gecko-dev/servo/components/style/context.rs
Cameron McCormack e1fb3d1ec0 servo: Merge #18499 - style: add a TLS-based cache of reset style structs (from heycam:rule-cache); r=emilio
Rule cache

<!-- Please describe your changes on the following line: -->
This adds a TLS-based cache reset styles structs keyed off rule nodes.  Reviewed in https://bugzilla.mozilla.org/show_bug.cgi?id=1367635 by me and Emilio.

---
<!-- Thank you for contributing to Servo! Please replace each `[ ]` by `[X]` when the step is complete, and replace `__` with appropriate data: -->
- [X] `./mach build -d` does not report any errors
- [X] `./mach test-tidy` does not report any errors
- [ ] These changes fix #__ (github issue number if applicable).

<!-- Either: -->
- [ ] There are tests for these changes OR
- [ ] These changes do not require tests because _____

<!-- Also, please make sure that "Allow edits from maintainers" checkbox is checked, so that we can help you if you get stuck somewhere along the way.-->

<!-- Pull requests that do not address these steps are welcome, but they will require additional verification as part of the review process. -->

Source-Repo: https://github.com/servo/servo
Source-Revision: 874cb0d9df44e62a78d427f22f234a13227d07f8

--HG--
extra : subtree_source : https%3A//hg.mozilla.org/projects/converted-servo-linear
extra : subtree_revision : 94d8df7014ae82e639bb93f209eea4605f7d8964
2017-09-14 04:28:50 -05:00

839 lines
32 KiB
Rust

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
//! The context within which style is calculated.
#[cfg(feature = "servo")] use animation::Animation;
#[cfg(feature = "servo")] use animation::PropertyAnimation;
use app_units::Au;
use bloom::StyleBloom;
use cache::LRUCache;
use data::{EagerPseudoStyles, ElementData};
use dom::{OpaqueNode, TNode, TElement, SendElement};
use euclid::ScaleFactor;
use euclid::Size2D;
use fnv::FnvHashMap;
use font_metrics::FontMetricsProvider;
#[cfg(feature = "gecko")] use gecko_bindings::structs;
use parallel::{STACK_SAFETY_MARGIN_KB, STYLE_THREAD_STACK_SIZE_KB};
#[cfg(feature = "servo")] use parking_lot::RwLock;
use properties::ComputedValues;
#[cfg(feature = "servo")] use properties::PropertyId;
use rule_cache::RuleCache;
use rule_tree::StrongRuleNode;
use selector_parser::{EAGER_PSEUDO_COUNT, SnapshotMap};
use selectors::matching::ElementSelectorFlags;
use servo_arc::Arc;
#[cfg(feature = "servo")] use servo_atoms::Atom;
use shared_lock::StylesheetGuards;
use sharing::StyleSharingCache;
use std::fmt;
use std::ops;
#[cfg(feature = "servo")] use std::sync::Mutex;
#[cfg(feature = "servo")] use std::sync::mpsc::Sender;
use style_traits::CSSPixel;
use style_traits::DevicePixel;
#[cfg(feature = "servo")] use style_traits::SpeculativePainter;
use stylist::Stylist;
use thread_state;
use time;
use timer::Timer;
use traversal::DomTraversal;
use traversal_flags::TraversalFlags;
pub use selectors::matching::QuirksMode;
/// This structure is used to create a local style context from a shared one.
#[cfg(feature = "servo")]
pub struct ThreadLocalStyleContextCreationInfo {
new_animations_sender: Sender<Animation>,
}
#[cfg(feature = "servo")]
impl ThreadLocalStyleContextCreationInfo {
/// Trivially constructs a `ThreadLocalStyleContextCreationInfo`.
pub fn new(animations_sender: Sender<Animation>) -> Self {
ThreadLocalStyleContextCreationInfo {
new_animations_sender: animations_sender,
}
}
}
/// A global options structure for the style system. We use this instead of
/// opts to abstract across Gecko and Servo.
#[derive(Clone)]
pub struct StyleSystemOptions {
/// Whether the style sharing cache is disabled.
pub disable_style_sharing_cache: bool,
/// Whether we should dump statistics about the style system.
pub dump_style_statistics: bool,
/// The minimum number of elements that must be traversed to trigger a dump
/// of style statistics.
pub style_statistics_threshold: usize,
}
#[cfg(feature = "gecko")]
fn get_env_bool(name: &str) -> bool {
use std::env;
match env::var(name) {
Ok(s) => !s.is_empty(),
Err(_) => false,
}
}
const DEFAULT_STATISTICS_THRESHOLD: usize = 50;
#[cfg(feature = "gecko")]
fn get_env_usize(name: &str) -> Option<usize> {
use std::env;
env::var(name).ok().map(|s| {
s.parse::<usize>().expect("Couldn't parse environmental variable as usize")
})
}
impl Default for StyleSystemOptions {
#[cfg(feature = "servo")]
fn default() -> Self {
use servo_config::opts;
StyleSystemOptions {
disable_style_sharing_cache: opts::get().disable_share_style_cache,
dump_style_statistics: opts::get().style_sharing_stats,
style_statistics_threshold: DEFAULT_STATISTICS_THRESHOLD,
}
}
#[cfg(feature = "gecko")]
fn default() -> Self {
StyleSystemOptions {
disable_style_sharing_cache: get_env_bool("DISABLE_STYLE_SHARING_CACHE"),
dump_style_statistics: get_env_bool("DUMP_STYLE_STATISTICS"),
style_statistics_threshold: get_env_usize("STYLE_STATISTICS_THRESHOLD")
.unwrap_or(DEFAULT_STATISTICS_THRESHOLD),
}
}
}
/// A shared style context.
///
/// There's exactly one of these during a given restyle traversal, and it's
/// shared among the worker threads.
pub struct SharedStyleContext<'a> {
/// The CSS selector stylist.
pub stylist: &'a Stylist,
/// Whether visited styles are enabled.
///
/// They may be disabled when Gecko's pref layout.css.visited_links_enabled
/// is false, or when in private browsing mode.
pub visited_styles_enabled: bool,
/// Configuration options.
pub options: StyleSystemOptions,
/// Guards for pre-acquired locks
pub guards: StylesheetGuards<'a>,
/// The current timer for transitions and animations. This is needed to test
/// them.
pub timer: Timer,
/// Flags controlling how we traverse the tree.
pub traversal_flags: TraversalFlags,
/// A map with our snapshots in order to handle restyle hints.
pub snapshot_map: &'a SnapshotMap,
/// The animations that are currently running.
#[cfg(feature = "servo")]
pub running_animations: Arc<RwLock<FnvHashMap<OpaqueNode, Vec<Animation>>>>,
/// The list of animations that have expired since the last style recalculation.
#[cfg(feature = "servo")]
pub expired_animations: Arc<RwLock<FnvHashMap<OpaqueNode, Vec<Animation>>>>,
/// Paint worklets
#[cfg(feature = "servo")]
pub registered_speculative_painters: &'a RegisteredSpeculativePainters,
/// Data needed to create the thread-local style context from the shared one.
#[cfg(feature = "servo")]
pub local_context_creation_data: Mutex<ThreadLocalStyleContextCreationInfo>,
}
impl<'a> SharedStyleContext<'a> {
/// Return a suitable viewport size in order to be used for viewport units.
pub fn viewport_size(&self) -> Size2D<Au> {
self.stylist.device().au_viewport_size()
}
/// The device pixel ratio
pub fn device_pixel_ratio(&self) -> ScaleFactor<f32, CSSPixel, DevicePixel> {
self.stylist.device().device_pixel_ratio()
}
/// The quirks mode of the document.
pub fn quirks_mode(&self) -> QuirksMode {
self.stylist.quirks_mode()
}
}
/// The structure holds various intermediate inputs that are eventually used by
/// by the cascade.
///
/// The matching and cascading process stores them in this format temporarily
/// within the `CurrentElementInfo`. At the end of the cascade, they are folded
/// down into the main `ComputedValues` to reduce memory usage per element while
/// still remaining accessible.
#[derive(Clone, Default)]
pub struct CascadeInputs {
/// The rule node representing the ordered list of rules matched for this
/// node.
pub rules: Option<StrongRuleNode>,
/// The rule node representing the ordered list of rules matched for this
/// node if visited, only computed if there's a relevant link for this
/// element. A element's "relevant link" is the element being matched if it
/// is a link or the nearest ancestor link.
pub visited_rules: Option<StrongRuleNode>,
}
impl CascadeInputs {
/// Construct inputs from previous cascade results, if any.
pub fn new_from_style(style: &ComputedValues) -> Self {
CascadeInputs {
rules: style.rules.clone(),
visited_rules: style.get_visited_style().and_then(|v| v.rules.clone()),
}
}
}
// We manually implement Debug for CascadeInputs so that we can avoid the
// verbose stringification of ComputedValues for normal logging.
impl fmt::Debug for CascadeInputs {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "CascadeInputs {{ rules: {:?}, visited_rules: {:?}, .. }}",
self.rules, self.visited_rules)
}
}
/// A list of cascade inputs for eagerly-cascaded pseudo-elements.
/// The list is stored inline.
#[derive(Debug)]
pub struct EagerPseudoCascadeInputs(Option<[Option<CascadeInputs>; EAGER_PSEUDO_COUNT]>);
// Manually implement `Clone` here because the derived impl of `Clone` for
// array types assumes the value inside is `Copy`.
impl Clone for EagerPseudoCascadeInputs {
fn clone(&self) -> Self {
if self.0.is_none() {
return EagerPseudoCascadeInputs(None)
}
let self_inputs = self.0.as_ref().unwrap();
let mut inputs: [Option<CascadeInputs>; EAGER_PSEUDO_COUNT] = Default::default();
for i in 0..EAGER_PSEUDO_COUNT {
inputs[i] = self_inputs[i].clone();
}
EagerPseudoCascadeInputs(Some(inputs))
}
}
impl EagerPseudoCascadeInputs {
/// Construct inputs from previous cascade results, if any.
fn new_from_style(styles: &EagerPseudoStyles) -> Self {
EagerPseudoCascadeInputs(styles.as_optional_array().map(|styles| {
let mut inputs: [Option<CascadeInputs>; EAGER_PSEUDO_COUNT] = Default::default();
for i in 0..EAGER_PSEUDO_COUNT {
inputs[i] = styles[i].as_ref().map(|s| CascadeInputs::new_from_style(s));
}
inputs
}))
}
/// Returns the list of rules, if they exist.
pub fn into_array(self) -> Option<[Option<CascadeInputs>; EAGER_PSEUDO_COUNT]> {
self.0
}
}
/// The cascade inputs associated with a node, including those for any
/// pseudo-elements.
///
/// The matching and cascading process stores them in this format temporarily
/// within the `CurrentElementInfo`. At the end of the cascade, they are folded
/// down into the main `ComputedValues` to reduce memory usage per element while
/// still remaining accessible.
#[derive(Clone, Debug)]
pub struct ElementCascadeInputs {
/// The element's cascade inputs.
pub primary: CascadeInputs,
/// A list of the inputs for the element's eagerly-cascaded pseudo-elements.
pub pseudos: EagerPseudoCascadeInputs,
}
impl ElementCascadeInputs {
/// Construct inputs from previous cascade results, if any.
pub fn new_from_element_data(data: &ElementData) -> Self {
debug_assert!(data.has_styles());
ElementCascadeInputs {
primary: CascadeInputs::new_from_style(data.styles.primary()),
pseudos: EagerPseudoCascadeInputs::new_from_style(&data.styles.pseudos),
}
}
}
/// Information about the current element being processed. We group this
/// together into a single struct within ThreadLocalStyleContext so that we can
/// instantiate and destroy it easily at the beginning and end of element
/// processing.
pub struct CurrentElementInfo {
/// The element being processed. Currently we use an OpaqueNode since we
/// only use this for identity checks, but we could use SendElement if there
/// were a good reason to.
element: OpaqueNode,
/// Whether the element is being styled for the first time.
is_initial_style: bool,
/// A Vec of possibly expired animations. Used only by Servo.
#[allow(dead_code)]
#[cfg(feature = "servo")]
pub possibly_expired_animations: Vec<PropertyAnimation>,
}
/// Statistics gathered during the traversal. We gather statistics on each
/// thread and then combine them after the threads join via the Add
/// implementation below.
#[derive(Default)]
pub struct TraversalStatistics {
/// The total number of elements traversed.
pub elements_traversed: u32,
/// The number of elements where has_styles() went from false to true.
pub elements_styled: u32,
/// The number of elements for which we performed selector matching.
pub elements_matched: u32,
/// The number of cache hits from the StyleSharingCache.
pub styles_shared: u32,
/// The number of styles reused via rule node comparison from the
/// StyleSharingCache.
pub styles_reused: u32,
/// The number of selectors in the stylist.
pub selectors: u32,
/// The number of revalidation selectors.
pub revalidation_selectors: u32,
/// The number of state/attr dependencies in the dependency set.
pub dependency_selectors: u32,
/// The number of declarations in the stylist.
pub declarations: u32,
/// The number of times the stylist was rebuilt.
pub stylist_rebuilds: u32,
/// Time spent in the traversal, in milliseconds.
pub traversal_time_ms: f64,
/// Whether this was a parallel traversal.
pub is_parallel: Option<bool>,
/// Whether this is a "large" traversal.
pub is_large: Option<bool>,
}
/// Implementation of Add to aggregate statistics across different threads.
impl<'a> ops::Add for &'a TraversalStatistics {
type Output = TraversalStatistics;
fn add(self, other: Self) -> TraversalStatistics {
debug_assert!(self.traversal_time_ms == 0.0 && other.traversal_time_ms == 0.0,
"traversal_time_ms should be set at the end by the caller");
debug_assert!(self.selectors == 0, "set at the end");
debug_assert!(self.revalidation_selectors == 0, "set at the end");
debug_assert!(self.dependency_selectors == 0, "set at the end");
debug_assert!(self.declarations == 0, "set at the end");
debug_assert!(self.stylist_rebuilds == 0, "set at the end");
TraversalStatistics {
elements_traversed: self.elements_traversed + other.elements_traversed,
elements_styled: self.elements_styled + other.elements_styled,
elements_matched: self.elements_matched + other.elements_matched,
styles_shared: self.styles_shared + other.styles_shared,
styles_reused: self.styles_reused + other.styles_reused,
selectors: 0,
revalidation_selectors: 0,
dependency_selectors: 0,
declarations: 0,
stylist_rebuilds: 0,
traversal_time_ms: 0.0,
is_parallel: None,
is_large: None,
}
}
}
/// Format the statistics in a way that the performance test harness understands.
/// See https://bugzilla.mozilla.org/show_bug.cgi?id=1331856#c2
impl fmt::Display for TraversalStatistics {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
debug_assert!(self.traversal_time_ms != 0.0, "should have set traversal time");
writeln!(f, "[PERF] perf block start")?;
writeln!(f, "[PERF],traversal,{}", if self.is_parallel.unwrap() {
"parallel"
} else {
"sequential"
})?;
writeln!(f, "[PERF],elements_traversed,{}", self.elements_traversed)?;
writeln!(f, "[PERF],elements_styled,{}", self.elements_styled)?;
writeln!(f, "[PERF],elements_matched,{}", self.elements_matched)?;
writeln!(f, "[PERF],styles_shared,{}", self.styles_shared)?;
writeln!(f, "[PERF],styles_reused,{}", self.styles_reused)?;
writeln!(f, "[PERF],selectors,{}", self.selectors)?;
writeln!(f, "[PERF],revalidation_selectors,{}", self.revalidation_selectors)?;
writeln!(f, "[PERF],dependency_selectors,{}", self.dependency_selectors)?;
writeln!(f, "[PERF],declarations,{}", self.declarations)?;
writeln!(f, "[PERF],stylist_rebuilds,{}", self.stylist_rebuilds)?;
writeln!(f, "[PERF],traversal_time_ms,{}", self.traversal_time_ms)?;
writeln!(f, "[PERF] perf block end")
}
}
impl TraversalStatistics {
/// Computes the traversal time given the start time in seconds.
pub fn finish<E, D>(&mut self, traversal: &D, parallel: bool, start: f64)
where E: TElement,
D: DomTraversal<E>,
{
let threshold = traversal.shared_context().options.style_statistics_threshold;
let stylist = traversal.shared_context().stylist;
self.is_parallel = Some(parallel);
self.is_large = Some(self.elements_traversed as usize >= threshold);
self.traversal_time_ms = (time::precise_time_s() - start) * 1000.0;
self.selectors = stylist.num_selectors() as u32;
self.revalidation_selectors = stylist.num_revalidation_selectors() as u32;
self.dependency_selectors = stylist.num_invalidations() as u32;
self.declarations = stylist.num_declarations() as u32;
self.stylist_rebuilds = stylist.num_rebuilds() as u32;
}
/// Returns whether this traversal is 'large' in order to avoid console spam
/// from lots of tiny traversals.
pub fn is_large_traversal(&self) -> bool {
self.is_large.unwrap()
}
}
#[cfg(feature = "gecko")]
bitflags! {
/// Represents which tasks are performed in a SequentialTask of
/// UpdateAnimations which is a result of normal restyle.
pub flags UpdateAnimationsTasks: u8 {
/// Update CSS Animations.
const CSS_ANIMATIONS = structs::UpdateAnimationsTasks_CSSAnimations,
/// Update CSS Transitions.
const CSS_TRANSITIONS = structs::UpdateAnimationsTasks_CSSTransitions,
/// Update effect properties.
const EFFECT_PROPERTIES = structs::UpdateAnimationsTasks_EffectProperties,
/// Update animation cacade results for animations running on the compositor.
const CASCADE_RESULTS = structs::UpdateAnimationsTasks_CascadeResults,
}
}
#[cfg(feature = "gecko")]
bitflags! {
/// Represents which tasks are performed in a SequentialTask as a result of
/// animation-only restyle.
pub flags PostAnimationTasks: u8 {
/// Display property was changed from none in animation-only restyle so
/// that we need to resolve styles for descendants in a subsequent
/// normal restyle.
const DISPLAY_CHANGED_FROM_NONE_FOR_SMIL = 0x01,
}
}
/// A task to be run in sequential mode on the parent (non-worker) thread. This
/// is used by the style system to queue up work which is not safe to do during
/// the parallel traversal.
pub enum SequentialTask<E: TElement> {
/// Entry to avoid an unused type parameter error on servo.
Unused(SendElement<E>),
/// Performs one of a number of possible tasks related to updating animations based on the
/// |tasks| field. These include updating CSS animations/transitions that changed as part
/// of the non-animation style traversal, and updating the computed effect properties.
#[cfg(feature = "gecko")]
UpdateAnimations {
/// The target element or pseudo-element.
el: SendElement<E>,
/// The before-change style for transitions. We use before-change style as the initial
/// value of its Keyframe. Required if |tasks| includes CSSTransitions.
before_change_style: Option<Arc<ComputedValues>>,
/// The tasks which are performed in this SequentialTask.
tasks: UpdateAnimationsTasks
},
/// Performs one of a number of possible tasks as a result of animation-only restyle.
/// Currently we do only process for resolving descendant elements that were display:none
/// subtree for SMIL animation.
#[cfg(feature = "gecko")]
PostAnimation {
/// The target element.
el: SendElement<E>,
/// The tasks which are performed in this SequentialTask.
tasks: PostAnimationTasks
},
}
impl<E: TElement> SequentialTask<E> {
/// Executes this task.
pub fn execute(self) {
use self::SequentialTask::*;
debug_assert!(thread_state::get() == thread_state::LAYOUT);
match self {
Unused(_) => unreachable!(),
#[cfg(feature = "gecko")]
UpdateAnimations { el, before_change_style, tasks } => {
unsafe { el.update_animations(before_change_style, tasks) };
}
#[cfg(feature = "gecko")]
PostAnimation { el, tasks } => {
unsafe { el.process_post_animation(tasks) };
}
}
}
/// Creates a task to update various animation-related state on
/// a given (pseudo-)element.
#[cfg(feature = "gecko")]
pub fn update_animations(el: E,
before_change_style: Option<Arc<ComputedValues>>,
tasks: UpdateAnimationsTasks) -> Self {
use self::SequentialTask::*;
UpdateAnimations {
el: unsafe { SendElement::new(el) },
before_change_style: before_change_style,
tasks: tasks,
}
}
/// Creates a task to do post-process for a given element as a result of
/// animation-only restyle.
#[cfg(feature = "gecko")]
pub fn process_post_animation(el: E, tasks: PostAnimationTasks) -> Self {
use self::SequentialTask::*;
PostAnimation {
el: unsafe { SendElement::new(el) },
tasks: tasks,
}
}
}
/// Map from Elements to ElementSelectorFlags. Used to defer applying selector
/// flags until after the traversal.
pub struct SelectorFlagsMap<E: TElement> {
/// The hashmap storing the flags to apply.
map: FnvHashMap<SendElement<E>, ElementSelectorFlags>,
/// An LRU cache to avoid hashmap lookups, which can be slow if the map
/// gets big.
cache: LRUCache<[(SendElement<E>, ElementSelectorFlags); 4 + 1]>,
}
#[cfg(debug_assertions)]
impl<E: TElement> Drop for SelectorFlagsMap<E> {
fn drop(&mut self) {
debug_assert!(self.map.is_empty());
}
}
impl<E: TElement> SelectorFlagsMap<E> {
/// Creates a new empty SelectorFlagsMap.
pub fn new() -> Self {
SelectorFlagsMap {
map: FnvHashMap::default(),
cache: LRUCache::new(),
}
}
/// Inserts some flags into the map for a given element.
pub fn insert_flags(&mut self, element: E, flags: ElementSelectorFlags) {
let el = unsafe { SendElement::new(element) };
// Check the cache. If the flags have already been noted, we're done.
if self.cache.iter().find(|x| x.0 == el)
.map_or(ElementSelectorFlags::empty(), |x| x.1)
.contains(flags) {
return;
}
let f = self.map.entry(el).or_insert(ElementSelectorFlags::empty());
*f |= flags;
// Insert into the cache. We don't worry about duplicate entries,
// which lets us avoid reshuffling.
self.cache.insert((unsafe { SendElement::new(element) }, *f))
}
/// Applies the flags. Must be called on the main thread.
pub fn apply_flags(&mut self) {
debug_assert!(thread_state::get() == thread_state::LAYOUT);
for (el, flags) in self.map.drain() {
unsafe { el.set_selector_flags(flags); }
}
}
}
/// A list of SequentialTasks that get executed on Drop.
pub struct SequentialTaskList<E>(Vec<SequentialTask<E>>)
where
E: TElement;
impl<E> ops::Deref for SequentialTaskList<E>
where
E: TElement,
{
type Target = Vec<SequentialTask<E>>;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl<E> ops::DerefMut for SequentialTaskList<E>
where
E: TElement,
{
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.0
}
}
impl<E> Drop for SequentialTaskList<E>
where
E: TElement,
{
fn drop(&mut self) {
debug_assert!(thread_state::get() == thread_state::LAYOUT);
for task in self.0.drain(..) {
task.execute()
}
}
}
/// A helper type for stack limit checking. This assumes that stacks grow
/// down, which is true for all non-ancient CPU architectures.
pub struct StackLimitChecker {
lower_limit: usize
}
impl StackLimitChecker {
/// Create a new limit checker, for this thread, allowing further use
/// of up to |stack_size| bytes beyond (below) the current stack pointer.
#[inline(never)]
pub fn new(stack_size_limit: usize) -> Self {
StackLimitChecker {
lower_limit: StackLimitChecker::get_sp() - stack_size_limit
}
}
/// Checks whether the previously stored stack limit has now been exceeded.
#[inline(never)]
pub fn limit_exceeded(&self) -> bool {
let curr_sp = StackLimitChecker::get_sp();
// Do some sanity-checking to ensure that our invariants hold, even in
// the case where we've exceeded the soft limit.
//
// The correctness of depends on the assumption that no stack wraps
// around the end of the address space.
if cfg!(debug_assertions) {
// Compute the actual bottom of the stack by subtracting our safety
// margin from our soft limit. Note that this will be slightly below
// the actual bottom of the stack, because there are a few initial
// frames on the stack before we do the measurement that computes
// the limit.
let stack_bottom = self.lower_limit - STACK_SAFETY_MARGIN_KB * 1024;
// The bottom of the stack should be below the current sp. If it
// isn't, that means we've either waited too long to check the limit
// and burned through our safety margin (in which case we probably
// would have segfaulted by now), or we're using a limit computed for
// a different thread.
debug_assert!(stack_bottom < curr_sp);
// Compute the distance between the current sp and the bottom of
// the stack, and compare it against the current stack. It should be
// no further from us than the total stack size. We allow some slop
// to handle the fact that stack_bottom is a bit further than the
// bottom of the stack, as discussed above.
let distance_to_stack_bottom = curr_sp - stack_bottom;
let max_allowable_distance = (STYLE_THREAD_STACK_SIZE_KB + 10) * 1024;
debug_assert!(distance_to_stack_bottom <= max_allowable_distance);
}
// The actual bounds check.
curr_sp <= self.lower_limit
}
// Technically, rustc can optimize this away, but shouldn't for now.
// We should fix this once black_box is stable.
#[inline(always)]
fn get_sp() -> usize {
let mut foo: usize = 42;
(&mut foo as *mut usize) as usize
}
}
/// A thread-local style context.
///
/// This context contains data that needs to be used during restyling, but is
/// not required to be unique among worker threads, so we create one per worker
/// thread in order to be able to mutate it without locking.
pub struct ThreadLocalStyleContext<E: TElement> {
/// A cache to share style among siblings.
pub sharing_cache: StyleSharingCache<E>,
/// A cache from matched properties to elements that match those.
pub rule_cache: RuleCache,
/// The bloom filter used to fast-reject selector-matching.
pub bloom_filter: StyleBloom<E>,
/// A channel on which new animations that have been triggered by style
/// recalculation can be sent.
#[cfg(feature = "servo")]
pub new_animations_sender: Sender<Animation>,
/// A set of tasks to be run (on the parent thread) in sequential mode after
/// the rest of the styling is complete. This is useful for
/// infrequently-needed non-threadsafe operations.
///
/// It's important that goes after the style sharing cache and the bloom
/// filter, to ensure they're dropped before we execute the tasks, which
/// could create another ThreadLocalStyleContext for style computation.
pub tasks: SequentialTaskList<E>,
/// ElementSelectorFlags that need to be applied after the traversal is
/// complete. This map is used in cases where the matching algorithm needs
/// to set flags on elements it doesn't have exclusive access to (i.e. other
/// than the current element).
pub selector_flags: SelectorFlagsMap<E>,
/// Statistics about the traversal.
pub statistics: TraversalStatistics,
/// Information related to the current element, non-None during processing.
pub current_element_info: Option<CurrentElementInfo>,
/// The struct used to compute and cache font metrics from style
/// for evaluation of the font-relative em/ch units and font-size
pub font_metrics_provider: E::FontMetricsProvider,
/// A checker used to ensure that parallel.rs does not recurse indefinitely
/// even on arbitrarily deep trees. See Gecko bug 1376883.
pub stack_limit_checker: StackLimitChecker,
}
impl<E: TElement> ThreadLocalStyleContext<E> {
/// Creates a new `ThreadLocalStyleContext` from a shared one.
#[cfg(feature = "servo")]
pub fn new(shared: &SharedStyleContext) -> Self {
ThreadLocalStyleContext {
sharing_cache: StyleSharingCache::new(),
rule_cache: RuleCache::new(),
bloom_filter: StyleBloom::new(),
new_animations_sender: shared.local_context_creation_data.lock().unwrap().new_animations_sender.clone(),
tasks: SequentialTaskList(Vec::new()),
selector_flags: SelectorFlagsMap::new(),
statistics: TraversalStatistics::default(),
current_element_info: None,
font_metrics_provider: E::FontMetricsProvider::create_from(shared),
stack_limit_checker: StackLimitChecker::new(
(STYLE_THREAD_STACK_SIZE_KB - STACK_SAFETY_MARGIN_KB) * 1024),
}
}
#[cfg(feature = "gecko")]
/// Creates a new `ThreadLocalStyleContext` from a shared one.
pub fn new(shared: &SharedStyleContext) -> Self {
ThreadLocalStyleContext {
sharing_cache: StyleSharingCache::new(),
rule_cache: RuleCache::new(),
bloom_filter: StyleBloom::new(),
tasks: SequentialTaskList(Vec::new()),
selector_flags: SelectorFlagsMap::new(),
statistics: TraversalStatistics::default(),
current_element_info: None,
font_metrics_provider: E::FontMetricsProvider::create_from(shared),
stack_limit_checker: StackLimitChecker::new(
(STYLE_THREAD_STACK_SIZE_KB - STACK_SAFETY_MARGIN_KB) * 1024),
}
}
#[cfg(feature = "gecko")]
/// Notes when the style system starts traversing an element.
pub fn begin_element(&mut self, element: E, data: &ElementData) {
debug_assert!(self.current_element_info.is_none());
self.current_element_info = Some(CurrentElementInfo {
element: element.as_node().opaque(),
is_initial_style: !data.has_styles(),
});
}
#[cfg(feature = "servo")]
/// Notes when the style system starts traversing an element.
pub fn begin_element(&mut self, element: E, data: &ElementData) {
debug_assert!(self.current_element_info.is_none());
self.current_element_info = Some(CurrentElementInfo {
element: element.as_node().opaque(),
is_initial_style: !data.has_styles(),
possibly_expired_animations: Vec::new(),
});
}
/// Notes when the style system finishes traversing an element.
pub fn end_element(&mut self, element: E) {
debug_assert!(self.current_element_info.is_some());
debug_assert!(self.current_element_info.as_ref().unwrap().element ==
element.as_node().opaque());
self.current_element_info = None;
}
/// Returns true if the current element being traversed is being styled for
/// the first time.
///
/// Panics if called while no element is being traversed.
pub fn is_initial_style(&self) -> bool {
self.current_element_info.as_ref().unwrap().is_initial_style
}
}
impl<E: TElement> Drop for ThreadLocalStyleContext<E> {
fn drop(&mut self) {
debug_assert!(self.current_element_info.is_none());
debug_assert!(thread_state::get() == thread_state::LAYOUT);
// Apply any slow selector flags that need to be set on parents.
self.selector_flags.apply_flags();
}
}
/// A `StyleContext` is just a simple container for a immutable reference to a
/// shared style context, and a mutable reference to a local one.
pub struct StyleContext<'a, E: TElement + 'a> {
/// The shared style context reference.
pub shared: &'a SharedStyleContext<'a>,
/// The thread-local style context (mutable) reference.
pub thread_local: &'a mut ThreadLocalStyleContext<E>,
}
/// Why we're doing reflow.
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum ReflowGoal {
/// We're reflowing in order to send a display list to the screen.
ForDisplay,
/// We're reflowing in order to satisfy a script query. No display list will be created.
ForScriptQuery,
}
/// A registered painter
#[cfg(feature = "servo")]
pub trait RegisteredSpeculativePainter: SpeculativePainter {
/// The name it was registered with
fn name(&self) -> Atom;
/// The properties it was registered with
fn properties(&self) -> &FnvHashMap<Atom, PropertyId>;
}
/// A set of registered painters
#[cfg(feature = "servo")]
pub trait RegisteredSpeculativePainters: Sync {
/// Look up a speculative painter
fn get(&self, name: &Atom) -> Option<&RegisteredSpeculativePainter>;
}