mirror of
https://github.com/mozilla/gecko-dev.git
synced 2024-11-26 06:11:37 +00:00
1226 lines
34 KiB
C++
1226 lines
34 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
/* A type/length-parametrized vector class. */
|
|
|
|
#ifndef mozilla_Vector_h
|
|
#define mozilla_Vector_h
|
|
|
|
#include "mozilla/Alignment.h"
|
|
#include "mozilla/AllocPolicy.h"
|
|
#include "mozilla/ArrayUtils.h" // for PointerRangeSize
|
|
#include "mozilla/Assertions.h"
|
|
#include "mozilla/Attributes.h"
|
|
#include "mozilla/MathAlgorithms.h"
|
|
#include "mozilla/MemoryReporting.h"
|
|
#include "mozilla/Move.h"
|
|
#include "mozilla/NullPtr.h"
|
|
#include "mozilla/ReentrancyGuard.h"
|
|
#include "mozilla/TemplateLib.h"
|
|
#include "mozilla/TypeTraits.h"
|
|
|
|
#include <new> // for placement new
|
|
|
|
/* Silence dire "bugs in previous versions of MSVC have been fixed" warnings */
|
|
#ifdef _MSC_VER
|
|
#pragma warning(push)
|
|
#pragma warning(disable:4345)
|
|
#endif
|
|
|
|
namespace mozilla {
|
|
|
|
template<typename T, size_t N, class AllocPolicy, class ThisVector>
|
|
class VectorBase;
|
|
|
|
namespace detail {
|
|
|
|
/*
|
|
* Check that the given capacity wastes the minimal amount of space if
|
|
* allocated on the heap. This means that cap*sizeof(T) is as close to a
|
|
* power-of-two as possible. growStorageBy() is responsible for ensuring
|
|
* this.
|
|
*/
|
|
template<typename T>
|
|
static bool CapacityHasExcessSpace(size_t cap)
|
|
{
|
|
size_t size = cap * sizeof(T);
|
|
return RoundUpPow2(size) - size >= sizeof(T);
|
|
}
|
|
|
|
/*
|
|
* This template class provides a default implementation for vector operations
|
|
* when the element type is not known to be a POD, as judged by IsPod.
|
|
*/
|
|
template<typename T, size_t N, class AP, class ThisVector, bool IsPod>
|
|
struct VectorImpl
|
|
{
|
|
/* Destroys constructed objects in the range [begin, end). */
|
|
static inline void destroy(T* begin, T* end) {
|
|
MOZ_ASSERT(begin <= end);
|
|
for (T* p = begin; p < end; ++p)
|
|
p->~T();
|
|
}
|
|
|
|
/* Constructs objects in the uninitialized range [begin, end). */
|
|
static inline void initialize(T* begin, T* end) {
|
|
MOZ_ASSERT(begin <= end);
|
|
for (T* p = begin; p < end; ++p)
|
|
new(p) T();
|
|
}
|
|
|
|
/*
|
|
* Copy-constructs objects in the uninitialized range
|
|
* [dst, dst+(srcend-srcbeg)) from the range [srcbeg, srcend).
|
|
*/
|
|
template<typename U>
|
|
static inline void copyConstruct(T* dst, const U* srcbeg, const U* srcend) {
|
|
MOZ_ASSERT(srcbeg <= srcend);
|
|
for (const U* p = srcbeg; p < srcend; ++p, ++dst)
|
|
new(dst) T(*p);
|
|
}
|
|
|
|
/*
|
|
* Move-constructs objects in the uninitialized range
|
|
* [dst, dst+(srcend-srcbeg)) from the range [srcbeg, srcend).
|
|
*/
|
|
template<typename U>
|
|
static inline void moveConstruct(T* dst, U* srcbeg, U* srcend) {
|
|
MOZ_ASSERT(srcbeg <= srcend);
|
|
for (U* p = srcbeg; p < srcend; ++p, ++dst)
|
|
new(dst) T(Move(*p));
|
|
}
|
|
|
|
/*
|
|
* Copy-constructs objects in the uninitialized range [dst, dst+n) from the
|
|
* same object u.
|
|
*/
|
|
template<typename U>
|
|
static inline void copyConstructN(T* dst, size_t n, const U& u) {
|
|
for (T* end = dst + n; dst < end; ++dst)
|
|
new(dst) T(u);
|
|
}
|
|
|
|
/*
|
|
* Grows the given buffer to have capacity newCap, preserving the objects
|
|
* constructed in the range [begin, end) and updating v. Assumes that (1)
|
|
* newCap has not overflowed, and (2) multiplying newCap by sizeof(T) will
|
|
* not overflow.
|
|
*/
|
|
static inline bool
|
|
growTo(VectorBase<T, N, AP, ThisVector>& v, size_t newCap) {
|
|
MOZ_ASSERT(!v.usingInlineStorage());
|
|
MOZ_ASSERT(!CapacityHasExcessSpace<T>(newCap));
|
|
T* newbuf = reinterpret_cast<T*>(v.malloc_(newCap * sizeof(T)));
|
|
if (!newbuf)
|
|
return false;
|
|
T* dst = newbuf;
|
|
T* src = v.beginNoCheck();
|
|
for (; src < v.endNoCheck(); ++dst, ++src)
|
|
new(dst) T(Move(*src));
|
|
VectorImpl::destroy(v.beginNoCheck(), v.endNoCheck());
|
|
v.free_(v.mBegin);
|
|
v.mBegin = newbuf;
|
|
/* v.mLength is unchanged. */
|
|
v.mCapacity = newCap;
|
|
return true;
|
|
}
|
|
};
|
|
|
|
/*
|
|
* This partial template specialization provides a default implementation for
|
|
* vector operations when the element type is known to be a POD, as judged by
|
|
* IsPod.
|
|
*/
|
|
template<typename T, size_t N, class AP, class ThisVector>
|
|
struct VectorImpl<T, N, AP, ThisVector, true>
|
|
{
|
|
static inline void destroy(T*, T*) {}
|
|
|
|
static inline void initialize(T* begin, T* end) {
|
|
/*
|
|
* You would think that memset would be a big win (or even break even)
|
|
* when we know T is a POD. But currently it's not. This is probably
|
|
* because |append| tends to be given small ranges and memset requires
|
|
* a function call that doesn't get inlined.
|
|
*
|
|
* memset(begin, 0, sizeof(T) * (end-begin));
|
|
*/
|
|
MOZ_ASSERT(begin <= end);
|
|
for (T* p = begin; p < end; ++p)
|
|
new(p) T();
|
|
}
|
|
|
|
template<typename U>
|
|
static inline void copyConstruct(T* dst, const U* srcbeg, const U* srcend) {
|
|
/*
|
|
* See above memset comment. Also, notice that copyConstruct is
|
|
* currently templated (T != U), so memcpy won't work without
|
|
* requiring T == U.
|
|
*
|
|
* memcpy(dst, srcbeg, sizeof(T) * (srcend - srcbeg));
|
|
*/
|
|
MOZ_ASSERT(srcbeg <= srcend);
|
|
for (const U* p = srcbeg; p < srcend; ++p, ++dst)
|
|
*dst = *p;
|
|
}
|
|
|
|
template<typename U>
|
|
static inline void moveConstruct(T* dst, const U* srcbeg, const U* srcend) {
|
|
copyConstruct(dst, srcbeg, srcend);
|
|
}
|
|
|
|
static inline void copyConstructN(T* dst, size_t n, const T& t) {
|
|
for (T* end = dst + n; dst < end; ++dst)
|
|
*dst = t;
|
|
}
|
|
|
|
static inline bool
|
|
growTo(VectorBase<T, N, AP, ThisVector>& v, size_t newCap) {
|
|
MOZ_ASSERT(!v.usingInlineStorage());
|
|
MOZ_ASSERT(!CapacityHasExcessSpace<T>(newCap));
|
|
size_t oldSize = sizeof(T) * v.mCapacity;
|
|
size_t newSize = sizeof(T) * newCap;
|
|
T* newbuf = reinterpret_cast<T*>(v.realloc_(v.mBegin, oldSize, newSize));
|
|
if (!newbuf)
|
|
return false;
|
|
v.mBegin = newbuf;
|
|
/* v.mLength is unchanged. */
|
|
v.mCapacity = newCap;
|
|
return true;
|
|
}
|
|
};
|
|
|
|
} // namespace detail
|
|
|
|
/*
|
|
* A CRTP base class for vector-like classes. Unless you really really want
|
|
* your own vector class -- and you almost certainly don't -- you should use
|
|
* mozilla::Vector instead!
|
|
*
|
|
* See mozilla::Vector for interface requirements.
|
|
*/
|
|
template<typename T, size_t N, class AllocPolicy, class ThisVector>
|
|
class VectorBase : private AllocPolicy
|
|
{
|
|
/* utilities */
|
|
|
|
static const bool sElemIsPod = IsPod<T>::value;
|
|
typedef detail::VectorImpl<T, N, AllocPolicy, ThisVector, sElemIsPod> Impl;
|
|
friend struct detail::VectorImpl<T, N, AllocPolicy, ThisVector, sElemIsPod>;
|
|
|
|
bool growStorageBy(size_t incr);
|
|
bool convertToHeapStorage(size_t newCap);
|
|
|
|
/* magic constants */
|
|
|
|
static const int sMaxInlineBytes = 1024;
|
|
|
|
/* compute constants */
|
|
|
|
/*
|
|
* Consider element size to be 1 for buffer sizing if there are 0 inline
|
|
* elements. This allows us to compile when the definition of the element
|
|
* type is not visible here.
|
|
*
|
|
* Explicit specialization is only allowed at namespace scope, so in order
|
|
* to keep everything here, we use a dummy template parameter with partial
|
|
* specialization.
|
|
*/
|
|
template<int M, int Dummy>
|
|
struct ElemSize
|
|
{
|
|
static const size_t value = sizeof(T);
|
|
};
|
|
template<int Dummy>
|
|
struct ElemSize<0, Dummy>
|
|
{
|
|
static const size_t value = 1;
|
|
};
|
|
|
|
static const size_t sInlineCapacity =
|
|
tl::Min<N, sMaxInlineBytes / ElemSize<N, 0>::value>::value;
|
|
|
|
/* Calculate inline buffer size; avoid 0-sized array. */
|
|
static const size_t sInlineBytes =
|
|
tl::Max<1, sInlineCapacity * ElemSize<N, 0>::value>::value;
|
|
|
|
/* member data */
|
|
|
|
/*
|
|
* Pointer to the buffer, be it inline or heap-allocated. Only [mBegin,
|
|
* mBegin + mLength) hold valid constructed T objects. The range [mBegin +
|
|
* mLength, mBegin + mCapacity) holds uninitialized memory. The range
|
|
* [mBegin + mLength, mBegin + mReserved) also holds uninitialized memory
|
|
* previously allocated by a call to reserve().
|
|
*/
|
|
T* mBegin;
|
|
|
|
/* Number of elements in the vector. */
|
|
size_t mLength;
|
|
|
|
/* Max number of elements storable in the vector without resizing. */
|
|
size_t mCapacity;
|
|
|
|
#ifdef DEBUG
|
|
/* Max elements of reserved or used space in this vector. */
|
|
size_t mReserved;
|
|
#endif
|
|
|
|
/* Memory used for inline storage. */
|
|
AlignedStorage<sInlineBytes> storage;
|
|
|
|
#ifdef DEBUG
|
|
friend class ReentrancyGuard;
|
|
bool entered;
|
|
#endif
|
|
|
|
/* private accessors */
|
|
|
|
bool usingInlineStorage() const {
|
|
return mBegin == const_cast<VectorBase*>(this)->inlineStorage();
|
|
}
|
|
|
|
T* inlineStorage() {
|
|
return static_cast<T*>(storage.addr());
|
|
}
|
|
|
|
T* beginNoCheck() const {
|
|
return mBegin;
|
|
}
|
|
|
|
T* endNoCheck() {
|
|
return mBegin + mLength;
|
|
}
|
|
|
|
const T* endNoCheck() const {
|
|
return mBegin + mLength;
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
size_t reserved() const {
|
|
MOZ_ASSERT(mReserved <= mCapacity);
|
|
MOZ_ASSERT(mLength <= mReserved);
|
|
return mReserved;
|
|
}
|
|
#endif
|
|
|
|
/* Append operations guaranteed to succeed due to pre-reserved space. */
|
|
template<typename U> void internalAppend(U&& u);
|
|
template<typename U, size_t O, class BP, class UV>
|
|
void internalAppendAll(const VectorBase<U, O, BP, UV>& u);
|
|
void internalAppendN(const T& t, size_t n);
|
|
template<typename U> void internalAppend(const U* begin, size_t length);
|
|
|
|
public:
|
|
static const size_t sMaxInlineStorage = N;
|
|
|
|
typedef T ElementType;
|
|
|
|
explicit VectorBase(AllocPolicy = AllocPolicy());
|
|
explicit VectorBase(ThisVector&&); /* Move constructor. */
|
|
ThisVector& operator=(ThisVector&&); /* Move assignment. */
|
|
~VectorBase();
|
|
|
|
/* accessors */
|
|
|
|
const AllocPolicy& allocPolicy() const {
|
|
return *this;
|
|
}
|
|
|
|
AllocPolicy& allocPolicy() {
|
|
return *this;
|
|
}
|
|
|
|
enum { InlineLength = N };
|
|
|
|
size_t length() const {
|
|
return mLength;
|
|
}
|
|
|
|
bool empty() const {
|
|
return mLength == 0;
|
|
}
|
|
|
|
size_t capacity() const {
|
|
return mCapacity;
|
|
}
|
|
|
|
T* begin() {
|
|
MOZ_ASSERT(!entered);
|
|
return mBegin;
|
|
}
|
|
|
|
const T* begin() const {
|
|
MOZ_ASSERT(!entered);
|
|
return mBegin;
|
|
}
|
|
|
|
T* end() {
|
|
MOZ_ASSERT(!entered);
|
|
return mBegin + mLength;
|
|
}
|
|
|
|
const T* end() const {
|
|
MOZ_ASSERT(!entered);
|
|
return mBegin + mLength;
|
|
}
|
|
|
|
T& operator[](size_t i) {
|
|
MOZ_ASSERT(!entered);
|
|
MOZ_ASSERT(i < mLength);
|
|
return begin()[i];
|
|
}
|
|
|
|
const T& operator[](size_t i) const {
|
|
MOZ_ASSERT(!entered);
|
|
MOZ_ASSERT(i < mLength);
|
|
return begin()[i];
|
|
}
|
|
|
|
T& back() {
|
|
MOZ_ASSERT(!entered);
|
|
MOZ_ASSERT(!empty());
|
|
return *(end() - 1);
|
|
}
|
|
|
|
const T& back() const {
|
|
MOZ_ASSERT(!entered);
|
|
MOZ_ASSERT(!empty());
|
|
return *(end() - 1);
|
|
}
|
|
|
|
class Range
|
|
{
|
|
friend class VectorBase;
|
|
T* cur_;
|
|
T* end_;
|
|
Range(T* cur, T* end) : cur_(cur), end_(end) {
|
|
MOZ_ASSERT(cur <= end);
|
|
}
|
|
|
|
public:
|
|
Range() {}
|
|
bool empty() const { return cur_ == end_; }
|
|
size_t remain() const { return PointerRangeSize(cur_, end_); }
|
|
T& front() const { MOZ_ASSERT(!empty()); return *cur_; }
|
|
void popFront() { MOZ_ASSERT(!empty()); ++cur_; }
|
|
T popCopyFront() { MOZ_ASSERT(!empty()); return *cur_++; }
|
|
};
|
|
|
|
Range all() {
|
|
return Range(begin(), end());
|
|
}
|
|
|
|
/* mutators */
|
|
|
|
/**
|
|
* Given that the vector is empty and has no inline storage, grow to
|
|
* |capacity|.
|
|
*/
|
|
bool initCapacity(size_t request);
|
|
|
|
/**
|
|
* If reserve(length() + N) succeeds, the N next appends are guaranteed to
|
|
* succeed.
|
|
*/
|
|
bool reserve(size_t request);
|
|
|
|
/**
|
|
* Destroy elements in the range [end() - incr, end()). Does not deallocate
|
|
* or unreserve storage for those elements.
|
|
*/
|
|
void shrinkBy(size_t incr);
|
|
|
|
/** Grow the vector by incr elements. */
|
|
bool growBy(size_t incr);
|
|
|
|
/** Call shrinkBy or growBy based on whether newSize > length(). */
|
|
bool resize(size_t newLength);
|
|
|
|
/**
|
|
* Increase the length of the vector, but don't initialize the new elements
|
|
* -- leave them as uninitialized memory.
|
|
*/
|
|
bool growByUninitialized(size_t incr);
|
|
bool resizeUninitialized(size_t newLength);
|
|
|
|
/** Shorthand for shrinkBy(length()). */
|
|
void clear();
|
|
|
|
/** Clears and releases any heap-allocated storage. */
|
|
void clearAndFree();
|
|
|
|
/**
|
|
* If true, appending |needed| elements won't reallocate elements storage.
|
|
* This *doesn't* mean that infallibleAppend may be used! You still must
|
|
* reserve the extra space, even if this method indicates that appends won't
|
|
* need to reallocate elements storage.
|
|
*/
|
|
bool canAppendWithoutRealloc(size_t needed) const;
|
|
|
|
/** Potentially fallible append operations. */
|
|
|
|
/**
|
|
* This can take either a T& or a T&&. Given a T&&, it moves |u| into the
|
|
* vector, instead of copying it. If it fails, |u| is left unmoved. ("We are
|
|
* not amused.")
|
|
*/
|
|
template<typename U> bool append(U&& u);
|
|
|
|
template<typename U, size_t O, class BP, class UV>
|
|
bool appendAll(const VectorBase<U, O, BP, UV>& u);
|
|
bool appendN(const T& t, size_t n);
|
|
template<typename U> bool append(const U* begin, const U* end);
|
|
template<typename U> bool append(const U* begin, size_t length);
|
|
|
|
/*
|
|
* Guaranteed-infallible append operations for use upon vectors whose
|
|
* memory has been pre-reserved. Don't use this if you haven't reserved the
|
|
* memory!
|
|
*/
|
|
template<typename U> void infallibleAppend(U&& u) {
|
|
internalAppend(Forward<U>(u));
|
|
}
|
|
void infallibleAppendN(const T& t, size_t n) {
|
|
internalAppendN(t, n);
|
|
}
|
|
template<typename U> void infallibleAppend(const U* aBegin, const U* aEnd) {
|
|
internalAppend(aBegin, PointerRangeSize(aBegin, aEnd));
|
|
}
|
|
template<typename U> void infallibleAppend(const U* aBegin, size_t aLength) {
|
|
internalAppend(aBegin, aLength);
|
|
}
|
|
|
|
void popBack();
|
|
|
|
T popCopy();
|
|
|
|
/**
|
|
* Transfers ownership of the internal buffer used by this vector to the
|
|
* caller. (It's the caller's responsibility to properly deallocate this
|
|
* buffer, in accordance with this vector's AllocPolicy.) After this call,
|
|
* the vector is empty. Since the returned buffer may need to be allocated
|
|
* (if the elements are currently stored in-place), the call can fail,
|
|
* returning nullptr.
|
|
*
|
|
* N.B. Although a T*, only the range [0, length()) is constructed.
|
|
*/
|
|
T* extractRawBuffer();
|
|
|
|
/**
|
|
* Transfer ownership of an array of objects into the vector. The caller
|
|
* must have allocated the array in accordance with this vector's
|
|
* AllocPolicy.
|
|
*
|
|
* N.B. This call assumes that there are no uninitialized elements in the
|
|
* passed array.
|
|
*/
|
|
void replaceRawBuffer(T* p, size_t length);
|
|
|
|
/**
|
|
* Places |val| at position |p|, shifting existing elements from |p| onward
|
|
* one position higher. On success, |p| should not be reused because it'll
|
|
* be a dangling pointer if reallocation of the vector storage occurred; the
|
|
* return value should be used instead. On failure, nullptr is returned.
|
|
*
|
|
* Example usage:
|
|
*
|
|
* if (!(p = vec.insert(p, val)))
|
|
* <handle failure>
|
|
* <keep working with p>
|
|
*
|
|
* This is inherently a linear-time operation. Be careful!
|
|
*/
|
|
template<typename U>
|
|
T* insert(T* p, U&& val);
|
|
|
|
/**
|
|
* Removes the element |t|, which must fall in the bounds [begin, end),
|
|
* shifting existing elements from |t + 1| onward one position lower.
|
|
*/
|
|
void erase(T* t);
|
|
|
|
/**
|
|
* Removes the elements [|b|, |e|), which must fall in the bounds [begin, end),
|
|
* shifting existing elements from |e + 1| onward to b's old position.
|
|
*/
|
|
void erase(T* b, T *e);
|
|
|
|
/**
|
|
* Measure the size of the vector's heap-allocated storage.
|
|
*/
|
|
size_t sizeOfExcludingThis(MallocSizeOf mallocSizeOf) const;
|
|
|
|
/**
|
|
* Like sizeOfExcludingThis, but also measures the size of the vector
|
|
* object (which must be heap-allocated) itself.
|
|
*/
|
|
size_t sizeOfIncludingThis(MallocSizeOf mallocSizeOf) const;
|
|
|
|
void swap(ThisVector& other);
|
|
|
|
private:
|
|
VectorBase(const VectorBase&) MOZ_DELETE;
|
|
void operator=(const VectorBase&) MOZ_DELETE;
|
|
|
|
/* Move-construct/assign only from our derived class, ThisVector. */
|
|
VectorBase(VectorBase&&) MOZ_DELETE;
|
|
void operator=(VectorBase&&) MOZ_DELETE;
|
|
};
|
|
|
|
/* This does the re-entrancy check plus several other sanity checks. */
|
|
#define MOZ_REENTRANCY_GUARD_ET_AL \
|
|
ReentrancyGuard g(*this); \
|
|
MOZ_ASSERT_IF(usingInlineStorage(), mCapacity == sInlineCapacity); \
|
|
MOZ_ASSERT(reserved() <= mCapacity); \
|
|
MOZ_ASSERT(mLength <= reserved()); \
|
|
MOZ_ASSERT(mLength <= mCapacity)
|
|
|
|
/* Vector Implementation */
|
|
|
|
template<typename T, size_t N, class AP, class TV>
|
|
MOZ_ALWAYS_INLINE
|
|
VectorBase<T, N, AP, TV>::VectorBase(AP ap)
|
|
: AP(ap),
|
|
mLength(0),
|
|
mCapacity(sInlineCapacity)
|
|
#ifdef DEBUG
|
|
, mReserved(sInlineCapacity),
|
|
entered(false)
|
|
#endif
|
|
{
|
|
mBegin = static_cast<T*>(storage.addr());
|
|
}
|
|
|
|
/* Move constructor. */
|
|
template<typename T, size_t N, class AllocPolicy, class TV>
|
|
MOZ_ALWAYS_INLINE
|
|
VectorBase<T, N, AllocPolicy, TV>::VectorBase(TV&& rhs)
|
|
: AllocPolicy(Move(rhs))
|
|
#ifdef DEBUG
|
|
, entered(false)
|
|
#endif
|
|
{
|
|
mLength = rhs.mLength;
|
|
mCapacity = rhs.mCapacity;
|
|
#ifdef DEBUG
|
|
mReserved = rhs.mReserved;
|
|
#endif
|
|
|
|
if (rhs.usingInlineStorage()) {
|
|
/* We can't move the buffer over in this case, so copy elements. */
|
|
mBegin = static_cast<T*>(storage.addr());
|
|
Impl::moveConstruct(mBegin, rhs.beginNoCheck(), rhs.endNoCheck());
|
|
/*
|
|
* Leave rhs's mLength, mBegin, mCapacity, and mReserved as they are.
|
|
* The elements in its in-line storage still need to be destroyed.
|
|
*/
|
|
} else {
|
|
/*
|
|
* Take src's buffer, and turn src into an empty vector using
|
|
* in-line storage.
|
|
*/
|
|
mBegin = rhs.mBegin;
|
|
rhs.mBegin = static_cast<T*>(rhs.storage.addr());
|
|
rhs.mCapacity = sInlineCapacity;
|
|
rhs.mLength = 0;
|
|
#ifdef DEBUG
|
|
rhs.mReserved = sInlineCapacity;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/* Move assignment. */
|
|
template<typename T, size_t N, class AP, class TV>
|
|
MOZ_ALWAYS_INLINE
|
|
TV&
|
|
VectorBase<T, N, AP, TV>::operator=(TV&& rhs)
|
|
{
|
|
MOZ_ASSERT(this != &rhs, "self-move assignment is prohibited");
|
|
TV* tv = static_cast<TV*>(this);
|
|
tv->~TV();
|
|
new(tv) TV(Move(rhs));
|
|
return *tv;
|
|
}
|
|
|
|
template<typename T, size_t N, class AP, class TV>
|
|
MOZ_ALWAYS_INLINE
|
|
VectorBase<T, N, AP, TV>::~VectorBase()
|
|
{
|
|
MOZ_REENTRANCY_GUARD_ET_AL;
|
|
Impl::destroy(beginNoCheck(), endNoCheck());
|
|
if (!usingInlineStorage())
|
|
this->free_(beginNoCheck());
|
|
}
|
|
|
|
/*
|
|
* This function will create a new heap buffer with capacity newCap,
|
|
* move all elements in the inline buffer to this new buffer,
|
|
* and fail on OOM.
|
|
*/
|
|
template<typename T, size_t N, class AP, class TV>
|
|
inline bool
|
|
VectorBase<T, N, AP, TV>::convertToHeapStorage(size_t newCap)
|
|
{
|
|
MOZ_ASSERT(usingInlineStorage());
|
|
|
|
/* Allocate buffer. */
|
|
MOZ_ASSERT(!detail::CapacityHasExcessSpace<T>(newCap));
|
|
T* newBuf = reinterpret_cast<T*>(this->malloc_(newCap * sizeof(T)));
|
|
if (!newBuf)
|
|
return false;
|
|
|
|
/* Copy inline elements into heap buffer. */
|
|
Impl::moveConstruct(newBuf, beginNoCheck(), endNoCheck());
|
|
Impl::destroy(beginNoCheck(), endNoCheck());
|
|
|
|
/* Switch in heap buffer. */
|
|
mBegin = newBuf;
|
|
/* mLength is unchanged. */
|
|
mCapacity = newCap;
|
|
return true;
|
|
}
|
|
|
|
template<typename T, size_t N, class AP, class TV>
|
|
MOZ_NEVER_INLINE bool
|
|
VectorBase<T, N, AP, TV>::growStorageBy(size_t incr)
|
|
{
|
|
MOZ_ASSERT(mLength + incr > mCapacity);
|
|
MOZ_ASSERT_IF(!usingInlineStorage(),
|
|
!detail::CapacityHasExcessSpace<T>(mCapacity));
|
|
|
|
/*
|
|
* When choosing a new capacity, its size should is as close to 2**N bytes
|
|
* as possible. 2**N-sized requests are best because they are unlikely to
|
|
* be rounded up by the allocator. Asking for a 2**N number of elements
|
|
* isn't as good, because if sizeof(T) is not a power-of-two that would
|
|
* result in a non-2**N request size.
|
|
*/
|
|
|
|
size_t newCap;
|
|
|
|
if (incr == 1) {
|
|
if (usingInlineStorage()) {
|
|
/* This case occurs in ~70--80% of the calls to this function. */
|
|
size_t newSize =
|
|
tl::RoundUpPow2<(sInlineCapacity + 1) * sizeof(T)>::value;
|
|
newCap = newSize / sizeof(T);
|
|
goto convert;
|
|
}
|
|
|
|
if (mLength == 0) {
|
|
/* This case occurs in ~0--10% of the calls to this function. */
|
|
newCap = 1;
|
|
goto grow;
|
|
}
|
|
|
|
/* This case occurs in ~15--20% of the calls to this function. */
|
|
|
|
/*
|
|
* Will mLength * 4 *sizeof(T) overflow? This condition limits a vector
|
|
* to 1GB of memory on a 32-bit system, which is a reasonable limit. It
|
|
* also ensures that
|
|
*
|
|
* static_cast<char*>(end()) - static_cast<char*>(begin())
|
|
*
|
|
* doesn't overflow ptrdiff_t (see bug 510319).
|
|
*/
|
|
if (mLength & tl::MulOverflowMask<4 * sizeof(T)>::value) {
|
|
this->reportAllocOverflow();
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* If we reach here, the existing capacity will have a size that is already
|
|
* as close to 2^N as sizeof(T) will allow. Just double the capacity, and
|
|
* then there might be space for one more element.
|
|
*/
|
|
newCap = mLength * 2;
|
|
if (detail::CapacityHasExcessSpace<T>(newCap))
|
|
newCap += 1;
|
|
} else {
|
|
/* This case occurs in ~2% of the calls to this function. */
|
|
size_t newMinCap = mLength + incr;
|
|
|
|
/* Did mLength + incr overflow? Will newCap * sizeof(T) overflow? */
|
|
if (newMinCap < mLength ||
|
|
newMinCap & tl::MulOverflowMask<2 * sizeof(T)>::value)
|
|
{
|
|
this->reportAllocOverflow();
|
|
return false;
|
|
}
|
|
|
|
size_t newMinSize = newMinCap * sizeof(T);
|
|
size_t newSize = RoundUpPow2(newMinSize);
|
|
newCap = newSize / sizeof(T);
|
|
}
|
|
|
|
if (usingInlineStorage()) {
|
|
convert:
|
|
return convertToHeapStorage(newCap);
|
|
}
|
|
|
|
grow:
|
|
return Impl::growTo(*this, newCap);
|
|
}
|
|
|
|
template<typename T, size_t N, class AP, class TV>
|
|
inline bool
|
|
VectorBase<T, N, AP, TV>::initCapacity(size_t request)
|
|
{
|
|
MOZ_ASSERT(empty());
|
|
MOZ_ASSERT(usingInlineStorage());
|
|
if (request == 0)
|
|
return true;
|
|
T* newbuf = reinterpret_cast<T*>(this->malloc_(request * sizeof(T)));
|
|
if (!newbuf)
|
|
return false;
|
|
mBegin = newbuf;
|
|
mCapacity = request;
|
|
#ifdef DEBUG
|
|
mReserved = request;
|
|
#endif
|
|
return true;
|
|
}
|
|
|
|
template<typename T, size_t N, class AP, class TV>
|
|
inline bool
|
|
VectorBase<T, N, AP, TV>::reserve(size_t request)
|
|
{
|
|
MOZ_REENTRANCY_GUARD_ET_AL;
|
|
if (request > mCapacity && !growStorageBy(request - mLength))
|
|
return false;
|
|
|
|
#ifdef DEBUG
|
|
if (request > mReserved)
|
|
mReserved = request;
|
|
MOZ_ASSERT(mLength <= mReserved);
|
|
MOZ_ASSERT(mReserved <= mCapacity);
|
|
#endif
|
|
return true;
|
|
}
|
|
|
|
template<typename T, size_t N, class AP, class TV>
|
|
inline void
|
|
VectorBase<T, N, AP, TV>::shrinkBy(size_t incr)
|
|
{
|
|
MOZ_REENTRANCY_GUARD_ET_AL;
|
|
MOZ_ASSERT(incr <= mLength);
|
|
Impl::destroy(endNoCheck() - incr, endNoCheck());
|
|
mLength -= incr;
|
|
}
|
|
|
|
template<typename T, size_t N, class AP, class TV>
|
|
MOZ_ALWAYS_INLINE bool
|
|
VectorBase<T, N, AP, TV>::growBy(size_t incr)
|
|
{
|
|
MOZ_REENTRANCY_GUARD_ET_AL;
|
|
if (incr > mCapacity - mLength && !growStorageBy(incr))
|
|
return false;
|
|
|
|
MOZ_ASSERT(mLength + incr <= mCapacity);
|
|
T* newend = endNoCheck() + incr;
|
|
Impl::initialize(endNoCheck(), newend);
|
|
mLength += incr;
|
|
#ifdef DEBUG
|
|
if (mLength > mReserved)
|
|
mReserved = mLength;
|
|
#endif
|
|
return true;
|
|
}
|
|
|
|
template<typename T, size_t N, class AP, class TV>
|
|
MOZ_ALWAYS_INLINE bool
|
|
VectorBase<T, N, AP, TV>::growByUninitialized(size_t incr)
|
|
{
|
|
MOZ_REENTRANCY_GUARD_ET_AL;
|
|
if (incr > mCapacity - mLength && !growStorageBy(incr))
|
|
return false;
|
|
|
|
MOZ_ASSERT(mLength + incr <= mCapacity);
|
|
mLength += incr;
|
|
#ifdef DEBUG
|
|
if (mLength > mReserved)
|
|
mReserved = mLength;
|
|
#endif
|
|
return true;
|
|
}
|
|
|
|
template<typename T, size_t N, class AP, class TV>
|
|
inline bool
|
|
VectorBase<T, N, AP, TV>::resize(size_t newLength)
|
|
{
|
|
size_t curLength = mLength;
|
|
if (newLength > curLength)
|
|
return growBy(newLength - curLength);
|
|
shrinkBy(curLength - newLength);
|
|
return true;
|
|
}
|
|
|
|
template<typename T, size_t N, class AP, class TV>
|
|
MOZ_ALWAYS_INLINE bool
|
|
VectorBase<T, N, AP, TV>::resizeUninitialized(size_t newLength)
|
|
{
|
|
size_t curLength = mLength;
|
|
if (newLength > curLength)
|
|
return growByUninitialized(newLength - curLength);
|
|
shrinkBy(curLength - newLength);
|
|
return true;
|
|
}
|
|
|
|
template<typename T, size_t N, class AP, class TV>
|
|
inline void
|
|
VectorBase<T, N, AP, TV>::clear()
|
|
{
|
|
MOZ_REENTRANCY_GUARD_ET_AL;
|
|
Impl::destroy(beginNoCheck(), endNoCheck());
|
|
mLength = 0;
|
|
}
|
|
|
|
template<typename T, size_t N, class AP, class TV>
|
|
inline void
|
|
VectorBase<T, N, AP, TV>::clearAndFree()
|
|
{
|
|
clear();
|
|
|
|
if (usingInlineStorage())
|
|
return;
|
|
|
|
this->free_(beginNoCheck());
|
|
mBegin = static_cast<T*>(storage.addr());
|
|
mCapacity = sInlineCapacity;
|
|
#ifdef DEBUG
|
|
mReserved = sInlineCapacity;
|
|
#endif
|
|
}
|
|
|
|
template<typename T, size_t N, class AP, class TV>
|
|
inline bool
|
|
VectorBase<T, N, AP, TV>::canAppendWithoutRealloc(size_t needed) const
|
|
{
|
|
return mLength + needed <= mCapacity;
|
|
}
|
|
|
|
template<typename T, size_t N, class AP, class TV>
|
|
template<typename U, size_t O, class BP, class UV>
|
|
MOZ_ALWAYS_INLINE void
|
|
VectorBase<T, N, AP, TV>::internalAppendAll(const VectorBase<U, O, BP, UV>& other)
|
|
{
|
|
internalAppend(other.begin(), other.length());
|
|
}
|
|
|
|
template<typename T, size_t N, class AP, class TV>
|
|
template<typename U>
|
|
MOZ_ALWAYS_INLINE void
|
|
VectorBase<T, N, AP, TV>::internalAppend(U&& u)
|
|
{
|
|
MOZ_ASSERT(mLength + 1 <= mReserved);
|
|
MOZ_ASSERT(mReserved <= mCapacity);
|
|
new(endNoCheck()) T(Forward<U>(u));
|
|
++mLength;
|
|
}
|
|
|
|
template<typename T, size_t N, class AP, class TV>
|
|
MOZ_ALWAYS_INLINE bool
|
|
VectorBase<T, N, AP, TV>::appendN(const T& t, size_t needed)
|
|
{
|
|
MOZ_REENTRANCY_GUARD_ET_AL;
|
|
if (mLength + needed > mCapacity && !growStorageBy(needed))
|
|
return false;
|
|
|
|
#ifdef DEBUG
|
|
if (mLength + needed > mReserved)
|
|
mReserved = mLength + needed;
|
|
#endif
|
|
internalAppendN(t, needed);
|
|
return true;
|
|
}
|
|
|
|
template<typename T, size_t N, class AP, class TV>
|
|
MOZ_ALWAYS_INLINE void
|
|
VectorBase<T, N, AP, TV>::internalAppendN(const T& t, size_t needed)
|
|
{
|
|
MOZ_ASSERT(mLength + needed <= mReserved);
|
|
MOZ_ASSERT(mReserved <= mCapacity);
|
|
Impl::copyConstructN(endNoCheck(), needed, t);
|
|
mLength += needed;
|
|
}
|
|
|
|
template<typename T, size_t N, class AP, class TV>
|
|
template<typename U>
|
|
inline T*
|
|
VectorBase<T, N, AP, TV>::insert(T* p, U&& val)
|
|
{
|
|
MOZ_ASSERT(begin() <= p);
|
|
MOZ_ASSERT(p <= end());
|
|
size_t pos = p - begin();
|
|
MOZ_ASSERT(pos <= mLength);
|
|
size_t oldLength = mLength;
|
|
if (pos == oldLength) {
|
|
if (!append(Forward<U>(val)))
|
|
return nullptr;
|
|
} else {
|
|
T oldBack = Move(back());
|
|
if (!append(Move(oldBack))) /* Dup the last element. */
|
|
return nullptr;
|
|
for (size_t i = oldLength; i > pos; --i)
|
|
(*this)[i] = Move((*this)[i - 1]);
|
|
(*this)[pos] = Forward<U>(val);
|
|
}
|
|
return begin() + pos;
|
|
}
|
|
|
|
template<typename T, size_t N, class AP, class TV>
|
|
inline void
|
|
VectorBase<T, N, AP, TV>::erase(T* it)
|
|
{
|
|
MOZ_ASSERT(begin() <= it);
|
|
MOZ_ASSERT(it < end());
|
|
while (it + 1 < end()) {
|
|
*it = Move(*(it + 1));
|
|
++it;
|
|
}
|
|
popBack();
|
|
}
|
|
|
|
template<typename T, size_t N, class AP, class TV>
|
|
inline void
|
|
VectorBase<T, N, AP, TV>::erase(T* b, T *e)
|
|
{
|
|
MOZ_ASSERT(begin() <= b);
|
|
MOZ_ASSERT(b <= e);
|
|
MOZ_ASSERT(e <= end());
|
|
while (e < end())
|
|
*b++ = Move(*e++);
|
|
shrinkBy(e - b);
|
|
}
|
|
|
|
template<typename T, size_t N, class AP, class TV>
|
|
template<typename U>
|
|
MOZ_ALWAYS_INLINE bool
|
|
VectorBase<T, N, AP, TV>::append(const U* insBegin, const U* insEnd)
|
|
{
|
|
MOZ_REENTRANCY_GUARD_ET_AL;
|
|
size_t needed = PointerRangeSize(insBegin, insEnd);
|
|
if (mLength + needed > mCapacity && !growStorageBy(needed))
|
|
return false;
|
|
|
|
#ifdef DEBUG
|
|
if (mLength + needed > mReserved)
|
|
mReserved = mLength + needed;
|
|
#endif
|
|
internalAppend(insBegin, needed);
|
|
return true;
|
|
}
|
|
|
|
template<typename T, size_t N, class AP, class TV>
|
|
template<typename U>
|
|
MOZ_ALWAYS_INLINE void
|
|
VectorBase<T, N, AP, TV>::internalAppend(const U* insBegin, size_t insLength)
|
|
{
|
|
MOZ_ASSERT(mLength + insLength <= mReserved);
|
|
MOZ_ASSERT(mReserved <= mCapacity);
|
|
Impl::copyConstruct(endNoCheck(), insBegin, insBegin + insLength);
|
|
mLength += insLength;
|
|
}
|
|
|
|
template<typename T, size_t N, class AP, class TV>
|
|
template<typename U>
|
|
MOZ_ALWAYS_INLINE bool
|
|
VectorBase<T, N, AP, TV>::append(U&& u)
|
|
{
|
|
MOZ_REENTRANCY_GUARD_ET_AL;
|
|
if (mLength == mCapacity && !growStorageBy(1))
|
|
return false;
|
|
|
|
#ifdef DEBUG
|
|
if (mLength + 1 > mReserved)
|
|
mReserved = mLength + 1;
|
|
#endif
|
|
internalAppend(Forward<U>(u));
|
|
return true;
|
|
}
|
|
|
|
template<typename T, size_t N, class AP, class TV>
|
|
template<typename U, size_t O, class BP, class UV>
|
|
MOZ_ALWAYS_INLINE bool
|
|
VectorBase<T, N, AP, TV>::appendAll(const VectorBase<U, O, BP, UV>& other)
|
|
{
|
|
return append(other.begin(), other.length());
|
|
}
|
|
|
|
template<typename T, size_t N, class AP, class TV>
|
|
template<class U>
|
|
MOZ_ALWAYS_INLINE bool
|
|
VectorBase<T, N, AP, TV>::append(const U *insBegin, size_t insLength)
|
|
{
|
|
return append(insBegin, insBegin + insLength);
|
|
}
|
|
|
|
template<typename T, size_t N, class AP, class TV>
|
|
MOZ_ALWAYS_INLINE void
|
|
VectorBase<T, N, AP, TV>::popBack()
|
|
{
|
|
MOZ_REENTRANCY_GUARD_ET_AL;
|
|
MOZ_ASSERT(!empty());
|
|
--mLength;
|
|
endNoCheck()->~T();
|
|
}
|
|
|
|
template<typename T, size_t N, class AP, class TV>
|
|
MOZ_ALWAYS_INLINE T
|
|
VectorBase<T, N, AP, TV>::popCopy()
|
|
{
|
|
T ret = back();
|
|
popBack();
|
|
return ret;
|
|
}
|
|
|
|
template<typename T, size_t N, class AP, class TV>
|
|
inline T*
|
|
VectorBase<T, N, AP, TV>::extractRawBuffer()
|
|
{
|
|
T* ret;
|
|
if (usingInlineStorage()) {
|
|
ret = reinterpret_cast<T*>(this->malloc_(mLength * sizeof(T)));
|
|
if (!ret)
|
|
return nullptr;
|
|
Impl::copyConstruct(ret, beginNoCheck(), endNoCheck());
|
|
Impl::destroy(beginNoCheck(), endNoCheck());
|
|
/* mBegin, mCapacity are unchanged. */
|
|
mLength = 0;
|
|
} else {
|
|
ret = mBegin;
|
|
mBegin = static_cast<T*>(storage.addr());
|
|
mLength = 0;
|
|
mCapacity = sInlineCapacity;
|
|
#ifdef DEBUG
|
|
mReserved = sInlineCapacity;
|
|
#endif
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
template<typename T, size_t N, class AP, class TV>
|
|
inline void
|
|
VectorBase<T, N, AP, TV>::replaceRawBuffer(T* p, size_t aLength)
|
|
{
|
|
MOZ_REENTRANCY_GUARD_ET_AL;
|
|
|
|
/* Destroy what we have. */
|
|
Impl::destroy(beginNoCheck(), endNoCheck());
|
|
if (!usingInlineStorage())
|
|
this->free_(beginNoCheck());
|
|
|
|
/* Take in the new buffer. */
|
|
if (aLength <= sInlineCapacity) {
|
|
/*
|
|
* We convert to inline storage if possible, even though p might
|
|
* otherwise be acceptable. Maybe this behaviour should be
|
|
* specifiable with an argument to this function.
|
|
*/
|
|
mBegin = static_cast<T*>(storage.addr());
|
|
mLength = aLength;
|
|
mCapacity = sInlineCapacity;
|
|
Impl::moveConstruct(mBegin, p, p + aLength);
|
|
Impl::destroy(p, p + aLength);
|
|
this->free_(p);
|
|
} else {
|
|
mBegin = p;
|
|
mLength = aLength;
|
|
mCapacity = aLength;
|
|
}
|
|
#ifdef DEBUG
|
|
mReserved = aLength;
|
|
#endif
|
|
}
|
|
|
|
template<typename T, size_t N, class AP, class TV>
|
|
inline size_t
|
|
VectorBase<T, N, AP, TV>::sizeOfExcludingThis(MallocSizeOf mallocSizeOf) const
|
|
{
|
|
return usingInlineStorage() ? 0 : mallocSizeOf(beginNoCheck());
|
|
}
|
|
|
|
template<typename T, size_t N, class AP, class TV>
|
|
inline size_t
|
|
VectorBase<T, N, AP, TV>::sizeOfIncludingThis(MallocSizeOf mallocSizeOf) const
|
|
{
|
|
return mallocSizeOf(this) + sizeOfExcludingThis(mallocSizeOf);
|
|
}
|
|
|
|
template<typename T, size_t N, class AP, class TV>
|
|
inline void
|
|
VectorBase<T, N, AP, TV>::swap(TV& other)
|
|
{
|
|
static_assert(N == 0,
|
|
"still need to implement this for N != 0");
|
|
|
|
// This only works when inline storage is always empty.
|
|
if (!usingInlineStorage() && other.usingInlineStorage()) {
|
|
other.mBegin = mBegin;
|
|
mBegin = inlineStorage();
|
|
} else if (usingInlineStorage() && !other.usingInlineStorage()) {
|
|
mBegin = other.mBegin;
|
|
other.mBegin = other.inlineStorage();
|
|
} else if (!usingInlineStorage() && !other.usingInlineStorage()) {
|
|
Swap(mBegin, other.mBegin);
|
|
} else {
|
|
// This case is a no-op, since we'd set both to use their inline storage.
|
|
}
|
|
|
|
Swap(mLength, other.mLength);
|
|
Swap(mCapacity, other.mCapacity);
|
|
#ifdef DEBUG
|
|
Swap(mReserved, other.mReserved);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* STL-like container providing a short-lived, dynamic buffer. Vector calls the
|
|
* constructors/destructors of all elements stored in its internal buffer, so
|
|
* non-PODs may be safely used. Additionally, Vector will store the first N
|
|
* elements in-place before resorting to dynamic allocation.
|
|
*
|
|
* T requirements:
|
|
* - default and copy constructible, assignable, destructible
|
|
* - operations do not throw
|
|
* N requirements:
|
|
* - any value, however, N is clamped to min/max values
|
|
* AllocPolicy:
|
|
* - see "Allocation policies" in AllocPolicy.h (defaults to
|
|
* mozilla::MallocAllocPolicy)
|
|
*
|
|
* Vector is not reentrant: T member functions called during Vector member
|
|
* functions must not call back into the same object!
|
|
*/
|
|
template<typename T,
|
|
size_t MinInlineCapacity = 0,
|
|
class AllocPolicy = MallocAllocPolicy>
|
|
class Vector
|
|
: public VectorBase<T,
|
|
MinInlineCapacity,
|
|
AllocPolicy,
|
|
Vector<T, MinInlineCapacity, AllocPolicy> >
|
|
{
|
|
typedef VectorBase<T, MinInlineCapacity, AllocPolicy, Vector> Base;
|
|
|
|
public:
|
|
explicit Vector(AllocPolicy alloc = AllocPolicy()) : Base(alloc) {}
|
|
Vector(Vector&& vec) : Base(Move(vec)) {}
|
|
Vector& operator=(Vector&& vec) {
|
|
return Base::operator=(Move(vec));
|
|
}
|
|
};
|
|
|
|
} // namespace mozilla
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma warning(pop)
|
|
#endif
|
|
|
|
#endif /* mozilla_Vector_h */
|