(hashp, cursorp, mode));
|
|
}
|
|
|
|
/*
|
|
* PUBLIC: int __ham_item_first __P((HTAB *, HASH_CURSOR *, db_lockmode_t));
|
|
*/
|
|
int
|
|
__ham_item_first(hashp, cursorp, mode)
|
|
HTAB *hashp;
|
|
HASH_CURSOR *cursorp;
|
|
db_lockmode_t mode;
|
|
{
|
|
int ret;
|
|
|
|
if ((ret = __ham_item_reset(hashp, cursorp)) != 0)
|
|
return (ret);
|
|
F_SET(cursorp, H_OK);
|
|
cursorp->bucket = 0;
|
|
return (__ham_item_next(hashp, cursorp, mode));
|
|
}
|
|
|
|
/*
|
|
* __ham_item_prev --
|
|
* Returns a pointer to key/data pair on a page. In the case of
|
|
* bigkeys, just returns the page number and index of the bigkey
|
|
* pointer pair.
|
|
*
|
|
* PUBLIC: int __ham_item_prev __P((HTAB *, HASH_CURSOR *, db_lockmode_t));
|
|
*/
|
|
int
|
|
__ham_item_prev(hashp, cursorp, mode)
|
|
HTAB *hashp;
|
|
HASH_CURSOR *cursorp;
|
|
db_lockmode_t mode;
|
|
{
|
|
db_pgno_t next_pgno;
|
|
int ret;
|
|
|
|
/*
|
|
* There are N cases for backing up in a hash file.
|
|
* Case 1: In the middle of a page, no duplicates, just dec the index.
|
|
* Case 2: In the middle of a duplicate set, back up one.
|
|
* Case 3: At the beginning of a duplicate set, get out of set and
|
|
* back up to next key.
|
|
* Case 4: At the beginning of a page; go to previous page.
|
|
* Case 5: At the beginning of a bucket; go to prev bucket.
|
|
*/
|
|
F_CLR(cursorp, H_OK | H_NOMORE | H_DELETED);
|
|
|
|
/*
|
|
* First handle the duplicates. Either you'll get the key here
|
|
* or you'll exit the duplicate set and drop into the code below
|
|
* to handle backing up through keys.
|
|
*/
|
|
if (F_ISSET(cursorp, H_ISDUP)) {
|
|
if (cursorp->dpgno == PGNO_INVALID) {
|
|
/* Duplicates are on-page. */
|
|
if (cursorp->dup_off != 0)
|
|
if ((ret = __ham_get_cpage(hashp,
|
|
cursorp, mode)) != 0)
|
|
return (ret);
|
|
else {
|
|
HASH_CURSOR *h;
|
|
h = cursorp;
|
|
memcpy(&h->dup_len, HKEYDATA_DATA(
|
|
H_PAIRDATA(h->pagep, h->bndx))
|
|
+ h->dup_off - sizeof(db_indx_t),
|
|
sizeof(db_indx_t));
|
|
cursorp->dup_off -=
|
|
DUP_SIZE(cursorp->dup_len);
|
|
cursorp->dndx--;
|
|
return (__ham_item(hashp,
|
|
cursorp, mode));
|
|
}
|
|
} else if (cursorp->dndx > 0) { /* Duplicates are off-page. */
|
|
cursorp->dndx--;
|
|
return (__ham_item(hashp, cursorp, mode));
|
|
} else if ((ret = __ham_get_cpage(hashp, cursorp, mode)) != 0)
|
|
return (ret);
|
|
else if (PREV_PGNO(cursorp->dpagep) == PGNO_INVALID) {
|
|
F_CLR(cursorp, H_ISDUP); /* End of dups */
|
|
cursorp->dpgno = PGNO_INVALID;
|
|
if (cursorp->dpagep != NULL)
|
|
(void)__ham_put_page(hashp->dbp,
|
|
cursorp->dpagep, 0);
|
|
cursorp->dpagep = NULL;
|
|
} else if ((ret = __ham_next_cpage(hashp, cursorp,
|
|
PREV_PGNO(cursorp->dpagep), 0, H_ISDUP)) != 0)
|
|
return (ret);
|
|
else {
|
|
cursorp->dndx = NUM_ENT(cursorp->pagep) - 1;
|
|
return (__ham_item(hashp, cursorp, mode));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we get here, we are not in a duplicate set, and just need
|
|
* to back up the cursor. There are still three cases:
|
|
* midpage, beginning of page, beginning of bucket.
|
|
*/
|
|
|
|
if (cursorp->bndx == 0) { /* Beginning of page. */
|
|
if ((ret = __ham_get_cpage(hashp, cursorp, mode)) != 0)
|
|
return (ret);
|
|
cursorp->pgno = PREV_PGNO(cursorp->pagep);
|
|
if (cursorp->pgno == PGNO_INVALID) {
|
|
/* Beginning of bucket. */
|
|
F_SET(cursorp, H_NOMORE);
|
|
return (DB_NOTFOUND);
|
|
} else if ((ret = __ham_next_cpage(hashp,
|
|
cursorp, cursorp->pgno, 0, 0)) != 0)
|
|
return (ret);
|
|
else
|
|
cursorp->bndx = H_NUMPAIRS(cursorp->pagep);
|
|
}
|
|
|
|
/*
|
|
* Either we've got the cursor set up to be decremented, or we
|
|
* have to find the end of a bucket.
|
|
*/
|
|
if (cursorp->bndx == NDX_INVALID) {
|
|
if (cursorp->pagep == NULL)
|
|
next_pgno = BUCKET_TO_PAGE(hashp, cursorp->bucket);
|
|
else
|
|
goto got_page;
|
|
|
|
do {
|
|
if ((ret = __ham_next_cpage(hashp,
|
|
cursorp, next_pgno, 0, 0)) != 0)
|
|
return (ret);
|
|
got_page: next_pgno = NEXT_PGNO(cursorp->pagep);
|
|
cursorp->bndx = H_NUMPAIRS(cursorp->pagep);
|
|
} while (next_pgno != PGNO_INVALID);
|
|
|
|
if (cursorp->bndx == 0) {
|
|
/* Bucket was empty. */
|
|
F_SET(cursorp, H_NOMORE);
|
|
return (DB_NOTFOUND);
|
|
}
|
|
}
|
|
|
|
cursorp->bndx--;
|
|
|
|
return (__ham_item(hashp, cursorp, mode));
|
|
}
|
|
|
|
/*
|
|
* Sets the cursor to the next key/data pair on a page.
|
|
*
|
|
* PUBLIC: int __ham_item_next __P((HTAB *, HASH_CURSOR *, db_lockmode_t));
|
|
*/
|
|
int
|
|
__ham_item_next(hashp, cursorp, mode)
|
|
HTAB *hashp;
|
|
HASH_CURSOR *cursorp;
|
|
db_lockmode_t mode;
|
|
{
|
|
/*
|
|
* Deleted on-page duplicates are a weird case. If we delete the last
|
|
* one, then our cursor is at the very end of a duplicate set and
|
|
* we actually need to go on to the next key.
|
|
*/
|
|
if (F_ISSET(cursorp, H_DELETED)) {
|
|
if (cursorp->bndx != NDX_INVALID &&
|
|
F_ISSET(cursorp, H_ISDUP) &&
|
|
cursorp->dpgno == PGNO_INVALID &&
|
|
cursorp->dup_tlen == cursorp->dup_off) {
|
|
F_CLR(cursorp, H_ISDUP);
|
|
cursorp->dpgno = PGNO_INVALID;
|
|
cursorp->bndx++;
|
|
}
|
|
F_CLR(cursorp, H_DELETED);
|
|
} else if (cursorp->bndx == NDX_INVALID) {
|
|
cursorp->bndx = 0;
|
|
cursorp->dpgno = PGNO_INVALID;
|
|
F_CLR(cursorp, H_ISDUP);
|
|
} else if (F_ISSET(cursorp, H_ISDUP) && cursorp->dpgno != PGNO_INVALID)
|
|
cursorp->dndx++;
|
|
else if (F_ISSET(cursorp, H_ISDUP)) {
|
|
cursorp->dndx++;
|
|
cursorp->dup_off += DUP_SIZE(cursorp->dup_len);
|
|
if (cursorp->dup_off >= cursorp->dup_tlen) {
|
|
F_CLR(cursorp, H_ISDUP);
|
|
cursorp->dpgno = PGNO_INVALID;
|
|
cursorp->bndx++;
|
|
}
|
|
} else
|
|
cursorp->bndx++;
|
|
|
|
return (__ham_item(hashp, cursorp, mode));
|
|
}
|
|
|
|
/*
|
|
* PUBLIC: void __ham_putitem __P((PAGE *p, const DBT *, int));
|
|
*
|
|
* This is a little bit sleazy in that we're overloading the meaning
|
|
* of the H_OFFPAGE type here. When we recover deletes, we have the
|
|
* entire entry instead of having only the DBT, so we'll pass type
|
|
* H_OFFPAGE to mean, "copy the whole entry" as opposed to constructing
|
|
* an H_KEYDATA around it.
|
|
*/
|
|
void
|
|
__ham_putitem(p, dbt, type)
|
|
PAGE *p;
|
|
const DBT *dbt;
|
|
int type;
|
|
{
|
|
u_int16_t n, off;
|
|
|
|
n = NUM_ENT(p);
|
|
|
|
/* Put the item element on the page. */
|
|
if (type == H_OFFPAGE) {
|
|
off = HOFFSET(p) - dbt->size;
|
|
HOFFSET(p) = p->inp[n] = off;
|
|
memcpy(P_ENTRY(p, n), dbt->data, dbt->size);
|
|
} else {
|
|
off = HOFFSET(p) - HKEYDATA_SIZE(dbt->size);
|
|
HOFFSET(p) = p->inp[n] = off;
|
|
PUT_HKEYDATA(P_ENTRY(p, n), dbt->data, dbt->size, type);
|
|
}
|
|
|
|
/* Adjust page info. */
|
|
NUM_ENT(p) += 1;
|
|
}
|
|
|
|
/*
|
|
* PUBLIC: void __ham_reputpair
|
|
* PUBLIC: __P((PAGE *p, u_int32_t, u_int32_t, const DBT *, const DBT *));
|
|
*
|
|
* This is a special case to restore a key/data pair to its original
|
|
* location during recovery. We are guaranteed that the pair fits
|
|
* on the page and is not the last pair on the page (because if it's
|
|
* the last pair, the normal insert works).
|
|
*/
|
|
void
|
|
__ham_reputpair(p, psize, ndx, key, data)
|
|
PAGE *p;
|
|
u_int32_t psize, ndx;
|
|
const DBT *key, *data;
|
|
{
|
|
db_indx_t i, movebytes, newbytes;
|
|
u_int8_t *from;
|
|
|
|
/* First shuffle the existing items up on the page. */
|
|
movebytes =
|
|
(ndx == 0 ? psize : p->inp[H_DATAINDEX(ndx - 1)]) - HOFFSET(p);
|
|
newbytes = key->size + data->size;
|
|
from = (u_int8_t *)p + HOFFSET(p);
|
|
memmove(from - newbytes, from, movebytes);
|
|
|
|
/*
|
|
* Adjust the indices and move them up 2 spaces. Note that we
|
|
* have to check the exit condition inside the loop just in case
|
|
* we are dealing with index 0 (db_indx_t's are unsigned).
|
|
*/
|
|
for (i = NUM_ENT(p) - 1; ; i-- ) {
|
|
p->inp[i + 2] = p->inp[i] - newbytes;
|
|
if (i == H_KEYINDEX(ndx))
|
|
break;
|
|
}
|
|
|
|
/* Put the key and data on the page. */
|
|
p->inp[H_KEYINDEX(ndx)] =
|
|
(ndx == 0 ? psize : p->inp[H_DATAINDEX(ndx - 1)]) - key->size;
|
|
p->inp[H_DATAINDEX(ndx)] = p->inp[H_KEYINDEX(ndx)] - data->size;
|
|
memcpy(P_ENTRY(p, H_KEYINDEX(ndx)), key->data, key->size);
|
|
memcpy(P_ENTRY(p, H_DATAINDEX(ndx)), data->data, data->size);
|
|
|
|
/* Adjust page info. */
|
|
HOFFSET(p) -= newbytes;
|
|
NUM_ENT(p) += 2;
|
|
}
|
|
|
|
|
|
/*
|
|
* PUBLIC: int __ham_del_pair __P((HTAB *, HASH_CURSOR *, int));
|
|
*
|
|
* XXX
|
|
* TODO: if the item is an offdup, delete the other pages and then remove
|
|
* the pair. If the offpage page is 0, then you can just remove the pair.
|
|
*/
|
|
int
|
|
__ham_del_pair(hashp, cursorp, reclaim_page)
|
|
HTAB *hashp;
|
|
HASH_CURSOR *cursorp;
|
|
int reclaim_page;
|
|
{
|
|
DBT data_dbt, key_dbt;
|
|
DB_ENV *dbenv;
|
|
DB_LSN new_lsn, *n_lsn, tmp_lsn;
|
|
PAGE *p;
|
|
db_indx_t ndx;
|
|
db_pgno_t chg_pgno, pgno;
|
|
int ret, tret;
|
|
|
|
dbenv = hashp->dbp->dbenv;
|
|
ndx = cursorp->bndx;
|
|
if (cursorp->pagep == NULL && (ret =
|
|
__ham_get_page(hashp->dbp, cursorp->pgno, &cursorp->pagep)) != 0)
|
|
return (ret);
|
|
|
|
p = cursorp->pagep;
|
|
|
|
/*
|
|
* We optimize for the normal case which is when neither the key nor
|
|
* the data are large. In this case, we write a single log record
|
|
* and do the delete. If either is large, we'll call __big_delete
|
|
* to remove the big item and then update the page to remove the
|
|
* entry referring to the big item.
|
|
*/
|
|
ret = 0;
|
|
if (HPAGE_PTYPE(H_PAIRKEY(p, ndx)) == H_OFFPAGE) {
|
|
memcpy(&pgno, HOFFPAGE_PGNO(P_ENTRY(p, H_KEYINDEX(ndx))),
|
|
sizeof(db_pgno_t));
|
|
ret = __db_doff(hashp->dbp, pgno, __ham_del_page);
|
|
}
|
|
|
|
if (ret == 0)
|
|
switch (HPAGE_PTYPE(H_PAIRDATA(p, ndx))) {
|
|
case H_OFFPAGE:
|
|
memcpy(&pgno,
|
|
HOFFPAGE_PGNO(P_ENTRY(p, H_DATAINDEX(ndx))),
|
|
sizeof(db_pgno_t));
|
|
ret = __db_doff(hashp->dbp, pgno, __ham_del_page);
|
|
break;
|
|
case H_OFFDUP:
|
|
memcpy(&pgno,
|
|
HOFFDUP_PGNO(P_ENTRY(p, H_DATAINDEX(ndx))),
|
|
sizeof(db_pgno_t));
|
|
ret = __db_ddup(hashp->dbp, pgno, __ham_del_page);
|
|
F_CLR(cursorp, H_ISDUP);
|
|
break;
|
|
case H_DUPLICATE:
|
|
/*
|
|
* If we delete a pair that is/was a duplicate, then
|
|
* we had better clear the flag so that we update the
|
|
* cursor appropriately.
|
|
*/
|
|
F_CLR(cursorp, H_ISDUP);
|
|
break;
|
|
}
|
|
|
|
if (ret)
|
|
return (ret);
|
|
|
|
/* Now log the delete off this page. */
|
|
if (DB_LOGGING(hashp->dbp)) {
|
|
key_dbt.data = P_ENTRY(p, H_KEYINDEX(ndx));
|
|
key_dbt.size =
|
|
LEN_HITEM(p, hashp->hdr->pagesize, H_KEYINDEX(ndx));
|
|
data_dbt.data = P_ENTRY(p, H_DATAINDEX(ndx));
|
|
data_dbt.size =
|
|
LEN_HITEM(p, hashp->hdr->pagesize, H_DATAINDEX(ndx));
|
|
|
|
if ((ret = __ham_insdel_log(dbenv->lg_info,
|
|
(DB_TXN *)hashp->dbp->txn, &new_lsn, 0, DELPAIR,
|
|
hashp->dbp->log_fileid, PGNO(p), (u_int32_t)ndx,
|
|
&LSN(p), &key_dbt, &data_dbt)) != 0)
|
|
return (ret);
|
|
|
|
/* Move lsn onto page. */
|
|
LSN(p) = new_lsn;
|
|
}
|
|
|
|
__ham_dpair(hashp->dbp, p, ndx);
|
|
|
|
/*
|
|
* If we are locking, we will not maintain this.
|
|
* XXXX perhaps we can retain incremental numbers and apply them
|
|
* later.
|
|
*/
|
|
if (!F_ISSET(hashp->dbp, DB_AM_LOCKING))
|
|
--hashp->hdr->nelem;
|
|
|
|
/*
|
|
* If we need to reclaim the page, then check if the page is empty.
|
|
* There are two cases. If it's empty and it's not the first page
|
|
* in the bucket (i.e., the bucket page) then we can simply remove
|
|
* it. If it is the first chain in the bucket, then we need to copy
|
|
* the second page into it and remove the second page.
|
|
*/
|
|
if (reclaim_page && NUM_ENT(p) == 0 && PREV_PGNO(p) == PGNO_INVALID &&
|
|
NEXT_PGNO(p) != PGNO_INVALID) {
|
|
PAGE *n_pagep, *nn_pagep;
|
|
db_pgno_t tmp_pgno;
|
|
|
|
/*
|
|
* First page in chain is empty and we know that there
|
|
* are more pages in the chain.
|
|
*/
|
|
if ((ret =
|
|
__ham_get_page(hashp->dbp, NEXT_PGNO(p), &n_pagep)) != 0)
|
|
return (ret);
|
|
|
|
if (NEXT_PGNO(n_pagep) != PGNO_INVALID) {
|
|
if ((ret =
|
|
__ham_get_page(hashp->dbp, NEXT_PGNO(n_pagep),
|
|
&nn_pagep)) != 0) {
|
|
(void) __ham_put_page(hashp->dbp, n_pagep, 0);
|
|
return (ret);
|
|
}
|
|
}
|
|
|
|
if (DB_LOGGING(hashp->dbp)) {
|
|
key_dbt.data = n_pagep;
|
|
key_dbt.size = hashp->hdr->pagesize;
|
|
if ((ret = __ham_copypage_log(dbenv->lg_info,
|
|
(DB_TXN *)hashp->dbp->txn, &new_lsn, 0,
|
|
hashp->dbp->log_fileid, PGNO(p), &LSN(p),
|
|
PGNO(n_pagep), &LSN(n_pagep), NEXT_PGNO(n_pagep),
|
|
NEXT_PGNO(n_pagep) == PGNO_INVALID ? NULL :
|
|
&LSN(nn_pagep), &key_dbt)) != 0)
|
|
return (ret);
|
|
|
|
/* Move lsn onto page. */
|
|
LSN(p) = new_lsn; /* Structure assignment. */
|
|
LSN(n_pagep) = new_lsn;
|
|
if (NEXT_PGNO(n_pagep) != PGNO_INVALID)
|
|
LSN(nn_pagep) = new_lsn;
|
|
}
|
|
if (NEXT_PGNO(n_pagep) != PGNO_INVALID) {
|
|
PREV_PGNO(nn_pagep) = PGNO(p);
|
|
(void)__ham_put_page(hashp->dbp, nn_pagep, 1);
|
|
}
|
|
|
|
tmp_pgno = PGNO(p);
|
|
tmp_lsn = LSN(p);
|
|
memcpy(p, n_pagep, hashp->hdr->pagesize);
|
|
PGNO(p) = tmp_pgno;
|
|
LSN(p) = tmp_lsn;
|
|
PREV_PGNO(p) = PGNO_INVALID;
|
|
|
|
/*
|
|
* Cursor is advanced to the beginning of the next page.
|
|
*/
|
|
cursorp->bndx = 0;
|
|
cursorp->pgno = PGNO(p);
|
|
F_SET(cursorp, H_DELETED);
|
|
chg_pgno = PGNO(p);
|
|
if ((ret = __ham_dirty_page(hashp, p)) != 0 ||
|
|
(ret = __ham_del_page(hashp->dbp, n_pagep)) != 0)
|
|
return (ret);
|
|
} else if (reclaim_page &&
|
|
NUM_ENT(p) == 0 && PREV_PGNO(p) != PGNO_INVALID) {
|
|
PAGE *n_pagep, *p_pagep;
|
|
|
|
if ((ret =
|
|
__ham_get_page(hashp->dbp, PREV_PGNO(p), &p_pagep)) != 0)
|
|
return (ret);
|
|
|
|
if (NEXT_PGNO(p) != PGNO_INVALID) {
|
|
if ((ret = __ham_get_page(hashp->dbp,
|
|
NEXT_PGNO(p), &n_pagep)) != 0) {
|
|
(void)__ham_put_page(hashp->dbp, p_pagep, 0);
|
|
return (ret);
|
|
}
|
|
n_lsn = &LSN(n_pagep);
|
|
} else {
|
|
n_pagep = NULL;
|
|
n_lsn = NULL;
|
|
}
|
|
|
|
NEXT_PGNO(p_pagep) = NEXT_PGNO(p);
|
|
if (n_pagep != NULL)
|
|
PREV_PGNO(n_pagep) = PGNO(p_pagep);
|
|
|
|
if (DB_LOGGING(hashp->dbp)) {
|
|
if ((ret = __ham_newpage_log(dbenv->lg_info,
|
|
(DB_TXN *)hashp->dbp->txn, &new_lsn, 0, DELOVFL,
|
|
hashp->dbp->log_fileid, PREV_PGNO(p), &LSN(p_pagep),
|
|
PGNO(p), &LSN(p), NEXT_PGNO(p), n_lsn)) != 0)
|
|
return (ret);
|
|
|
|
/* Move lsn onto page. */
|
|
LSN(p_pagep) = new_lsn; /* Structure assignment. */
|
|
if (n_pagep)
|
|
LSN(n_pagep) = new_lsn;
|
|
LSN(p) = new_lsn;
|
|
}
|
|
cursorp->pgno = NEXT_PGNO(p);
|
|
cursorp->bndx = 0;
|
|
/*
|
|
* Since we are about to delete the cursor page and we have
|
|
* just moved the cursor, we need to make sure that the
|
|
* old page pointer isn't left hanging around in the cursor.
|
|
*/
|
|
cursorp->pagep = NULL;
|
|
chg_pgno = PGNO(p);
|
|
ret = __ham_del_page(hashp->dbp, p);
|
|
if ((tret = __ham_put_page(hashp->dbp, p_pagep, 1)) != 0 &&
|
|
ret == 0)
|
|
ret = tret;
|
|
if (n_pagep != NULL &&
|
|
(tret = __ham_put_page(hashp->dbp, n_pagep, 1)) != 0 &&
|
|
ret == 0)
|
|
ret = tret;
|
|
if (ret != 0)
|
|
return (ret);
|
|
} else {
|
|
/*
|
|
* Mark item deleted so that we don't try to return it, and
|
|
* so that we update the cursor correctly on the next call
|
|
* to next.
|
|
*/
|
|
F_SET(cursorp, H_DELETED);
|
|
chg_pgno = cursorp->pgno;
|
|
ret = __ham_dirty_page(hashp, p);
|
|
}
|
|
__ham_c_update(cursorp, chg_pgno, 0, 0, 0);
|
|
|
|
/*
|
|
* Since we just deleted a pair from the master page, anything
|
|
* in cursorp->dpgno should be cleared.
|
|
*/
|
|
cursorp->dpgno = PGNO_INVALID;
|
|
|
|
F_CLR(cursorp, H_OK);
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* __ham_replpair --
|
|
* Given the key data indicated by the cursor, replace part/all of it
|
|
* according to the fields in the dbt.
|
|
*
|
|
* PUBLIC: int __ham_replpair __P((HTAB *, HASH_CURSOR *, DBT *, u_int32_t));
|
|
*/
|
|
int
|
|
__ham_replpair(hashp, hcp, dbt, make_dup)
|
|
HTAB *hashp;
|
|
HASH_CURSOR *hcp;
|
|
DBT *dbt;
|
|
u_int32_t make_dup;
|
|
{
|
|
DBT old_dbt, tdata, tmp;
|
|
DB_LSN new_lsn;
|
|
int32_t change; /* XXX: Possible overflow. */
|
|
u_int32_t len;
|
|
int is_big, ret, type;
|
|
u_int8_t *beg, *dest, *end, *hk, *src;
|
|
|
|
/*
|
|
* Big item replacements are handled in generic code.
|
|
* Items that fit on the current page fall into 4 classes.
|
|
* 1. On-page element, same size
|
|
* 2. On-page element, new is bigger (fits)
|
|
* 3. On-page element, new is bigger (does not fit)
|
|
* 4. On-page element, old is bigger
|
|
* Numbers 1, 2, and 4 are essentially the same (and should
|
|
* be the common case). We handle case 3 as a delete and
|
|
* add.
|
|
*/
|
|
|
|
/*
|
|
* We need to compute the number of bytes that we are adding or
|
|
* removing from the entry. Normally, we can simply substract
|
|
* the number of bytes we are replacing (dbt->dlen) from the
|
|
* number of bytes we are inserting (dbt->size). However, if
|
|
* we are doing a partial put off the end of a record, then this
|
|
* formula doesn't work, because we are essentially adding
|
|
* new bytes.
|
|
*/
|
|
change = dbt->size - dbt->dlen;
|
|
|
|
hk = H_PAIRDATA(hcp->pagep, hcp->bndx);
|
|
is_big = HPAGE_PTYPE(hk) == H_OFFPAGE;
|
|
|
|
if (is_big)
|
|
memcpy(&len, HOFFPAGE_TLEN(hk), sizeof(u_int32_t));
|
|
else
|
|
len = LEN_HKEYDATA(hcp->pagep,
|
|
hashp->dbp->pgsize, H_DATAINDEX(hcp->bndx));
|
|
|
|
if (dbt->doff + dbt->dlen > len)
|
|
change += dbt->doff + dbt->dlen - len;
|
|
|
|
|
|
if (change > (int32_t)P_FREESPACE(hcp->pagep) || is_big) {
|
|
/*
|
|
* Case 3 -- two subcases.
|
|
* A. This is not really a partial operation, but an overwrite.
|
|
* Simple del and add works.
|
|
* B. This is a partial and we need to construct the data that
|
|
* we are really inserting (yuck).
|
|
* In both cases, we need to grab the key off the page (in
|
|
* some cases we could do this outside of this routine; for
|
|
* cleanliness we do it here. If you happen to be on a big
|
|
* key, this could be a performance hit).
|
|
*/
|
|
tmp.flags = 0;
|
|
F_SET(&tmp, DB_DBT_MALLOC | DB_DBT_INTERNAL);
|
|
if ((ret =
|
|
__db_ret(hashp->dbp, hcp->pagep, H_KEYINDEX(hcp->bndx),
|
|
&tmp, &hcp->big_key, &hcp->big_keylen)) != 0)
|
|
return (ret);
|
|
|
|
if (dbt->doff == 0 && dbt->dlen == len) {
|
|
ret = __ham_del_pair(hashp, hcp, 0);
|
|
if (ret == 0)
|
|
ret = __ham_add_el(hashp,
|
|
hcp, &tmp, dbt, H_KEYDATA);
|
|
} else { /* Case B */
|
|
type = HPAGE_PTYPE(hk) != H_OFFPAGE ?
|
|
HPAGE_PTYPE(hk) : H_KEYDATA;
|
|
tdata.flags = 0;
|
|
F_SET(&tdata, DB_DBT_MALLOC | DB_DBT_INTERNAL);
|
|
|
|
if ((ret = __db_ret(hashp->dbp, hcp->pagep,
|
|
H_DATAINDEX(hcp->bndx), &tdata, &hcp->big_data,
|
|
&hcp->big_datalen)) != 0)
|
|
goto err;
|
|
|
|
/* Now we can delete the item. */
|
|
if ((ret = __ham_del_pair(hashp, hcp, 0)) != 0) {
|
|
__db_free(tdata.data);
|
|
goto err;
|
|
}
|
|
|
|
/* Now shift old data around to make room for new. */
|
|
if (change > 0) {
|
|
tdata.data = (void *)__db_realloc(tdata.data,
|
|
tdata.size + change);
|
|
memset((u_int8_t *)tdata.data + tdata.size,
|
|
0, change);
|
|
}
|
|
if (tdata.data == NULL)
|
|
return (ENOMEM);
|
|
end = (u_int8_t *)tdata.data + tdata.size;
|
|
|
|
src = (u_int8_t *)tdata.data + dbt->doff + dbt->dlen;
|
|
if (src < end && tdata.size > dbt->doff + dbt->dlen) {
|
|
len = tdata.size - dbt->doff - dbt->dlen;
|
|
dest = src + change;
|
|
memmove(dest, src, len);
|
|
}
|
|
memcpy((u_int8_t *)tdata.data + dbt->doff,
|
|
dbt->data, dbt->size);
|
|
tdata.size += change;
|
|
|
|
/* Now add the pair. */
|
|
ret = __ham_add_el(hashp, hcp, &tmp, &tdata, type);
|
|
__db_free(tdata.data);
|
|
}
|
|
err: __db_free(tmp.data);
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* Set up pointer into existing data. Do it before the log
|
|
* message so we can use it inside of the log setup.
|
|
*/
|
|
beg = HKEYDATA_DATA(H_PAIRDATA(hcp->pagep, hcp->bndx));
|
|
beg += dbt->doff;
|
|
|
|
/*
|
|
* If we are going to have to move bytes at all, figure out
|
|
* all the parameters here. Then log the call before moving
|
|
* anything around.
|
|
*/
|
|
if (DB_LOGGING(hashp->dbp)) {
|
|
old_dbt.data = beg;
|
|
old_dbt.size = dbt->dlen;
|
|
if ((ret = __ham_replace_log(hashp->dbp->dbenv->lg_info,
|
|
(DB_TXN *)hashp->dbp->txn, &new_lsn, 0,
|
|
hashp->dbp->log_fileid, PGNO(hcp->pagep),
|
|
(u_int32_t)H_DATAINDEX(hcp->bndx), &LSN(hcp->pagep),
|
|
(u_int32_t)dbt->doff, &old_dbt, dbt, make_dup)) != 0)
|
|
return (ret);
|
|
|
|
LSN(hcp->pagep) = new_lsn; /* Structure assignment. */
|
|
}
|
|
|
|
__ham_onpage_replace(hcp->pagep, hashp->dbp->pgsize,
|
|
(u_int32_t)H_DATAINDEX(hcp->bndx), (int32_t)dbt->doff, change, dbt);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Replace data on a page with new data, possibly growing or shrinking what's
|
|
* there. This is called on two different occasions. On one (from replpair)
|
|
* we are interested in changing only the data. On the other (from recovery)
|
|
* we are replacing the entire data (header and all) with a new element. In
|
|
* the latter case, the off argument is negative.
|
|
* pagep: the page that we're changing
|
|
* ndx: page index of the element that is growing/shrinking.
|
|
* off: Offset at which we are beginning the replacement.
|
|
* change: the number of bytes (+ or -) that the element is growing/shrinking.
|
|
* dbt: the new data that gets written at beg.
|
|
* PUBLIC: void __ham_onpage_replace __P((PAGE *, size_t, u_int32_t, int32_t,
|
|
* PUBLIC: int32_t, DBT *));
|
|
*/
|
|
void
|
|
__ham_onpage_replace(pagep, pgsize, ndx, off, change, dbt)
|
|
PAGE *pagep;
|
|
size_t pgsize;
|
|
u_int32_t ndx;
|
|
int32_t off;
|
|
int32_t change;
|
|
DBT *dbt;
|
|
{
|
|
db_indx_t i;
|
|
int32_t len;
|
|
u_int8_t *src, *dest;
|
|
int zero_me;
|
|
|
|
if (change != 0) {
|
|
zero_me = 0;
|
|
src = (u_int8_t *)(pagep) + HOFFSET(pagep);
|
|
if (off < 0)
|
|
len = pagep->inp[ndx] - HOFFSET(pagep);
|
|
else if ((u_int32_t)off >= LEN_HKEYDATA(pagep, pgsize, ndx)) {
|
|
len = HKEYDATA_DATA(P_ENTRY(pagep, ndx)) +
|
|
LEN_HKEYDATA(pagep, pgsize, ndx) - src;
|
|
zero_me = 1;
|
|
} else
|
|
len = (HKEYDATA_DATA(P_ENTRY(pagep, ndx)) + off) - src;
|
|
dest = src - change;
|
|
memmove(dest, src, len);
|
|
if (zero_me)
|
|
memset(dest + len, 0, change);
|
|
|
|
/* Now update the indices. */
|
|
for (i = ndx; i < NUM_ENT(pagep); i++)
|
|
pagep->inp[i] -= change;
|
|
HOFFSET(pagep) -= change;
|
|
}
|
|
if (off >= 0)
|
|
memcpy(HKEYDATA_DATA(P_ENTRY(pagep, ndx)) + off,
|
|
dbt->data, dbt->size);
|
|
else
|
|
memcpy(P_ENTRY(pagep, ndx), dbt->data, dbt->size);
|
|
}
|
|
|
|
/*
|
|
* PUBLIC: int __ham_split_page __P((HTAB *, u_int32_t, u_int32_t));
|
|
*/
|
|
int
|
|
__ham_split_page(hashp, obucket, nbucket)
|
|
HTAB *hashp;
|
|
u_int32_t obucket, nbucket;
|
|
{
|
|
DBT key, page_dbt;
|
|
DB_ENV *dbenv;
|
|
DB_LSN new_lsn;
|
|
PAGE **pp, *old_pagep, *temp_pagep, *new_pagep;
|
|
db_indx_t n;
|
|
db_pgno_t bucket_pgno, next_pgno;
|
|
u_int32_t big_len, len;
|
|
int ret, tret;
|
|
void *big_buf;
|
|
|
|
dbenv = hashp->dbp->dbenv;
|
|
temp_pagep = old_pagep = new_pagep = NULL;
|
|
|
|
bucket_pgno = BUCKET_TO_PAGE(hashp, obucket);
|
|
if ((ret = __ham_get_page(hashp->dbp, bucket_pgno, &old_pagep)) != 0)
|
|
return (ret);
|
|
if ((ret = __ham_new_page(hashp, BUCKET_TO_PAGE(hashp, nbucket), P_HASH,
|
|
&new_pagep)) != 0)
|
|
goto err;
|
|
|
|
temp_pagep = hashp->split_buf;
|
|
memcpy(temp_pagep, old_pagep, hashp->hdr->pagesize);
|
|
|
|
if (DB_LOGGING(hashp->dbp)) {
|
|
page_dbt.size = hashp->hdr->pagesize;
|
|
page_dbt.data = old_pagep;
|
|
if ((ret = __ham_splitdata_log(dbenv->lg_info,
|
|
(DB_TXN *)hashp->dbp->txn, &new_lsn, 0,
|
|
hashp->dbp->log_fileid, SPLITOLD, PGNO(old_pagep),
|
|
&page_dbt, &LSN(old_pagep))) != 0)
|
|
goto err;
|
|
}
|
|
|
|
P_INIT(old_pagep, hashp->hdr->pagesize, PGNO(old_pagep), PGNO_INVALID,
|
|
PGNO_INVALID, 0, P_HASH);
|
|
|
|
if (DB_LOGGING(hashp->dbp))
|
|
LSN(old_pagep) = new_lsn; /* Structure assignment. */
|
|
|
|
big_len = 0;
|
|
big_buf = NULL;
|
|
key.flags = 0;
|
|
while (temp_pagep != NULL) {
|
|
for (n = 0; n < (db_indx_t)H_NUMPAIRS(temp_pagep); n++) {
|
|
if ((ret =
|
|
__db_ret(hashp->dbp, temp_pagep, H_KEYINDEX(n),
|
|
&key, &big_buf, &big_len)) != 0)
|
|
goto err;
|
|
|
|
if (__ham_call_hash(hashp, key.data, key.size)
|
|
== obucket)
|
|
pp = &old_pagep;
|
|
else
|
|
pp = &new_pagep;
|
|
|
|
/*
|
|
* Figure out how many bytes we need on the new
|
|
* page to store the key/data pair.
|
|
*/
|
|
|
|
len = LEN_HITEM(temp_pagep, hashp->hdr->pagesize,
|
|
H_DATAINDEX(n)) +
|
|
LEN_HITEM(temp_pagep, hashp->hdr->pagesize,
|
|
H_KEYINDEX(n)) +
|
|
2 * sizeof(db_indx_t);
|
|
|
|
if (P_FREESPACE(*pp) < len) {
|
|
if (DB_LOGGING(hashp->dbp)) {
|
|
page_dbt.size = hashp->hdr->pagesize;
|
|
page_dbt.data = *pp;
|
|
if ((ret = __ham_splitdata_log(
|
|
dbenv->lg_info,
|
|
(DB_TXN *)hashp->dbp->txn,
|
|
&new_lsn, 0,
|
|
hashp->dbp->log_fileid, SPLITNEW,
|
|
PGNO(*pp), &page_dbt,
|
|
&LSN(*pp))) != 0)
|
|
goto err;
|
|
LSN(*pp) = new_lsn;
|
|
}
|
|
if ((ret = __ham_add_ovflpage(hashp,
|
|
*pp, 1, pp)) != 0)
|
|
goto err;
|
|
}
|
|
__ham_copy_item(hashp, temp_pagep, H_KEYINDEX(n), *pp);
|
|
__ham_copy_item(hashp, temp_pagep, H_DATAINDEX(n), *pp);
|
|
}
|
|
next_pgno = NEXT_PGNO(temp_pagep);
|
|
|
|
/* Clear temp_page; if it's a link overflow page, free it. */
|
|
if (PGNO(temp_pagep) != bucket_pgno && (ret =
|
|
__ham_del_page(hashp->dbp, temp_pagep)) != 0)
|
|
goto err;
|
|
|
|
if (next_pgno == PGNO_INVALID)
|
|
temp_pagep = NULL;
|
|
else if ((ret =
|
|
__ham_get_page(hashp->dbp, next_pgno, &temp_pagep)) != 0)
|
|
goto err;
|
|
|
|
if (temp_pagep != NULL && DB_LOGGING(hashp->dbp)) {
|
|
page_dbt.size = hashp->hdr->pagesize;
|
|
page_dbt.data = temp_pagep;
|
|
if ((ret = __ham_splitdata_log(dbenv->lg_info,
|
|
(DB_TXN *)hashp->dbp->txn, &new_lsn, 0,
|
|
hashp->dbp->log_fileid, SPLITOLD, PGNO(temp_pagep),
|
|
&page_dbt, &LSN(temp_pagep))) != 0)
|
|
goto err;
|
|
LSN(temp_pagep) = new_lsn;
|
|
}
|
|
}
|
|
if (big_buf != NULL)
|
|
__db_free(big_buf);
|
|
|
|
/*
|
|
* If the original bucket spanned multiple pages, then we've got
|
|
* a pointer to a page that used to be on the bucket chain. It
|
|
* should be deleted.
|
|
*/
|
|
if (temp_pagep != NULL && PGNO(temp_pagep) != bucket_pgno &&
|
|
(ret = __ham_del_page(hashp->dbp, temp_pagep)) != 0)
|
|
goto err;
|
|
|
|
/*
|
|
* Write new buckets out.
|
|
*/
|
|
if (DB_LOGGING(hashp->dbp)) {
|
|
page_dbt.size = hashp->hdr->pagesize;
|
|
page_dbt.data = old_pagep;
|
|
if ((ret = __ham_splitdata_log(dbenv->lg_info,
|
|
(DB_TXN *)hashp->dbp->txn, &new_lsn, 0,
|
|
hashp->dbp->log_fileid, SPLITNEW, PGNO(old_pagep),
|
|
&page_dbt, &LSN(old_pagep))) != 0)
|
|
goto err;
|
|
LSN(old_pagep) = new_lsn;
|
|
|
|
page_dbt.data = new_pagep;
|
|
if ((ret = __ham_splitdata_log(dbenv->lg_info,
|
|
(DB_TXN *)hashp->dbp->txn, &new_lsn, 0,
|
|
hashp->dbp->log_fileid, SPLITNEW, PGNO(new_pagep),
|
|
&page_dbt, &LSN(new_pagep))) != 0)
|
|
goto err;
|
|
LSN(new_pagep) = new_lsn;
|
|
}
|
|
ret = __ham_put_page(hashp->dbp, old_pagep, 1);
|
|
if ((tret = __ham_put_page(hashp->dbp, new_pagep, 1)) != 0 &&
|
|
ret == 0)
|
|
ret = tret;
|
|
|
|
if (0) {
|
|
err: if (old_pagep != NULL)
|
|
(void)__ham_put_page(hashp->dbp, old_pagep, 1);
|
|
if (new_pagep != NULL)
|
|
(void)__ham_put_page(hashp->dbp, new_pagep, 1);
|
|
if (temp_pagep != NULL && PGNO(temp_pagep) != bucket_pgno)
|
|
(void)__ham_put_page(hashp->dbp, temp_pagep, 1);
|
|
}
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* Add the given pair to the page. The page in question may already be
|
|
* held (i.e. it was already gotten). If it is, then the page is passed
|
|
* in via the pagep parameter. On return, pagep will contain the page
|
|
* to which we just added something. This allows us to link overflow
|
|
* pages and return the new page having correctly put the last page.
|
|
*
|
|
* PUBLIC: int __ham_add_el
|
|
* PUBLIC: __P((HTAB *, HASH_CURSOR *, const DBT *, const DBT *, int));
|
|
*/
|
|
int
|
|
__ham_add_el(hashp, hcp, key, val, type)
|
|
HTAB *hashp;
|
|
HASH_CURSOR *hcp;
|
|
const DBT *key, *val;
|
|
int type;
|
|
{
|
|
const DBT *pkey, *pdata;
|
|
DBT key_dbt, data_dbt;
|
|
DB_LSN new_lsn;
|
|
HOFFPAGE doff, koff;
|
|
db_pgno_t next_pgno;
|
|
u_int32_t data_size, key_size, pairsize, rectype;
|
|
int do_expand, is_keybig, is_databig, ret;
|
|
int key_type, data_type;
|
|
|
|
do_expand = 0;
|
|
|
|
if (hcp->pagep == NULL && (ret = __ham_get_page(hashp->dbp,
|
|
hcp->seek_found_page != PGNO_INVALID ? hcp->seek_found_page :
|
|
hcp->pgno, &hcp->pagep)) != 0)
|
|
return (ret);
|
|
|
|
key_size = HKEYDATA_PSIZE(key->size);
|
|
data_size = HKEYDATA_PSIZE(val->size);
|
|
is_keybig = ISBIG(hashp, key->size);
|
|
is_databig = ISBIG(hashp, val->size);
|
|
if (is_keybig)
|
|
key_size = HOFFPAGE_PSIZE;
|
|
if (is_databig)
|
|
data_size = HOFFPAGE_PSIZE;
|
|
|
|
pairsize = key_size + data_size;
|
|
|
|
/* Advance to first page in chain with room for item. */
|
|
while (H_NUMPAIRS(hcp->pagep) && NEXT_PGNO(hcp->pagep) !=
|
|
PGNO_INVALID) {
|
|
/*
|
|
* This may not be the end of the chain, but the pair may fit
|
|
* anyway. Check if it's a bigpair that fits or a regular
|
|
* pair that fits.
|
|
*/
|
|
if (P_FREESPACE(hcp->pagep) >= pairsize)
|
|
break;
|
|
next_pgno = NEXT_PGNO(hcp->pagep);
|
|
if ((ret =
|
|
__ham_next_cpage(hashp, hcp, next_pgno, 0, 0)) != 0)
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* Check if we need to allocate a new page.
|
|
*/
|
|
if (P_FREESPACE(hcp->pagep) < pairsize) {
|
|
do_expand = 1;
|
|
if ((ret = __ham_add_ovflpage(hashp,
|
|
hcp->pagep, 1, &hcp->pagep)) != 0)
|
|
return (ret);
|
|
hcp->pgno = PGNO(hcp->pagep);
|
|
}
|
|
|
|
/*
|
|
* Update cursor.
|
|
*/
|
|
hcp->bndx = H_NUMPAIRS(hcp->pagep);
|
|
F_CLR(hcp, H_DELETED);
|
|
if (is_keybig) {
|
|
if ((ret = __db_poff(hashp->dbp,
|
|
key, &koff.pgno, __ham_overflow_page)) != 0)
|
|
return (ret);
|
|
koff.type = H_OFFPAGE;
|
|
koff.tlen = key->size;
|
|
key_dbt.data = &koff;
|
|
key_dbt.size = sizeof(koff);
|
|
pkey = &key_dbt;
|
|
key_type = H_OFFPAGE;
|
|
} else {
|
|
pkey = key;
|
|
key_type = H_KEYDATA;
|
|
}
|
|
|
|
if (is_databig) {
|
|
if ((ret = __db_poff(hashp->dbp,
|
|
val, &doff.pgno, __ham_overflow_page)) != 0)
|
|
return (ret);
|
|
doff.type = H_OFFPAGE;
|
|
doff.tlen = val->size;
|
|
data_dbt.data = &doff;
|
|
data_dbt.size = sizeof(doff);
|
|
pdata = &data_dbt;
|
|
data_type = H_OFFPAGE;
|
|
} else {
|
|
pdata = val;
|
|
data_type = type;
|
|
}
|
|
|
|
if (DB_LOGGING(hashp->dbp)) {
|
|
rectype = PUTPAIR;
|
|
if (is_databig)
|
|
rectype |= PAIR_DATAMASK;
|
|
if (is_keybig)
|
|
rectype |= PAIR_KEYMASK;
|
|
|
|
if ((ret = __ham_insdel_log(hashp->dbp->dbenv->lg_info,
|
|
(DB_TXN *)hashp->dbp->txn, &new_lsn, 0, rectype,
|
|
hashp->dbp->log_fileid, PGNO(hcp->pagep),
|
|
(u_int32_t)H_NUMPAIRS(hcp->pagep),
|
|
&LSN(hcp->pagep), pkey, pdata)) != 0)
|
|
return (ret);
|
|
|
|
/* Move lsn onto page. */
|
|
LSN(hcp->pagep) = new_lsn; /* Structure assignment. */
|
|
}
|
|
|
|
__ham_putitem(hcp->pagep, pkey, key_type);
|
|
__ham_putitem(hcp->pagep, pdata, data_type);
|
|
|
|
/*
|
|
* For splits, we are going to update item_info's page number
|
|
* field, so that we can easily return to the same page the
|
|
* next time we come in here. For other operations, this shouldn't
|
|
* matter, since odds are this is the last thing that happens before
|
|
* we return to the user program.
|
|
*/
|
|
hcp->pgno = PGNO(hcp->pagep);
|
|
|
|
/*
|
|
* XXX Maybe keep incremental numbers here
|
|
*/
|
|
if (!F_ISSET(hashp->dbp, DB_AM_LOCKING))
|
|
hashp->hdr->nelem++;
|
|
|
|
if (do_expand || (hashp->hdr->ffactor != 0 &&
|
|
(u_int32_t)H_NUMPAIRS(hcp->pagep) > hashp->hdr->ffactor))
|
|
F_SET(hcp, H_EXPAND);
|
|
return (0);
|
|
}
|
|
|
|
|
|
/*
|
|
* Special __putitem call used in splitting -- copies one entry to
|
|
* another. Works for all types of hash entries (H_OFFPAGE, H_KEYDATA,
|
|
* H_DUPLICATE, H_OFFDUP). Since we log splits at a high level, we
|
|
* do not need to do any logging here.
|
|
*
|
|
* PUBLIC: void __ham_copy_item __P((HTAB *, PAGE *, u_int32_t, PAGE *));
|
|
*/
|
|
void
|
|
__ham_copy_item(hashp, src_page, src_ndx, dest_page)
|
|
HTAB *hashp;
|
|
PAGE *src_page;
|
|
u_int32_t src_ndx;
|
|
PAGE *dest_page;
|
|
{
|
|
u_int32_t len;
|
|
void *src, *dest;
|
|
|
|
/*
|
|
* Copy the key and data entries onto this new page.
|
|
*/
|
|
src = P_ENTRY(src_page, src_ndx);
|
|
|
|
/* Set up space on dest. */
|
|
len = LEN_HITEM(src_page, hashp->hdr->pagesize, src_ndx);
|
|
HOFFSET(dest_page) -= len;
|
|
dest_page->inp[NUM_ENT(dest_page)] = HOFFSET(dest_page);
|
|
dest = P_ENTRY(dest_page, NUM_ENT(dest_page));
|
|
NUM_ENT(dest_page)++;
|
|
|
|
memcpy(dest, src, len);
|
|
}
|
|
|
|
/*
|
|
*
|
|
* Returns:
|
|
* pointer on success
|
|
* NULL on error
|
|
*
|
|
* PUBLIC: int __ham_add_ovflpage __P((HTAB *, PAGE *, int, PAGE **));
|
|
*/
|
|
int
|
|
__ham_add_ovflpage(hashp, pagep, release, pp)
|
|
HTAB *hashp;
|
|
PAGE *pagep;
|
|
int release;
|
|
PAGE **pp;
|
|
{
|
|
DB_ENV *dbenv;
|
|
DB_LSN new_lsn;
|
|
PAGE *new_pagep;
|
|
int ret;
|
|
|
|
dbenv = hashp->dbp->dbenv;
|
|
|
|
if ((ret = __ham_overflow_page(hashp->dbp, P_HASH, &new_pagep)) != 0)
|
|
return (ret);
|
|
|
|
if (DB_LOGGING(hashp->dbp)) {
|
|
if ((ret = __ham_newpage_log(dbenv->lg_info,
|
|
(DB_TXN *)hashp->dbp->txn, &new_lsn, 0, PUTOVFL,
|
|
hashp->dbp->log_fileid, PGNO(pagep), &LSN(pagep),
|
|
PGNO(new_pagep), &LSN(new_pagep), PGNO_INVALID, NULL)) != 0)
|
|
return (ret);
|
|
|
|
/* Move lsn onto page. */
|
|
LSN(pagep) = LSN(new_pagep) = new_lsn;
|
|
}
|
|
NEXT_PGNO(pagep) = PGNO(new_pagep);
|
|
PREV_PGNO(new_pagep) = PGNO(pagep);
|
|
|
|
if (release)
|
|
ret = __ham_put_page(hashp->dbp, pagep, 1);
|
|
|
|
hashp->hash_overflows++;
|
|
*pp = new_pagep;
|
|
return (ret);
|
|
}
|
|
|
|
|
|
/*
|
|
* PUBLIC: int __ham_new_page __P((HTAB *, u_int32_t, u_int32_t, PAGE **));
|
|
*/
|
|
int
|
|
__ham_new_page(hashp, addr, type, pp)
|
|
HTAB *hashp;
|
|
u_int32_t addr, type;
|
|
PAGE **pp;
|
|
{
|
|
PAGE *pagep;
|
|
int ret;
|
|
|
|
if ((ret = memp_fget(hashp->dbp->mpf,
|
|
&addr, DB_MPOOL_CREATE, &pagep)) != 0)
|
|
return (ret);
|
|
|
|
#ifdef DEBUG_SLOW
|
|
__account_page(hashp, addr, 1);
|
|
#endif
|
|
/* This should not be necessary because page-in should do it. */
|
|
P_INIT(pagep,
|
|
hashp->hdr->pagesize, addr, PGNO_INVALID, PGNO_INVALID, 0, type);
|
|
|
|
*pp = pagep;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* PUBLIC: int __ham_del_page __P((DB *, PAGE *));
|
|
*/
|
|
int
|
|
__ham_del_page(dbp, pagep)
|
|
DB *dbp;
|
|
PAGE *pagep;
|
|
{
|
|
DB_LSN new_lsn;
|
|
HTAB *hashp;
|
|
int ret;
|
|
|
|
hashp = (HTAB *)dbp->internal;
|
|
ret = 0;
|
|
DIRTY_META(hashp, ret);
|
|
if (ret != 0) {
|
|
if (ret != EAGAIN)
|
|
__db_err(hashp->dbp->dbenv,
|
|
"free_ovflpage: unable to lock meta data page %s\n",
|
|
strerror(ret));
|
|
/*
|
|
* If we are going to return an error, then we should free
|
|
* the page, so it doesn't stay pinned forever.
|
|
*/
|
|
(void)__ham_put_page(hashp->dbp, pagep, 0);
|
|
return (ret);
|
|
}
|
|
|
|
if (DB_LOGGING(hashp->dbp)) {
|
|
if ((ret = __ham_newpgno_log(hashp->dbp->dbenv->lg_info,
|
|
(DB_TXN *)hashp->dbp->txn, &new_lsn, 0, DELPGNO,
|
|
hashp->dbp->log_fileid, PGNO(pagep), hashp->hdr->last_freed,
|
|
(u_int32_t)TYPE(pagep), NEXT_PGNO(pagep), P_INVALID,
|
|
&LSN(pagep), &hashp->hdr->lsn)) != 0)
|
|
return (ret);
|
|
|
|
hashp->hdr->lsn = new_lsn;
|
|
LSN(pagep) = new_lsn;
|
|
}
|
|
|
|
#ifdef DIAGNOSTIC
|
|
{
|
|
db_pgno_t __pgno;
|
|
DB_LSN __lsn;
|
|
__pgno = pagep->pgno;
|
|
__lsn = pagep->lsn;
|
|
memset(pagep, 0xff, dbp->pgsize);
|
|
pagep->pgno = __pgno;
|
|
pagep->lsn = __lsn;
|
|
}
|
|
#endif
|
|
TYPE(pagep) = P_INVALID;
|
|
NEXT_PGNO(pagep) = hashp->hdr->last_freed;
|
|
hashp->hdr->last_freed = PGNO(pagep);
|
|
|
|
return (__ham_put_page(hashp->dbp, pagep, 1));
|
|
}
|
|
|
|
|
|
/*
|
|
* PUBLIC: int __ham_put_page __P((DB *, PAGE *, int32_t));
|
|
*/
|
|
int
|
|
__ham_put_page(dbp, pagep, is_dirty)
|
|
DB *dbp;
|
|
PAGE *pagep;
|
|
int32_t is_dirty;
|
|
{
|
|
#ifdef DEBUG_SLOW
|
|
__account_page((HTAB *)dbp->cookie,
|
|
((BKT *)((char *)pagep - sizeof(BKT)))->pgno, -1);
|
|
#endif
|
|
return (memp_fput(dbp->mpf, pagep, (is_dirty ? DB_MPOOL_DIRTY : 0)));
|
|
}
|
|
|
|
/*
|
|
* __ham_dirty_page --
|
|
* Mark a page dirty.
|
|
*
|
|
* PUBLIC: int __ham_dirty_page __P((HTAB *, PAGE *));
|
|
*/
|
|
int
|
|
__ham_dirty_page(hashp, pagep)
|
|
HTAB *hashp;
|
|
PAGE *pagep;
|
|
{
|
|
return (memp_fset(hashp->dbp->mpf, pagep, DB_MPOOL_DIRTY));
|
|
}
|
|
|
|
/*
|
|
* PUBLIC: int __ham_get_page __P((DB *, db_pgno_t, PAGE **));
|
|
*/
|
|
int
|
|
__ham_get_page(dbp, addr, pagep)
|
|
DB *dbp;
|
|
db_pgno_t addr;
|
|
PAGE **pagep;
|
|
{
|
|
int ret;
|
|
|
|
ret = memp_fget(dbp->mpf, &addr, DB_MPOOL_CREATE, pagep);
|
|
#ifdef DEBUG_SLOW
|
|
if (*pagep != NULL)
|
|
__account_page((HTAB *)dbp->internal, addr, 1);
|
|
#endif
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* PUBLIC: int __ham_overflow_page __P((DB *, u_int32_t, PAGE **));
|
|
*/
|
|
int
|
|
__ham_overflow_page(dbp, type, pp)
|
|
DB *dbp;
|
|
u_int32_t type;
|
|
PAGE **pp;
|
|
{
|
|
DB_LSN *lsnp, new_lsn;
|
|
HTAB *hashp;
|
|
PAGE *p;
|
|
db_pgno_t new_addr, next_free, newalloc_flag;
|
|
u_int32_t offset, splitnum;
|
|
int ret;
|
|
|
|
hashp = (HTAB *)dbp->internal;
|
|
|
|
ret = 0;
|
|
DIRTY_META(hashp, ret);
|
|
if (ret != 0)
|
|
return (ret);
|
|
|
|
/*
|
|
* This routine is split up into two parts. First we have
|
|
* to figure out the address of the new page that we are
|
|
* allocating. Then we have to log the allocation. Only
|
|
* after the log do we get to complete allocation of the
|
|
* new page.
|
|
*/
|
|
new_addr = hashp->hdr->last_freed;
|
|
if (new_addr != PGNO_INVALID) {
|
|
if ((ret = __ham_get_page(hashp->dbp, new_addr, &p)) != 0)
|
|
return (ret);
|
|
next_free = NEXT_PGNO(p);
|
|
lsnp = &LSN(p);
|
|
newalloc_flag = 0;
|
|
} else {
|
|
splitnum = hashp->hdr->ovfl_point;
|
|
hashp->hdr->spares[splitnum]++;
|
|
offset = hashp->hdr->spares[splitnum] -
|
|
(splitnum ? hashp->hdr->spares[splitnum - 1] : 0);
|
|
new_addr = PGNO_OF(hashp, hashp->hdr->ovfl_point, offset);
|
|
if (new_addr > MAX_PAGES(hashp)) {
|
|
__db_err(hashp->dbp->dbenv, "hash: out of file pages");
|
|
hashp->hdr->spares[splitnum]--;
|
|
return (ENOMEM);
|
|
}
|
|
next_free = PGNO_INVALID;
|
|
p = NULL;
|
|
lsnp = NULL;
|
|
newalloc_flag = 1;
|
|
}
|
|
|
|
if (DB_LOGGING(hashp->dbp)) {
|
|
if ((ret = __ham_newpgno_log(hashp->dbp->dbenv->lg_info,
|
|
(DB_TXN *)hashp->dbp->txn, &new_lsn, 0, ALLOCPGNO,
|
|
hashp->dbp->log_fileid, new_addr, next_free,
|
|
0, newalloc_flag, type, lsnp, &hashp->hdr->lsn)) != 0)
|
|
return (ret);
|
|
|
|
hashp->hdr->lsn = new_lsn;
|
|
if (lsnp != NULL)
|
|
*lsnp = new_lsn;
|
|
}
|
|
|
|
if (p != NULL) {
|
|
/* We just took something off the free list, initialize it. */
|
|
hashp->hdr->last_freed = next_free;
|
|
P_INIT(p, hashp->hdr->pagesize, PGNO(p), PGNO_INVALID,
|
|
PGNO_INVALID, 0, (u_int8_t)type);
|
|
} else {
|
|
/* Get the new page. */
|
|
if ((ret = __ham_new_page(hashp, new_addr, type, &p)) != 0)
|
|
return (ret);
|
|
}
|
|
if (DB_LOGGING(hashp->dbp))
|
|
LSN(p) = new_lsn;
|
|
|
|
*pp = p;
|
|
return (0);
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
/*
|
|
* PUBLIC: #ifdef DEBUG
|
|
* PUBLIC: db_pgno_t __bucket_to_page __P((HTAB *, db_pgno_t));
|
|
* PUBLIC: #endif
|
|
*/
|
|
db_pgno_t
|
|
__bucket_to_page(hashp, n)
|
|
HTAB *hashp;
|
|
db_pgno_t n;
|
|
{
|
|
int ret_val;
|
|
|
|
ret_val = n + 1;
|
|
if (n != 0)
|
|
ret_val += hashp->hdr->spares[__db_log2(n + 1) - 1];
|
|
return (ret_val);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Create a bunch of overflow pages at the current split point.
|
|
* PUBLIC: void __ham_init_ovflpages __P((HTAB *));
|
|
*/
|
|
void
|
|
__ham_init_ovflpages(hp)
|
|
HTAB *hp;
|
|
{
|
|
DB_LSN new_lsn;
|
|
PAGE *p;
|
|
db_pgno_t last_pgno, new_pgno;
|
|
u_int32_t i, curpages, numpages;
|
|
|
|
curpages = hp->hdr->spares[hp->hdr->ovfl_point] -
|
|
hp->hdr->spares[hp->hdr->ovfl_point - 1];
|
|
numpages = hp->hdr->ovfl_point + 1 - curpages;
|
|
|
|
last_pgno = hp->hdr->last_freed;
|
|
new_pgno = PGNO_OF(hp, hp->hdr->ovfl_point, curpages + 1);
|
|
if (DB_LOGGING(hp->dbp)) {
|
|
(void)__ham_ovfl_log(hp->dbp->dbenv->lg_info,
|
|
(DB_TXN *)hp->dbp->txn, &new_lsn, 0,
|
|
hp->dbp->log_fileid, new_pgno,
|
|
numpages, last_pgno, hp->hdr->ovfl_point, &hp->hdr->lsn);
|
|
hp->hdr->lsn = new_lsn;
|
|
} else
|
|
ZERO_LSN(new_lsn);
|
|
|
|
hp->hdr->spares[hp->hdr->ovfl_point] += numpages;
|
|
for (i = numpages; i > 0; i--) {
|
|
if (__ham_new_page(hp,
|
|
PGNO_OF(hp, hp->hdr->ovfl_point, curpages + i),
|
|
P_INVALID, &p) != 0)
|
|
break;
|
|
LSN(p) = new_lsn;
|
|
NEXT_PGNO(p) = last_pgno;
|
|
last_pgno = PGNO(p);
|
|
(void)__ham_put_page(hp->dbp, p, 1);
|
|
}
|
|
hp->hdr->last_freed = last_pgno;
|
|
}
|
|
|
|
/*
|
|
* PUBLIC: int __ham_get_cpage __P((HTAB *, HASH_CURSOR *, db_lockmode_t));
|
|
*/
|
|
int
|
|
__ham_get_cpage(hashp, hcp, mode)
|
|
HTAB *hashp;
|
|
HASH_CURSOR *hcp;
|
|
db_lockmode_t mode;
|
|
{
|
|
int ret;
|
|
|
|
if (hcp->lock == 0 && F_ISSET(hashp->dbp, DB_AM_LOCKING) &&
|
|
(ret = __ham_lock_bucket(hashp->dbp, hcp, mode)) != 0)
|
|
return (ret);
|
|
|
|
if (hcp->pagep == NULL) {
|
|
if (hcp->pgno == PGNO_INVALID) {
|
|
hcp->pgno = BUCKET_TO_PAGE(hashp, hcp->bucket);
|
|
hcp->bndx = 0;
|
|
}
|
|
|
|
if ((ret =
|
|
__ham_get_page(hashp->dbp, hcp->pgno, &hcp->pagep)) != 0)
|
|
return (ret);
|
|
}
|
|
|
|
if (hcp->dpgno != PGNO_INVALID && hcp->dpagep == NULL)
|
|
if ((ret =
|
|
__ham_get_page(hashp->dbp, hcp->dpgno, &hcp->dpagep)) != 0)
|
|
return (ret);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Get a new page at the cursor, putting the last page if necessary.
|
|
* If the flag is set to H_ISDUP, then we are talking about the
|
|
* duplicate page, not the main page.
|
|
*
|
|
* PUBLIC: int __ham_next_cpage
|
|
* PUBLIC: __P((HTAB *, HASH_CURSOR *, db_pgno_t, int, u_int32_t));
|
|
*/
|
|
int
|
|
__ham_next_cpage(hashp, hcp, pgno, dirty, flags)
|
|
HTAB *hashp;
|
|
HASH_CURSOR *hcp;
|
|
db_pgno_t pgno;
|
|
int dirty;
|
|
u_int32_t flags;
|
|
{
|
|
PAGE *p;
|
|
int ret;
|
|
|
|
if (LF_ISSET(H_ISDUP) && hcp->dpagep != NULL &&
|
|
(ret = __ham_put_page(hashp->dbp, hcp->dpagep, dirty)) != 0)
|
|
return (ret);
|
|
else if (!LF_ISSET(H_ISDUP) && hcp->pagep != NULL &&
|
|
(ret = __ham_put_page(hashp->dbp, hcp->pagep, dirty)) != 0)
|
|
return (ret);
|
|
|
|
if ((ret = __ham_get_page(hashp->dbp, pgno, &p)) != 0)
|
|
return (ret);
|
|
|
|
if (LF_ISSET(H_ISDUP)) {
|
|
hcp->dpagep = p;
|
|
hcp->dpgno = pgno;
|
|
hcp->dndx = 0;
|
|
} else {
|
|
hcp->pagep = p;
|
|
hcp->pgno = pgno;
|
|
hcp->bndx = 0;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* __ham_lock_bucket --
|
|
* Get the lock on a particular bucket.
|
|
*/
|
|
static int
|
|
__ham_lock_bucket(dbp, hcp, mode)
|
|
DB *dbp;
|
|
HASH_CURSOR *hcp;
|
|
db_lockmode_t mode;
|
|
{
|
|
int ret;
|
|
|
|
/*
|
|
* What a way to trounce on the memory system. It might be
|
|
* worth copying the lk_info into the hashp.
|
|
*/
|
|
ret = 0;
|
|
dbp->lock.pgno = (db_pgno_t)(hcp->bucket);
|
|
ret = lock_get(dbp->dbenv->lk_info,
|
|
dbp->txn == NULL ? dbp->locker : dbp->txn->txnid, 0,
|
|
&dbp->lock_dbt, mode, &hcp->lock);
|
|
|
|
return (ret < 0 ? EAGAIN : ret);
|
|
}
|
|
|
|
/*
|
|
* __ham_dpair --
|
|
* Delete a pair on a page, paying no attention to what the pair
|
|
* represents. The caller is responsible for freeing up duplicates
|
|
* or offpage entries that might be referenced by this pair.
|
|
*
|
|
* PUBLIC: void __ham_dpair __P((DB *, PAGE *, u_int32_t));
|
|
*/
|
|
void
|
|
__ham_dpair(dbp, p, pndx)
|
|
DB *dbp;
|
|
PAGE *p;
|
|
u_int32_t pndx;
|
|
{
|
|
db_indx_t delta, n;
|
|
u_int8_t *dest, *src;
|
|
|
|
/*
|
|
* Compute "delta", the amount we have to shift all of the
|
|
* offsets. To find the delta, we just need to calculate
|
|
* the size of the pair of elements we are removing.
|
|
*/
|
|
delta = H_PAIRSIZE(p, dbp->pgsize, pndx);
|
|
|
|
/*
|
|
* The hard case: we want to remove something other than
|
|
* the last item on the page. We need to shift data and
|
|
* offsets down.
|
|
*/
|
|
if ((db_indx_t)pndx != H_NUMPAIRS(p) - 1) {
|
|
/*
|
|
* Move the data: src is the first occupied byte on
|
|
* the page. (Length is delta.)
|
|
*/
|
|
src = (u_int8_t *)p + HOFFSET(p);
|
|
|
|
/*
|
|
* Destination is delta bytes beyond src. This might
|
|
* be an overlapping copy, so we have to use memmove.
|
|
*/
|
|
dest = src + delta;
|
|
memmove(dest, src, p->inp[H_DATAINDEX(pndx)] - HOFFSET(p));
|
|
}
|
|
|
|
/* Adjust the offsets. */
|
|
for (n = (db_indx_t)pndx; n < (db_indx_t)(H_NUMPAIRS(p) - 1); n++) {
|
|
p->inp[H_KEYINDEX(n)] = p->inp[H_KEYINDEX(n+1)] + delta;
|
|
p->inp[H_DATAINDEX(n)] = p->inp[H_DATAINDEX(n+1)] + delta;
|
|
}
|
|
|
|
/* Adjust page metadata. */
|
|
HOFFSET(p) = HOFFSET(p) + delta;
|
|
NUM_ENT(p) = NUM_ENT(p) - 2;
|
|
}
|
|
|
|
#ifdef DEBUG_SLOW
|
|
static void
|
|
__account_page(hashp, pgno, inout)
|
|
HTAB *hashp;
|
|
db_pgno_t pgno;
|
|
int inout;
|
|
{
|
|
static struct {
|
|
db_pgno_t pgno;
|
|
int times;
|
|
} list[100];
|
|
static int last;
|
|
int i, j;
|
|
|
|
if (inout == -1) /* XXX: Kluge */
|
|
inout = 0;
|
|
|
|
/* Find page in list. */
|
|
for (i = 0; i < last; i++)
|
|
if (list[i].pgno == pgno)
|
|
break;
|
|
/* Not found. */
|
|
if (i == last) {
|
|
list[last].times = inout;
|
|
list[last].pgno = pgno;
|
|
last++;
|
|
}
|
|
list[i].times = inout;
|
|
if (list[i].times == 0) {
|
|
for (j = i; j < last; j++)
|
|
list[j] = list[j + 1];
|
|
last--;
|
|
}
|
|
for (i = 0; i < last; i++, list[i].times++)
|
|
if (list[i].times > 20 &&
|
|
!__is_bitmap_pgno(hashp, list[i].pgno))
|
|
(void)fprintf(stderr,
|
|
"Warning: pg %lu has been out for %d times\n",
|
|
(u_long)list[i].pgno, list[i].times);
|
|
}
|
|
#endif /* DEBUG_SLOW */
|