mirror of
https://github.com/mozilla/gecko-dev.git
synced 2024-12-02 01:48:05 +00:00
988bc29033
Matches other browsers, and the spec, as per https://drafts.csswg.org/css-shapes/#basic-shape: All the lengths expressed in percentages are resolved from the used dimensions of the reference box. Differential Revision: https://phabricator.services.mozilla.com/D111790
2999 lines
124 KiB
C++
2999 lines
124 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
||
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
|
||
/* This Source Code Form is subject to the terms of the Mozilla Public
|
||
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
||
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
||
|
||
/* class that manages rules for positioning floats */
|
||
|
||
#include "nsFloatManager.h"
|
||
|
||
#include <algorithm>
|
||
#include <initializer_list>
|
||
|
||
#include "gfxContext.h"
|
||
#include "mozilla/PresShell.h"
|
||
#include "mozilla/ReflowInput.h"
|
||
#include "mozilla/ShapeUtils.h"
|
||
#include "nsBlockFrame.h"
|
||
#include "nsDeviceContext.h"
|
||
#include "nsError.h"
|
||
#include "nsIFrame.h"
|
||
#include "nsIFrameInlines.h"
|
||
#include "nsImageRenderer.h"
|
||
#include "nsMemory.h"
|
||
|
||
using namespace mozilla;
|
||
using namespace mozilla::image;
|
||
using namespace mozilla::gfx;
|
||
|
||
int32_t nsFloatManager::sCachedFloatManagerCount = 0;
|
||
void* nsFloatManager::sCachedFloatManagers[NS_FLOAT_MANAGER_CACHE_SIZE];
|
||
|
||
/////////////////////////////////////////////////////////////////////////////
|
||
// nsFloatManager
|
||
|
||
nsFloatManager::nsFloatManager(PresShell* aPresShell, WritingMode aWM)
|
||
:
|
||
#ifdef DEBUG
|
||
mWritingMode(aWM),
|
||
#endif
|
||
mLineLeft(0),
|
||
mBlockStart(0),
|
||
mFloatDamage(aPresShell),
|
||
mPushedLeftFloatPastBreak(false),
|
||
mPushedRightFloatPastBreak(false),
|
||
mSplitLeftFloatAcrossBreak(false),
|
||
mSplitRightFloatAcrossBreak(false) {
|
||
MOZ_COUNT_CTOR(nsFloatManager);
|
||
}
|
||
|
||
nsFloatManager::~nsFloatManager() { MOZ_COUNT_DTOR(nsFloatManager); }
|
||
|
||
// static
|
||
void* nsFloatManager::operator new(size_t aSize) noexcept(true) {
|
||
if (sCachedFloatManagerCount > 0) {
|
||
// We have cached unused instances of this class, return a cached
|
||
// instance in stead of always creating a new one.
|
||
return sCachedFloatManagers[--sCachedFloatManagerCount];
|
||
}
|
||
|
||
// The cache is empty, this means we have to create a new instance using
|
||
// the global |operator new|.
|
||
return moz_xmalloc(aSize);
|
||
}
|
||
|
||
void nsFloatManager::operator delete(void* aPtr, size_t aSize) {
|
||
if (!aPtr) return;
|
||
// This float manager is no longer used, if there's still room in
|
||
// the cache we'll cache this float manager, unless the layout
|
||
// module was already shut down.
|
||
|
||
if (sCachedFloatManagerCount < NS_FLOAT_MANAGER_CACHE_SIZE &&
|
||
sCachedFloatManagerCount >= 0) {
|
||
// There's still space in the cache for more instances, put this
|
||
// instance in the cache in stead of deleting it.
|
||
|
||
sCachedFloatManagers[sCachedFloatManagerCount++] = aPtr;
|
||
return;
|
||
}
|
||
|
||
// The cache is full, or the layout module has been shut down,
|
||
// delete this float manager.
|
||
free(aPtr);
|
||
}
|
||
|
||
/* static */
|
||
void nsFloatManager::Shutdown() {
|
||
// The layout module is being shut down, clean up the cache and
|
||
// disable further caching.
|
||
|
||
int32_t i;
|
||
|
||
for (i = 0; i < sCachedFloatManagerCount; i++) {
|
||
void* floatManager = sCachedFloatManagers[i];
|
||
if (floatManager) free(floatManager);
|
||
}
|
||
|
||
// Disable further caching.
|
||
sCachedFloatManagerCount = -1;
|
||
}
|
||
|
||
#define CHECK_BLOCK_AND_LINE_DIR(aWM) \
|
||
NS_ASSERTION((aWM).GetBlockDir() == mWritingMode.GetBlockDir() && \
|
||
(aWM).IsLineInverted() == mWritingMode.IsLineInverted(), \
|
||
"incompatible writing modes")
|
||
|
||
nsFlowAreaRect nsFloatManager::GetFlowArea(
|
||
WritingMode aWM, nscoord aBCoord, nscoord aBSize,
|
||
BandInfoType aBandInfoType, ShapeType aShapeType, LogicalRect aContentArea,
|
||
SavedState* aState, const nsSize& aContainerSize) const {
|
||
CHECK_BLOCK_AND_LINE_DIR(aWM);
|
||
NS_ASSERTION(aBSize >= 0, "unexpected max block size");
|
||
NS_ASSERTION(aContentArea.ISize(aWM) >= 0,
|
||
"unexpected content area inline size");
|
||
|
||
nscoord blockStart = aBCoord + mBlockStart;
|
||
if (blockStart < nscoord_MIN) {
|
||
NS_WARNING("bad value");
|
||
blockStart = nscoord_MIN;
|
||
}
|
||
|
||
// Determine the last float that we should consider.
|
||
uint32_t floatCount;
|
||
if (aState) {
|
||
// Use the provided state.
|
||
floatCount = aState->mFloatInfoCount;
|
||
MOZ_ASSERT(floatCount <= mFloats.Length(), "bad state");
|
||
} else {
|
||
// Use our current state.
|
||
floatCount = mFloats.Length();
|
||
}
|
||
|
||
// If there are no floats at all, or we're below the last one, return
|
||
// quickly.
|
||
if (floatCount == 0 || (mFloats[floatCount - 1].mLeftBEnd <= blockStart &&
|
||
mFloats[floatCount - 1].mRightBEnd <= blockStart)) {
|
||
return nsFlowAreaRect(aWM, aContentArea.IStart(aWM), aBCoord,
|
||
aContentArea.ISize(aWM), aBSize,
|
||
nsFlowAreaRectFlags::NoFlags);
|
||
}
|
||
|
||
nscoord blockEnd;
|
||
if (aBSize == nscoord_MAX) {
|
||
// This warning (and the two below) are possible to hit on pages
|
||
// with really large objects.
|
||
NS_WARNING_ASSERTION(aBandInfoType == BandInfoType::BandFromPoint,
|
||
"bad height");
|
||
blockEnd = nscoord_MAX;
|
||
} else {
|
||
blockEnd = blockStart + aBSize;
|
||
if (blockEnd < blockStart || blockEnd > nscoord_MAX) {
|
||
NS_WARNING("bad value");
|
||
blockEnd = nscoord_MAX;
|
||
}
|
||
}
|
||
nscoord lineLeft = mLineLeft + aContentArea.LineLeft(aWM, aContainerSize);
|
||
nscoord lineRight = mLineLeft + aContentArea.LineRight(aWM, aContainerSize);
|
||
if (lineRight < lineLeft) {
|
||
NS_WARNING("bad value");
|
||
lineRight = lineLeft;
|
||
}
|
||
|
||
// Walk backwards through the floats until we either hit the front of
|
||
// the list or we're above |blockStart|.
|
||
bool haveFloats = false;
|
||
bool mayWiden = false;
|
||
for (uint32_t i = floatCount; i > 0; --i) {
|
||
const FloatInfo& fi = mFloats[i - 1];
|
||
if (fi.mLeftBEnd <= blockStart && fi.mRightBEnd <= blockStart) {
|
||
// There aren't any more floats that could intersect this band.
|
||
break;
|
||
}
|
||
if (fi.IsEmpty(aShapeType)) {
|
||
// Ignore empty float areas.
|
||
// https://drafts.csswg.org/css-shapes/#relation-to-box-model-and-float-behavior
|
||
continue;
|
||
}
|
||
|
||
nscoord floatBStart = fi.BStart(aShapeType);
|
||
nscoord floatBEnd = fi.BEnd(aShapeType);
|
||
if (blockStart < floatBStart &&
|
||
aBandInfoType == BandInfoType::BandFromPoint) {
|
||
// This float is below our band. Shrink our band's height if needed.
|
||
if (floatBStart < blockEnd) {
|
||
blockEnd = floatBStart;
|
||
}
|
||
}
|
||
// If blockStart == blockEnd (which happens only with WidthWithinHeight),
|
||
// we include floats that begin at our 0-height vertical area. We
|
||
// need to do this to satisfy the invariant that a
|
||
// WidthWithinHeight call is at least as narrow on both sides as a
|
||
// BandFromPoint call beginning at its blockStart.
|
||
else if (blockStart < floatBEnd &&
|
||
(floatBStart < blockEnd ||
|
||
(floatBStart == blockEnd && blockStart == blockEnd))) {
|
||
// This float is in our band.
|
||
|
||
// Shrink our band's width if needed.
|
||
StyleFloat floatStyle = fi.mFrame->StyleDisplay()->mFloat;
|
||
|
||
// When aBandInfoType is BandFromPoint, we're only intended to
|
||
// consider a point along the y axis rather than a band.
|
||
const nscoord bandBlockEnd =
|
||
aBandInfoType == BandInfoType::BandFromPoint ? blockStart : blockEnd;
|
||
if (floatStyle == StyleFloat::Left) {
|
||
// A left float
|
||
nscoord lineRightEdge =
|
||
fi.LineRight(aShapeType, blockStart, bandBlockEnd);
|
||
if (lineRightEdge > lineLeft) {
|
||
lineLeft = lineRightEdge;
|
||
// Only set haveFloats to true if the float is inside our
|
||
// containing block. This matches the spec for what some
|
||
// callers want and disagrees for other callers, so we should
|
||
// probably provide better information at some point.
|
||
haveFloats = true;
|
||
|
||
// Our area may widen in the block direction if this float may
|
||
// narrow in the block direction.
|
||
mayWiden = mayWiden || fi.MayNarrowInBlockDirection(aShapeType);
|
||
}
|
||
} else {
|
||
// A right float
|
||
nscoord lineLeftEdge =
|
||
fi.LineLeft(aShapeType, blockStart, bandBlockEnd);
|
||
if (lineLeftEdge < lineRight) {
|
||
lineRight = lineLeftEdge;
|
||
// See above.
|
||
haveFloats = true;
|
||
mayWiden = mayWiden || fi.MayNarrowInBlockDirection(aShapeType);
|
||
}
|
||
}
|
||
|
||
// Shrink our band's height if needed.
|
||
if (floatBEnd < blockEnd &&
|
||
aBandInfoType == BandInfoType::BandFromPoint) {
|
||
blockEnd = floatBEnd;
|
||
}
|
||
}
|
||
}
|
||
|
||
nscoord blockSize =
|
||
(blockEnd == nscoord_MAX) ? nscoord_MAX : (blockEnd - blockStart);
|
||
// convert back from LineLeft/Right to IStart
|
||
nscoord inlineStart =
|
||
aWM.IsBidiLTR()
|
||
? lineLeft - mLineLeft
|
||
: mLineLeft - lineRight + LogicalSize(aWM, aContainerSize).ISize(aWM);
|
||
|
||
nsFlowAreaRectFlags flags =
|
||
(haveFloats ? nsFlowAreaRectFlags::HasFloats
|
||
: nsFlowAreaRectFlags::NoFlags) |
|
||
(mayWiden ? nsFlowAreaRectFlags::MayWiden : nsFlowAreaRectFlags::NoFlags);
|
||
|
||
return nsFlowAreaRect(aWM, inlineStart, blockStart - mBlockStart,
|
||
lineRight - lineLeft, blockSize, flags);
|
||
}
|
||
|
||
void nsFloatManager::AddFloat(nsIFrame* aFloatFrame,
|
||
const LogicalRect& aMarginRect, WritingMode aWM,
|
||
const nsSize& aContainerSize) {
|
||
CHECK_BLOCK_AND_LINE_DIR(aWM);
|
||
NS_ASSERTION(aMarginRect.ISize(aWM) >= 0, "negative inline size!");
|
||
NS_ASSERTION(aMarginRect.BSize(aWM) >= 0, "negative block size!");
|
||
|
||
FloatInfo info(aFloatFrame, mLineLeft, mBlockStart, aMarginRect, aWM,
|
||
aContainerSize);
|
||
|
||
// Set mLeftBEnd and mRightBEnd.
|
||
if (HasAnyFloats()) {
|
||
FloatInfo& tail = mFloats[mFloats.Length() - 1];
|
||
info.mLeftBEnd = tail.mLeftBEnd;
|
||
info.mRightBEnd = tail.mRightBEnd;
|
||
} else {
|
||
info.mLeftBEnd = nscoord_MIN;
|
||
info.mRightBEnd = nscoord_MIN;
|
||
}
|
||
StyleFloat floatStyle = aFloatFrame->StyleDisplay()->mFloat;
|
||
MOZ_ASSERT(floatStyle == StyleFloat::Left || floatStyle == StyleFloat::Right,
|
||
"Unexpected float style!");
|
||
nscoord& sideBEnd =
|
||
floatStyle == StyleFloat::Left ? info.mLeftBEnd : info.mRightBEnd;
|
||
nscoord thisBEnd = info.BEnd();
|
||
if (thisBEnd > sideBEnd) sideBEnd = thisBEnd;
|
||
|
||
mFloats.AppendElement(std::move(info));
|
||
}
|
||
|
||
// static
|
||
LogicalRect nsFloatManager::CalculateRegionFor(WritingMode aWM,
|
||
nsIFrame* aFloat,
|
||
const LogicalMargin& aMargin,
|
||
const nsSize& aContainerSize) {
|
||
// We consider relatively positioned frames at their original position.
|
||
LogicalRect region(aWM,
|
||
nsRect(aFloat->GetNormalPosition(), aFloat->GetSize()),
|
||
aContainerSize);
|
||
|
||
// Float region includes its margin
|
||
region.Inflate(aWM, aMargin);
|
||
|
||
// Don't store rectangles with negative margin-box width or height in
|
||
// the float manager; it can't deal with them.
|
||
if (region.ISize(aWM) < 0) {
|
||
// Preserve the right margin-edge for left floats and the left
|
||
// margin-edge for right floats
|
||
const nsStyleDisplay* display = aFloat->StyleDisplay();
|
||
StyleFloat floatStyle = display->mFloat;
|
||
if ((StyleFloat::Left == floatStyle) == aWM.IsBidiLTR()) {
|
||
region.IStart(aWM) = region.IEnd(aWM);
|
||
}
|
||
region.ISize(aWM) = 0;
|
||
}
|
||
if (region.BSize(aWM) < 0) {
|
||
region.BSize(aWM) = 0;
|
||
}
|
||
return region;
|
||
}
|
||
|
||
NS_DECLARE_FRAME_PROPERTY_DELETABLE(FloatRegionProperty, nsMargin)
|
||
|
||
LogicalRect nsFloatManager::GetRegionFor(WritingMode aWM, nsIFrame* aFloat,
|
||
const nsSize& aContainerSize) {
|
||
LogicalRect region = aFloat->GetLogicalRect(aWM, aContainerSize);
|
||
void* storedRegion = aFloat->GetProperty(FloatRegionProperty());
|
||
if (storedRegion) {
|
||
nsMargin margin = *static_cast<nsMargin*>(storedRegion);
|
||
region.Inflate(aWM, LogicalMargin(aWM, margin));
|
||
}
|
||
return region;
|
||
}
|
||
|
||
void nsFloatManager::StoreRegionFor(WritingMode aWM, nsIFrame* aFloat,
|
||
const LogicalRect& aRegion,
|
||
const nsSize& aContainerSize) {
|
||
nsRect region = aRegion.GetPhysicalRect(aWM, aContainerSize);
|
||
nsRect rect = aFloat->GetRect();
|
||
if (region.IsEqualEdges(rect)) {
|
||
aFloat->RemoveProperty(FloatRegionProperty());
|
||
} else {
|
||
nsMargin* storedMargin = aFloat->GetProperty(FloatRegionProperty());
|
||
if (!storedMargin) {
|
||
storedMargin = new nsMargin();
|
||
aFloat->SetProperty(FloatRegionProperty(), storedMargin);
|
||
}
|
||
*storedMargin = region - rect;
|
||
}
|
||
}
|
||
|
||
nsresult nsFloatManager::RemoveTrailingRegions(nsIFrame* aFrameList) {
|
||
if (!aFrameList) {
|
||
return NS_OK;
|
||
}
|
||
// This could be a good bit simpler if we could guarantee that the
|
||
// floats given were at the end of our list, so we could just search
|
||
// for the head of aFrameList. (But we can't;
|
||
// layout/reftests/bugs/421710-1.html crashes.)
|
||
nsTHashSet<nsIFrame*> frameSet(1);
|
||
|
||
for (nsIFrame* f = aFrameList; f; f = f->GetNextSibling()) {
|
||
frameSet.Insert(f);
|
||
}
|
||
|
||
uint32_t newLength = mFloats.Length();
|
||
while (newLength > 0) {
|
||
if (!frameSet.Contains(mFloats[newLength - 1].mFrame)) {
|
||
break;
|
||
}
|
||
--newLength;
|
||
}
|
||
mFloats.TruncateLength(newLength);
|
||
|
||
#ifdef DEBUG
|
||
for (uint32_t i = 0; i < mFloats.Length(); ++i) {
|
||
NS_ASSERTION(
|
||
!frameSet.Contains(mFloats[i].mFrame),
|
||
"Frame region deletion was requested but we couldn't delete it");
|
||
}
|
||
#endif
|
||
|
||
return NS_OK;
|
||
}
|
||
|
||
void nsFloatManager::PushState(SavedState* aState) {
|
||
MOZ_ASSERT(aState, "Need a place to save state");
|
||
|
||
// This is a cheap push implementation, which
|
||
// only saves the (x,y) and last frame in the mFrameInfoMap
|
||
// which is enough info to get us back to where we should be
|
||
// when pop is called.
|
||
//
|
||
// This push/pop mechanism is used to undo any
|
||
// floats that were added during the unconstrained reflow
|
||
// in nsBlockReflowContext::DoReflowBlock(). (See bug 96736)
|
||
//
|
||
// It should also be noted that the state for mFloatDamage is
|
||
// intentionally not saved or restored in PushState() and PopState(),
|
||
// since that could lead to bugs where damage is missed/dropped when
|
||
// we move from position A to B (during the intermediate incremental
|
||
// reflow mentioned above) and then from B to C during the subsequent
|
||
// reflow. In the typical case A and C will be the same, but not always.
|
||
// Allowing mFloatDamage to accumulate the damage incurred during both
|
||
// reflows ensures that nothing gets missed.
|
||
aState->mLineLeft = mLineLeft;
|
||
aState->mBlockStart = mBlockStart;
|
||
aState->mPushedLeftFloatPastBreak = mPushedLeftFloatPastBreak;
|
||
aState->mPushedRightFloatPastBreak = mPushedRightFloatPastBreak;
|
||
aState->mSplitLeftFloatAcrossBreak = mSplitLeftFloatAcrossBreak;
|
||
aState->mSplitRightFloatAcrossBreak = mSplitRightFloatAcrossBreak;
|
||
aState->mFloatInfoCount = mFloats.Length();
|
||
}
|
||
|
||
void nsFloatManager::PopState(SavedState* aState) {
|
||
MOZ_ASSERT(aState, "No state to restore?");
|
||
|
||
mLineLeft = aState->mLineLeft;
|
||
mBlockStart = aState->mBlockStart;
|
||
mPushedLeftFloatPastBreak = aState->mPushedLeftFloatPastBreak;
|
||
mPushedRightFloatPastBreak = aState->mPushedRightFloatPastBreak;
|
||
mSplitLeftFloatAcrossBreak = aState->mSplitLeftFloatAcrossBreak;
|
||
mSplitRightFloatAcrossBreak = aState->mSplitRightFloatAcrossBreak;
|
||
|
||
NS_ASSERTION(aState->mFloatInfoCount <= mFloats.Length(),
|
||
"somebody misused PushState/PopState");
|
||
mFloats.TruncateLength(aState->mFloatInfoCount);
|
||
}
|
||
|
||
nscoord nsFloatManager::GetLowestFloatTop() const {
|
||
if (mPushedLeftFloatPastBreak || mPushedRightFloatPastBreak) {
|
||
return nscoord_MAX;
|
||
}
|
||
if (!HasAnyFloats()) {
|
||
return nscoord_MIN;
|
||
}
|
||
return mFloats[mFloats.Length() - 1].BStart() - mBlockStart;
|
||
}
|
||
|
||
#ifdef DEBUG_FRAME_DUMP
|
||
void DebugListFloatManager(const nsFloatManager* aFloatManager) {
|
||
aFloatManager->List(stdout);
|
||
}
|
||
|
||
nsresult nsFloatManager::List(FILE* out) const {
|
||
if (!HasAnyFloats()) return NS_OK;
|
||
|
||
for (uint32_t i = 0; i < mFloats.Length(); ++i) {
|
||
const FloatInfo& fi = mFloats[i];
|
||
fprintf_stderr(out,
|
||
"Float %u: frame=%p rect={%d,%d,%d,%d} BEnd={l:%d, r:%d}\n",
|
||
i, static_cast<void*>(fi.mFrame), fi.LineLeft(), fi.BStart(),
|
||
fi.ISize(), fi.BSize(), fi.mLeftBEnd, fi.mRightBEnd);
|
||
}
|
||
return NS_OK;
|
||
}
|
||
#endif
|
||
|
||
nscoord nsFloatManager::ClearFloats(nscoord aBCoord,
|
||
StyleClear aBreakType) const {
|
||
if (!HasAnyFloats()) {
|
||
return aBCoord;
|
||
}
|
||
|
||
nscoord blockEnd = aBCoord + mBlockStart;
|
||
|
||
const FloatInfo& tail = mFloats[mFloats.Length() - 1];
|
||
switch (aBreakType) {
|
||
case StyleClear::Both:
|
||
blockEnd = std::max(blockEnd, tail.mLeftBEnd);
|
||
blockEnd = std::max(blockEnd, tail.mRightBEnd);
|
||
break;
|
||
case StyleClear::Left:
|
||
blockEnd = std::max(blockEnd, tail.mLeftBEnd);
|
||
break;
|
||
case StyleClear::Right:
|
||
blockEnd = std::max(blockEnd, tail.mRightBEnd);
|
||
break;
|
||
default:
|
||
// Do nothing
|
||
break;
|
||
}
|
||
|
||
blockEnd -= mBlockStart;
|
||
|
||
return blockEnd;
|
||
}
|
||
|
||
bool nsFloatManager::ClearContinues(StyleClear aBreakType) const {
|
||
return ((mPushedLeftFloatPastBreak || mSplitLeftFloatAcrossBreak) &&
|
||
(aBreakType == StyleClear::Both || aBreakType == StyleClear::Left)) ||
|
||
((mPushedRightFloatPastBreak || mSplitRightFloatAcrossBreak) &&
|
||
(aBreakType == StyleClear::Both || aBreakType == StyleClear::Right));
|
||
}
|
||
|
||
/////////////////////////////////////////////////////////////////////////////
|
||
// ShapeInfo is an abstract class for implementing all the shapes in CSS
|
||
// Shapes Module. A subclass needs to override all the methods to adjust
|
||
// the flow area with respect to its shape.
|
||
//
|
||
class nsFloatManager::ShapeInfo {
|
||
public:
|
||
virtual ~ShapeInfo() = default;
|
||
|
||
virtual nscoord LineLeft(const nscoord aBStart,
|
||
const nscoord aBEnd) const = 0;
|
||
virtual nscoord LineRight(const nscoord aBStart,
|
||
const nscoord aBEnd) const = 0;
|
||
virtual nscoord BStart() const = 0;
|
||
virtual nscoord BEnd() const = 0;
|
||
virtual bool IsEmpty() const = 0;
|
||
|
||
// Does this shape possibly get inline narrower in the BStart() to BEnd()
|
||
// span when proceeding in the block direction? This is false for unrounded
|
||
// rectangles that span all the way to BEnd(), but could be true for other
|
||
// shapes. Note that we don't care if the BEnd() falls short of the margin
|
||
// rect -- the ShapeInfo can only affect float behavior in the span between
|
||
// BStart() and BEnd().
|
||
virtual bool MayNarrowInBlockDirection() const = 0;
|
||
|
||
// Translate the current origin by the specified offsets.
|
||
virtual void Translate(nscoord aLineLeft, nscoord aBlockStart) = 0;
|
||
|
||
static LogicalRect ComputeShapeBoxRect(StyleShapeBox, nsIFrame* const aFrame,
|
||
const LogicalRect& aMarginRect,
|
||
WritingMode aWM);
|
||
|
||
// Convert the LogicalRect to the special logical coordinate space used
|
||
// in float manager.
|
||
static nsRect ConvertToFloatLogical(const LogicalRect& aRect, WritingMode aWM,
|
||
const nsSize& aContainerSize) {
|
||
return nsRect(aRect.LineLeft(aWM, aContainerSize), aRect.BStart(aWM),
|
||
aRect.ISize(aWM), aRect.BSize(aWM));
|
||
}
|
||
|
||
static UniquePtr<ShapeInfo> CreateShapeBox(nsIFrame* const aFrame,
|
||
nscoord aShapeMargin,
|
||
const LogicalRect& aShapeBoxRect,
|
||
WritingMode aWM,
|
||
const nsSize& aContainerSize);
|
||
|
||
static UniquePtr<ShapeInfo> CreateBasicShape(
|
||
const StyleBasicShape& aBasicShape, nscoord aShapeMargin,
|
||
nsIFrame* const aFrame, const LogicalRect& aShapeBoxRect,
|
||
const LogicalRect& aMarginRect, WritingMode aWM,
|
||
const nsSize& aContainerSize);
|
||
|
||
static UniquePtr<ShapeInfo> CreateInset(const StyleBasicShape& aBasicShape,
|
||
nscoord aShapeMargin,
|
||
nsIFrame* aFrame,
|
||
const LogicalRect& aShapeBoxRect,
|
||
WritingMode aWM,
|
||
const nsSize& aContainerSize);
|
||
|
||
static UniquePtr<ShapeInfo> CreateCircleOrEllipse(
|
||
const StyleBasicShape& aBasicShape, nscoord aShapeMargin,
|
||
nsIFrame* const aFrame, const LogicalRect& aShapeBoxRect, WritingMode aWM,
|
||
const nsSize& aContainerSize);
|
||
|
||
static UniquePtr<ShapeInfo> CreatePolygon(const StyleBasicShape& aBasicShape,
|
||
nscoord aShapeMargin,
|
||
nsIFrame* const aFrame,
|
||
const LogicalRect& aShapeBoxRect,
|
||
const LogicalRect& aMarginRect,
|
||
WritingMode aWM,
|
||
const nsSize& aContainerSize);
|
||
|
||
static UniquePtr<ShapeInfo> CreateImageShape(const StyleImage& aShapeImage,
|
||
float aShapeImageThreshold,
|
||
nscoord aShapeMargin,
|
||
nsIFrame* const aFrame,
|
||
const LogicalRect& aMarginRect,
|
||
WritingMode aWM,
|
||
const nsSize& aContainerSize);
|
||
|
||
protected:
|
||
// Compute the minimum line-axis difference between the bounding shape
|
||
// box and its rounded corner within the given band (block-axis region).
|
||
// This is used as a helper function to compute the LineRight() and
|
||
// LineLeft(). See the picture in the implementation for an example.
|
||
// RadiusL and RadiusB stand for radius on the line-axis and block-axis.
|
||
//
|
||
// Returns radius-x diff on the line-axis, or 0 if there's no rounded
|
||
// corner within the given band.
|
||
static nscoord ComputeEllipseLineInterceptDiff(
|
||
const nscoord aShapeBoxBStart, const nscoord aShapeBoxBEnd,
|
||
const nscoord aBStartCornerRadiusL, const nscoord aBStartCornerRadiusB,
|
||
const nscoord aBEndCornerRadiusL, const nscoord aBEndCornerRadiusB,
|
||
const nscoord aBandBStart, const nscoord aBandBEnd);
|
||
|
||
static nscoord XInterceptAtY(const nscoord aY, const nscoord aRadiusX,
|
||
const nscoord aRadiusY);
|
||
|
||
// Convert the physical point to the special logical coordinate space
|
||
// used in float manager.
|
||
static nsPoint ConvertToFloatLogical(const nsPoint& aPoint, WritingMode aWM,
|
||
const nsSize& aContainerSize);
|
||
|
||
// Convert the half corner radii (nscoord[8]) to the special logical
|
||
// coordinate space used in float manager.
|
||
static UniquePtr<nscoord[]> ConvertToFloatLogical(const nscoord aRadii[8],
|
||
WritingMode aWM);
|
||
|
||
// Some ShapeInfo subclasses may define their float areas in intervals.
|
||
// Each interval is a rectangle that is one device pixel deep in the block
|
||
// axis. The values are stored as block edges in the y coordinates,
|
||
// and inline edges as the x coordinates. Interval arrays should be sorted
|
||
// on increasing y values. This function uses a binary search to find the
|
||
// first interval that contains aTargetY. If no such interval exists, this
|
||
// function returns aIntervals.Length().
|
||
static size_t MinIntervalIndexContainingY(const nsTArray<nsRect>& aIntervals,
|
||
const nscoord aTargetY);
|
||
|
||
// This interval function is designed to handle the arguments to ::LineLeft()
|
||
// and LineRight() and interpret them for the supplied aIntervals.
|
||
static nscoord LineEdge(const nsTArray<nsRect>& aIntervals,
|
||
const nscoord aBStart, const nscoord aBEnd,
|
||
bool aIsLineLeft);
|
||
|
||
// These types, constants, and functions are useful for ShapeInfos that
|
||
// allocate a distance field. Efficient distance field calculations use
|
||
// integer values that are 5X the Euclidean distance. MAX_MARGIN_5X is the
|
||
// largest possible margin that we can calculate (in 5X integer dev pixels),
|
||
// given these constraints.
|
||
typedef uint16_t dfType;
|
||
static const dfType MAX_CHAMFER_VALUE;
|
||
static const dfType MAX_MARGIN;
|
||
static const dfType MAX_MARGIN_5X;
|
||
|
||
// This function returns a typed, overflow-safe value of aShapeMargin in
|
||
// 5X integer dev pixels.
|
||
static dfType CalcUsedShapeMargin5X(nscoord aShapeMargin,
|
||
int32_t aAppUnitsPerDevPixel);
|
||
};
|
||
|
||
const nsFloatManager::ShapeInfo::dfType
|
||
nsFloatManager::ShapeInfo::MAX_CHAMFER_VALUE = 11;
|
||
|
||
const nsFloatManager::ShapeInfo::dfType nsFloatManager::ShapeInfo::MAX_MARGIN =
|
||
(std::numeric_limits<dfType>::max() - MAX_CHAMFER_VALUE) / 5;
|
||
|
||
const nsFloatManager::ShapeInfo::dfType
|
||
nsFloatManager::ShapeInfo::MAX_MARGIN_5X = MAX_MARGIN * 5;
|
||
|
||
/////////////////////////////////////////////////////////////////////////////
|
||
// EllipseShapeInfo
|
||
//
|
||
// Implements shape-outside: circle() and shape-outside: ellipse().
|
||
//
|
||
class nsFloatManager::EllipseShapeInfo final
|
||
: public nsFloatManager::ShapeInfo {
|
||
public:
|
||
// Construct the float area using math to calculate the shape boundary.
|
||
// This is the fast path and should be used when shape-margin is negligible,
|
||
// or when the two values of aRadii are roughly equal. Those two conditions
|
||
// are defined by ShapeMarginIsNegligible() and RadiiAreRoughlyEqual(). In
|
||
// those cases, we can conveniently represent the entire float area using
|
||
// an ellipse.
|
||
EllipseShapeInfo(const nsPoint& aCenter, const nsSize& aRadii,
|
||
nscoord aShapeMargin);
|
||
|
||
// Construct the float area using rasterization to calculate the shape
|
||
// boundary. This constructor accounts for the fact that applying
|
||
// 'shape-margin' to an ellipse produces a shape that is not mathematically
|
||
// representable as an ellipse.
|
||
EllipseShapeInfo(const nsPoint& aCenter, const nsSize& aRadii,
|
||
nscoord aShapeMargin, int32_t aAppUnitsPerDevPixel);
|
||
|
||
static bool ShapeMarginIsNegligible(nscoord aShapeMargin) {
|
||
// For now, only return true for a shape-margin of 0. In the future, if
|
||
// we want to enable use of the fast-path constructor more often, this
|
||
// limit could be increased;
|
||
static const nscoord SHAPE_MARGIN_NEGLIGIBLE_MAX(0);
|
||
return aShapeMargin <= SHAPE_MARGIN_NEGLIGIBLE_MAX;
|
||
}
|
||
|
||
static bool RadiiAreRoughlyEqual(const nsSize& aRadii) {
|
||
// For now, only return true when we are exactly equal. In the future, if
|
||
// we want to enable use of the fast-path constructor more often, this
|
||
// could be generalized to allow radii that are in some close proportion
|
||
// to each other.
|
||
return aRadii.width == aRadii.height;
|
||
}
|
||
nscoord LineEdge(const nscoord aBStart, const nscoord aBEnd,
|
||
bool aLeft) const;
|
||
nscoord LineLeft(const nscoord aBStart, const nscoord aBEnd) const override;
|
||
nscoord LineRight(const nscoord aBStart, const nscoord aBEnd) const override;
|
||
nscoord BStart() const override {
|
||
return mCenter.y - mRadii.height - mShapeMargin;
|
||
}
|
||
nscoord BEnd() const override {
|
||
return mCenter.y + mRadii.height + mShapeMargin;
|
||
}
|
||
bool IsEmpty() const override {
|
||
// An EllipseShapeInfo is never empty, because an ellipse or circle with
|
||
// a zero radius acts like a point, and an ellipse with one zero radius
|
||
// acts like a line.
|
||
return false;
|
||
}
|
||
bool MayNarrowInBlockDirection() const override { return true; }
|
||
|
||
void Translate(nscoord aLineLeft, nscoord aBlockStart) override {
|
||
mCenter.MoveBy(aLineLeft, aBlockStart);
|
||
|
||
for (nsRect& interval : mIntervals) {
|
||
interval.MoveBy(aLineLeft, aBlockStart);
|
||
}
|
||
}
|
||
|
||
private:
|
||
// The position of the center of the ellipse. The coordinate space is the
|
||
// same as FloatInfo::mRect.
|
||
nsPoint mCenter;
|
||
// The radii of the ellipse in app units. The width and height represent
|
||
// the line-axis and block-axis radii of the ellipse.
|
||
nsSize mRadii;
|
||
// The shape-margin of the ellipse in app units. If this value is greater
|
||
// than zero, then we calculate the bounds of the ellipse + margin using
|
||
// numerical methods and store the values in mIntervals.
|
||
nscoord mShapeMargin;
|
||
|
||
// An interval is slice of the float area defined by this EllipseShapeInfo.
|
||
// Each interval is a rectangle that is one pixel deep in the block
|
||
// axis. The values are stored as block edges in the y coordinates,
|
||
// and inline edges as the x coordinates.
|
||
|
||
// The intervals are stored in ascending order on y.
|
||
nsTArray<nsRect> mIntervals;
|
||
};
|
||
|
||
nsFloatManager::EllipseShapeInfo::EllipseShapeInfo(const nsPoint& aCenter,
|
||
const nsSize& aRadii,
|
||
nscoord aShapeMargin)
|
||
: mCenter(aCenter),
|
||
mRadii(aRadii),
|
||
mShapeMargin(
|
||
0) // We intentionally ignore the value of aShapeMargin here.
|
||
{
|
||
MOZ_ASSERT(
|
||
RadiiAreRoughlyEqual(aRadii) || ShapeMarginIsNegligible(aShapeMargin),
|
||
"This constructor should only be called when margin is "
|
||
"negligible or radii are roughly equal.");
|
||
|
||
// We add aShapeMargin into the radii, and we earlier stored a mShapeMargin
|
||
// of zero.
|
||
mRadii.width += aShapeMargin;
|
||
mRadii.height += aShapeMargin;
|
||
}
|
||
|
||
nsFloatManager::EllipseShapeInfo::EllipseShapeInfo(const nsPoint& aCenter,
|
||
const nsSize& aRadii,
|
||
nscoord aShapeMargin,
|
||
int32_t aAppUnitsPerDevPixel)
|
||
: mCenter(aCenter), mRadii(aRadii), mShapeMargin(aShapeMargin) {
|
||
if (RadiiAreRoughlyEqual(aRadii) || ShapeMarginIsNegligible(aShapeMargin)) {
|
||
// Mimic the behavior of the simple constructor, by adding aShapeMargin
|
||
// into the radii, and then storing mShapeMargin of zero.
|
||
mRadii.width += mShapeMargin;
|
||
mRadii.height += mShapeMargin;
|
||
mShapeMargin = 0;
|
||
return;
|
||
}
|
||
|
||
// We have to calculate a distance field from the ellipse edge, then build
|
||
// intervals based on pixels with less than aShapeMargin distance to an
|
||
// edge pixel.
|
||
|
||
// mCenter and mRadii have already been translated into logical coordinates.
|
||
// x = inline, y = block. Due to symmetry, we only need to calculate the
|
||
// distance field for one quadrant of the ellipse. We choose the positive-x,
|
||
// positive-y quadrant (the lower right quadrant in horizontal-tb writing
|
||
// mode). We choose this quadrant because it allows us to traverse our
|
||
// distance field in memory order, which is more cache efficient.
|
||
// When we apply these intervals in LineLeft() and LineRight(), we
|
||
// account for block ranges that hit other quadrants, or hit multiple
|
||
// quadrants.
|
||
|
||
// Given this setup, computing the distance field is a one-pass O(n)
|
||
// operation that runs from block top-to-bottom, inline left-to-right. We
|
||
// use a chamfer 5-7-11 5x5 matrix to compute minimum distance to an edge
|
||
// pixel. This integer math computation is reasonably close to the true
|
||
// Euclidean distance. The distances will be approximately 5x the true
|
||
// distance, quantized in integer units. The 5x is factored away in the
|
||
// comparison which builds the intervals.
|
||
dfType usedMargin5X =
|
||
CalcUsedShapeMargin5X(aShapeMargin, aAppUnitsPerDevPixel);
|
||
|
||
// Calculate the bounds of one quadrant of the ellipse, in integer device
|
||
// pixels. These bounds are equal to the rectangle defined by the radii,
|
||
// plus the shape-margin value in both dimensions.
|
||
const LayoutDeviceIntSize bounds =
|
||
LayoutDevicePixel::FromAppUnitsRounded(mRadii, aAppUnitsPerDevPixel) +
|
||
LayoutDeviceIntSize(usedMargin5X / 5, usedMargin5X / 5);
|
||
|
||
// Since our distance field is computed with a 5x5 neighborhood, but only
|
||
// looks in the negative block and negative inline directions, it is
|
||
// effectively a 3x3 neighborhood. We need to expand our distance field
|
||
// outwards by a further 2 pixels in both axes (on the minimum block edge
|
||
// and the minimum inline edge). We call this edge area the expanded region.
|
||
|
||
static const uint32_t iExpand = 2;
|
||
static const uint32_t bExpand = 2;
|
||
|
||
// Clamp the size of our distance field sizes to prevent multiplication
|
||
// overflow.
|
||
static const uint32_t DF_SIDE_MAX =
|
||
floor(sqrt((double)(std::numeric_limits<int32_t>::max())));
|
||
const uint32_t iSize = std::min(bounds.width + iExpand, DF_SIDE_MAX);
|
||
const uint32_t bSize = std::min(bounds.height + bExpand, DF_SIDE_MAX);
|
||
auto df = MakeUniqueFallible<dfType[]>(iSize * bSize);
|
||
if (!df) {
|
||
// Without a distance field, we can't reason about the float area.
|
||
return;
|
||
}
|
||
|
||
// Single pass setting distance field, in positive block direction, three
|
||
// cases:
|
||
// 1) Expanded region pixel: set to MAX_MARGIN_5X.
|
||
// 2) Pixel within the ellipse: set to 0.
|
||
// 3) Other pixel: set to minimum neighborhood distance value, computed
|
||
// with 5-7-11 chamfer.
|
||
|
||
for (uint32_t b = 0; b < bSize; ++b) {
|
||
bool bIsInExpandedRegion(b < bExpand);
|
||
nscoord bInAppUnits = (b - bExpand) * aAppUnitsPerDevPixel;
|
||
bool bIsMoreThanEllipseBEnd(bInAppUnits > mRadii.height);
|
||
|
||
// Find the i intercept of the ellipse edge for this block row, and
|
||
// adjust it to compensate for the expansion of the inline dimension.
|
||
// If we're in the expanded region, or if we're using a b that's more
|
||
// than the bEnd of the ellipse, the intercept is nscoord_MIN.
|
||
// We have one other special case to consider: when the ellipse has no
|
||
// height. In that case we treat the bInAppUnits == 0 case as
|
||
// intercepting at the width of the ellipse. All other cases solve
|
||
// the intersection mathematically.
|
||
const int32_t iIntercept =
|
||
(bIsInExpandedRegion || bIsMoreThanEllipseBEnd)
|
||
? nscoord_MIN
|
||
: iExpand + NSAppUnitsToIntPixels(
|
||
(!!mRadii.height || bInAppUnits)
|
||
? XInterceptAtY(bInAppUnits, mRadii.width,
|
||
mRadii.height)
|
||
: mRadii.width,
|
||
aAppUnitsPerDevPixel);
|
||
|
||
// Set iMax in preparation for this block row.
|
||
int32_t iMax = iIntercept;
|
||
|
||
for (uint32_t i = 0; i < iSize; ++i) {
|
||
const uint32_t index = i + b * iSize;
|
||
MOZ_ASSERT(index < (iSize * bSize),
|
||
"Our distance field index should be in-bounds.");
|
||
|
||
// Handle our three cases, in order.
|
||
if (i < iExpand || bIsInExpandedRegion) {
|
||
// Case 1: Expanded reqion pixel.
|
||
df[index] = MAX_MARGIN_5X;
|
||
} else if ((int32_t)i <= iIntercept) {
|
||
// Case 2: Pixel within the ellipse, or just outside the edge of it.
|
||
// Having a positive height indicates that there's an area we can
|
||
// be inside of.
|
||
df[index] = (!!mRadii.height) ? 0 : 5;
|
||
} else {
|
||
// Case 3: Other pixel.
|
||
|
||
// Backward-looking neighborhood distance from target pixel X
|
||
// with chamfer 5-7-11 looks like:
|
||
//
|
||
// +--+--+--+
|
||
// | |11| |
|
||
// +--+--+--+
|
||
// |11| 7| 5|
|
||
// +--+--+--+
|
||
// | | 5| X|
|
||
// +--+--+--+
|
||
//
|
||
// X should be set to the minimum of the values of all of the numbered
|
||
// neighbors summed with the value in that chamfer cell.
|
||
MOZ_ASSERT(index - iSize - 2 < (iSize * bSize) &&
|
||
index - (iSize * 2) - 1 < (iSize * bSize),
|
||
"Our distance field most extreme indices should be "
|
||
"in-bounds.");
|
||
|
||
// clang-format off
|
||
df[index] = std::min<dfType>(df[index - 1] + 5,
|
||
std::min<dfType>(df[index - iSize] + 5,
|
||
std::min<dfType>(df[index - iSize - 1] + 7,
|
||
std::min<dfType>(df[index - iSize - 2] + 11,
|
||
df[index - (iSize * 2) - 1] + 11))));
|
||
// clang-format on
|
||
|
||
// Check the df value and see if it's less than or equal to the
|
||
// usedMargin5X value.
|
||
if (df[index] <= usedMargin5X) {
|
||
MOZ_ASSERT(iMax < (int32_t)i);
|
||
iMax = i;
|
||
} else {
|
||
// Since we're computing the bottom-right quadrant, there's no way
|
||
// for a later i value in this row to be within the usedMargin5X
|
||
// value. Likewise, every row beyond us will encounter this
|
||
// condition with an i value less than or equal to our i value now.
|
||
// Since our chamfer only looks upward and leftward, we can stop
|
||
// calculating for the rest of the row, because the distance field
|
||
// values there will never be looked at in a later row's chamfer
|
||
// calculation.
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
// It's very likely, though not guaranteed that we will find an pixel
|
||
// within the shape-margin distance for each block row. This may not
|
||
// always be true due to rounding errors.
|
||
if (iMax > nscoord_MIN) {
|
||
// Origin for this interval is at the center of the ellipse, adjusted
|
||
// in the positive block direction by bInAppUnits.
|
||
nsPoint origin(aCenter.x, aCenter.y + bInAppUnits);
|
||
// Size is an inline iMax plus 1 (to account for the whole pixel) dev
|
||
// pixels, by 1 block dev pixel. We convert this to app units.
|
||
nsSize size((iMax - iExpand + 1) * aAppUnitsPerDevPixel,
|
||
aAppUnitsPerDevPixel);
|
||
mIntervals.AppendElement(nsRect(origin, size));
|
||
}
|
||
}
|
||
}
|
||
|
||
nscoord nsFloatManager::EllipseShapeInfo::LineEdge(const nscoord aBStart,
|
||
const nscoord aBEnd,
|
||
bool aIsLineLeft) const {
|
||
// If no mShapeMargin, just compute the edge using math.
|
||
if (mShapeMargin == 0) {
|
||
nscoord lineDiff = ComputeEllipseLineInterceptDiff(
|
||
BStart(), BEnd(), mRadii.width, mRadii.height, mRadii.width,
|
||
mRadii.height, aBStart, aBEnd);
|
||
return mCenter.x + (aIsLineLeft ? (-mRadii.width + lineDiff)
|
||
: (mRadii.width - lineDiff));
|
||
}
|
||
|
||
// We are checking against our intervals. Make sure we have some.
|
||
if (mIntervals.IsEmpty()) {
|
||
NS_WARNING("With mShapeMargin > 0, we can't proceed without intervals.");
|
||
return aIsLineLeft ? nscoord_MAX : nscoord_MIN;
|
||
}
|
||
|
||
// Map aBStart and aBEnd into our intervals. Our intervals are calculated
|
||
// for the lower-right quadrant (in terms of horizontal-tb writing mode).
|
||
// If aBStart and aBEnd span the center of the ellipse, then we know we
|
||
// are at the maximum displacement from the center.
|
||
bool bStartIsAboveCenter = (aBStart < mCenter.y);
|
||
bool bEndIsBelowOrAtCenter = (aBEnd >= mCenter.y);
|
||
if (bStartIsAboveCenter && bEndIsBelowOrAtCenter) {
|
||
return mCenter.x + (aIsLineLeft ? (-mRadii.width - mShapeMargin)
|
||
: (mRadii.width + mShapeMargin));
|
||
}
|
||
|
||
// aBStart and aBEnd don't span the center. Since the intervals are
|
||
// strictly wider approaching the center (the start of the mIntervals
|
||
// array), we only need to find the interval at the block value closest to
|
||
// the center. We find the min of aBStart, aBEnd, and their reflections --
|
||
// whichever two of them are within the lower-right quadrant. When we
|
||
// reflect from the upper-right quadrant to the lower-right, we have to
|
||
// subtract 1 from the reflection, to account that block values are always
|
||
// addressed from the leading block edge.
|
||
|
||
// The key example is when we check with aBStart == aBEnd at the top of the
|
||
// intervals. That block line would be considered contained in the
|
||
// intervals (though it has no height), but its reflection would not be
|
||
// within the intervals unless we subtract 1.
|
||
nscoord bSmallestWithinIntervals = std::min(
|
||
bStartIsAboveCenter ? aBStart + (mCenter.y - aBStart) * 2 - 1 : aBStart,
|
||
bEndIsBelowOrAtCenter ? aBEnd : aBEnd + (mCenter.y - aBEnd) * 2 - 1);
|
||
|
||
MOZ_ASSERT(bSmallestWithinIntervals >= mCenter.y &&
|
||
bSmallestWithinIntervals < BEnd(),
|
||
"We should have a block value within the float area.");
|
||
|
||
size_t index =
|
||
MinIntervalIndexContainingY(mIntervals, bSmallestWithinIntervals);
|
||
if (index >= mIntervals.Length()) {
|
||
// This indicates that our intervals don't cover the block value
|
||
// bSmallestWithinIntervals. This can happen when rounding error in the
|
||
// distance field calculation resulted in the last block pixel row not
|
||
// contributing to the float area. As long as we're within one block pixel
|
||
// past the last interval, this is an expected outcome.
|
||
#ifdef DEBUG
|
||
nscoord onePixelPastLastInterval =
|
||
mIntervals[mIntervals.Length() - 1].YMost() +
|
||
mIntervals[mIntervals.Length() - 1].Height();
|
||
NS_WARNING_ASSERTION(bSmallestWithinIntervals < onePixelPastLastInterval,
|
||
"We should have found a matching interval for this "
|
||
"block value.");
|
||
#endif
|
||
return aIsLineLeft ? nscoord_MAX : nscoord_MIN;
|
||
}
|
||
|
||
// The interval is storing the line right value. If aIsLineLeft is true,
|
||
// return the line right value reflected about the center. Since this is
|
||
// an inline measurement, it's just checking the distance to an edge, and
|
||
// not a collision with a specific pixel. For that reason, we don't need
|
||
// to subtract 1 from the reflection, as we did with the block reflection.
|
||
nscoord iLineRight = mIntervals[index].XMost();
|
||
return aIsLineLeft ? iLineRight - (iLineRight - mCenter.x) * 2 : iLineRight;
|
||
}
|
||
|
||
nscoord nsFloatManager::EllipseShapeInfo::LineLeft(const nscoord aBStart,
|
||
const nscoord aBEnd) const {
|
||
return LineEdge(aBStart, aBEnd, true);
|
||
}
|
||
|
||
nscoord nsFloatManager::EllipseShapeInfo::LineRight(const nscoord aBStart,
|
||
const nscoord aBEnd) const {
|
||
return LineEdge(aBStart, aBEnd, false);
|
||
}
|
||
|
||
/////////////////////////////////////////////////////////////////////////////
|
||
// RoundedBoxShapeInfo
|
||
//
|
||
// Implements shape-outside: <shape-box> and shape-outside: inset().
|
||
//
|
||
class nsFloatManager::RoundedBoxShapeInfo final
|
||
: public nsFloatManager::ShapeInfo {
|
||
public:
|
||
RoundedBoxShapeInfo(const nsRect& aRect, UniquePtr<nscoord[]> aRadii)
|
||
: mRect(aRect), mRadii(std::move(aRadii)), mShapeMargin(0) {}
|
||
|
||
RoundedBoxShapeInfo(const nsRect& aRect, UniquePtr<nscoord[]> aRadii,
|
||
nscoord aShapeMargin, int32_t aAppUnitsPerDevPixel);
|
||
|
||
nscoord LineLeft(const nscoord aBStart, const nscoord aBEnd) const override;
|
||
nscoord LineRight(const nscoord aBStart, const nscoord aBEnd) const override;
|
||
nscoord BStart() const override { return mRect.y; }
|
||
nscoord BEnd() const override { return mRect.YMost(); }
|
||
bool IsEmpty() const override {
|
||
// A RoundedBoxShapeInfo is never empty, because if it is collapsed to
|
||
// zero area, it acts like a point. If it is collapsed further, to become
|
||
// inside-out, it acts like a rect in the same shape as the inside-out
|
||
// rect.
|
||
return false;
|
||
}
|
||
bool MayNarrowInBlockDirection() const override {
|
||
// Only possible to narrow if there are non-null mRadii.
|
||
return !!mRadii;
|
||
}
|
||
|
||
void Translate(nscoord aLineLeft, nscoord aBlockStart) override {
|
||
mRect.MoveBy(aLineLeft, aBlockStart);
|
||
|
||
if (mShapeMargin > 0) {
|
||
MOZ_ASSERT(mLogicalTopLeftCorner && mLogicalTopRightCorner &&
|
||
mLogicalBottomLeftCorner && mLogicalBottomRightCorner,
|
||
"If we have positive shape-margin, we should have corners.");
|
||
mLogicalTopLeftCorner->Translate(aLineLeft, aBlockStart);
|
||
mLogicalTopRightCorner->Translate(aLineLeft, aBlockStart);
|
||
mLogicalBottomLeftCorner->Translate(aLineLeft, aBlockStart);
|
||
mLogicalBottomRightCorner->Translate(aLineLeft, aBlockStart);
|
||
}
|
||
}
|
||
|
||
static bool EachCornerHasBalancedRadii(const nscoord* aRadii) {
|
||
return (aRadii[eCornerTopLeftX] == aRadii[eCornerTopLeftY] &&
|
||
aRadii[eCornerTopRightX] == aRadii[eCornerTopRightY] &&
|
||
aRadii[eCornerBottomLeftX] == aRadii[eCornerBottomLeftY] &&
|
||
aRadii[eCornerBottomRightX] == aRadii[eCornerBottomRightY]);
|
||
}
|
||
|
||
private:
|
||
// The rect of the rounded box shape in the float manager's coordinate
|
||
// space.
|
||
nsRect mRect;
|
||
// The half corner radii of the reference box. It's an nscoord[8] array
|
||
// in the float manager's coordinate space. If there are no radii, it's
|
||
// nullptr.
|
||
const UniquePtr<nscoord[]> mRadii;
|
||
|
||
// A shape-margin value extends the boundaries of the float area. When our
|
||
// first constructor is used, it is for the creation of rounded boxes that
|
||
// can ignore shape-margin -- either because it was specified as zero or
|
||
// because the box shape and radii can be inflated to account for it. When
|
||
// our second constructor is used, we store the shape-margin value here.
|
||
const nscoord mShapeMargin;
|
||
|
||
// If our second constructor is called (which implies mShapeMargin > 0),
|
||
// we will construct EllipseShapeInfo objects for each corner. We use the
|
||
// float logical naming here, where LogicalTopLeftCorner means the BStart
|
||
// LineLeft corner, and similarly for the other corners.
|
||
UniquePtr<EllipseShapeInfo> mLogicalTopLeftCorner;
|
||
UniquePtr<EllipseShapeInfo> mLogicalTopRightCorner;
|
||
UniquePtr<EllipseShapeInfo> mLogicalBottomLeftCorner;
|
||
UniquePtr<EllipseShapeInfo> mLogicalBottomRightCorner;
|
||
};
|
||
|
||
nsFloatManager::RoundedBoxShapeInfo::RoundedBoxShapeInfo(
|
||
const nsRect& aRect, UniquePtr<nscoord[]> aRadii, nscoord aShapeMargin,
|
||
int32_t aAppUnitsPerDevPixel)
|
||
: mRect(aRect), mRadii(std::move(aRadii)), mShapeMargin(aShapeMargin) {
|
||
MOZ_ASSERT(mShapeMargin > 0 && !EachCornerHasBalancedRadii(mRadii.get()),
|
||
"Slow constructor should only be used for for shape-margin > 0 "
|
||
"and radii with elliptical corners.");
|
||
|
||
// Before we inflate mRect by mShapeMargin, construct each of our corners.
|
||
// If we do it in this order, it's a bit simpler to calculate the center
|
||
// of each of the corners.
|
||
mLogicalTopLeftCorner = MakeUnique<EllipseShapeInfo>(
|
||
nsPoint(mRect.X() + mRadii[eCornerTopLeftX],
|
||
mRect.Y() + mRadii[eCornerTopLeftY]),
|
||
nsSize(mRadii[eCornerTopLeftX], mRadii[eCornerTopLeftY]), mShapeMargin,
|
||
aAppUnitsPerDevPixel);
|
||
|
||
mLogicalTopRightCorner = MakeUnique<EllipseShapeInfo>(
|
||
nsPoint(mRect.XMost() - mRadii[eCornerTopRightX],
|
||
mRect.Y() + mRadii[eCornerTopRightY]),
|
||
nsSize(mRadii[eCornerTopRightX], mRadii[eCornerTopRightY]), mShapeMargin,
|
||
aAppUnitsPerDevPixel);
|
||
|
||
mLogicalBottomLeftCorner = MakeUnique<EllipseShapeInfo>(
|
||
nsPoint(mRect.X() + mRadii[eCornerBottomLeftX],
|
||
mRect.YMost() - mRadii[eCornerBottomLeftY]),
|
||
nsSize(mRadii[eCornerBottomLeftX], mRadii[eCornerBottomLeftY]),
|
||
mShapeMargin, aAppUnitsPerDevPixel);
|
||
|
||
mLogicalBottomRightCorner = MakeUnique<EllipseShapeInfo>(
|
||
nsPoint(mRect.XMost() - mRadii[eCornerBottomRightX],
|
||
mRect.YMost() - mRadii[eCornerBottomRightY]),
|
||
nsSize(mRadii[eCornerBottomRightX], mRadii[eCornerBottomRightY]),
|
||
mShapeMargin, aAppUnitsPerDevPixel);
|
||
|
||
// Now we inflate our mRect by mShapeMargin.
|
||
mRect.Inflate(mShapeMargin);
|
||
}
|
||
|
||
nscoord nsFloatManager::RoundedBoxShapeInfo::LineLeft(
|
||
const nscoord aBStart, const nscoord aBEnd) const {
|
||
if (mShapeMargin == 0) {
|
||
if (!mRadii) {
|
||
return mRect.x;
|
||
}
|
||
|
||
nscoord lineLeftDiff = ComputeEllipseLineInterceptDiff(
|
||
mRect.y, mRect.YMost(), mRadii[eCornerTopLeftX],
|
||
mRadii[eCornerTopLeftY], mRadii[eCornerBottomLeftX],
|
||
mRadii[eCornerBottomLeftY], aBStart, aBEnd);
|
||
return mRect.x + lineLeftDiff;
|
||
}
|
||
|
||
MOZ_ASSERT(mLogicalTopLeftCorner && mLogicalBottomLeftCorner,
|
||
"If we have positive shape-margin, we should have corners.");
|
||
|
||
// Determine if aBEnd is within our top corner.
|
||
if (aBEnd < mLogicalTopLeftCorner->BEnd()) {
|
||
return mLogicalTopLeftCorner->LineLeft(aBStart, aBEnd);
|
||
}
|
||
|
||
// Determine if aBStart is within our bottom corner.
|
||
if (aBStart >= mLogicalBottomLeftCorner->BStart()) {
|
||
return mLogicalBottomLeftCorner->LineLeft(aBStart, aBEnd);
|
||
}
|
||
|
||
// Either aBStart or aBEnd or both are within the flat part of our left
|
||
// edge. Because we've already inflated our mRect to encompass our
|
||
// mShapeMargin, we can just return the edge.
|
||
return mRect.X();
|
||
}
|
||
|
||
nscoord nsFloatManager::RoundedBoxShapeInfo::LineRight(
|
||
const nscoord aBStart, const nscoord aBEnd) const {
|
||
if (mShapeMargin == 0) {
|
||
if (!mRadii) {
|
||
return mRect.XMost();
|
||
}
|
||
|
||
nscoord lineRightDiff = ComputeEllipseLineInterceptDiff(
|
||
mRect.y, mRect.YMost(), mRadii[eCornerTopRightX],
|
||
mRadii[eCornerTopRightY], mRadii[eCornerBottomRightX],
|
||
mRadii[eCornerBottomRightY], aBStart, aBEnd);
|
||
return mRect.XMost() - lineRightDiff;
|
||
}
|
||
|
||
MOZ_ASSERT(mLogicalTopRightCorner && mLogicalBottomRightCorner,
|
||
"If we have positive shape-margin, we should have corners.");
|
||
|
||
// Determine if aBEnd is within our top corner.
|
||
if (aBEnd < mLogicalTopRightCorner->BEnd()) {
|
||
return mLogicalTopRightCorner->LineRight(aBStart, aBEnd);
|
||
}
|
||
|
||
// Determine if aBStart is within our bottom corner.
|
||
if (aBStart >= mLogicalBottomRightCorner->BStart()) {
|
||
return mLogicalBottomRightCorner->LineRight(aBStart, aBEnd);
|
||
}
|
||
|
||
// Either aBStart or aBEnd or both are within the flat part of our right
|
||
// edge. Because we've already inflated our mRect to encompass our
|
||
// mShapeMargin, we can just return the edge.
|
||
return mRect.XMost();
|
||
}
|
||
|
||
/////////////////////////////////////////////////////////////////////////////
|
||
// PolygonShapeInfo
|
||
//
|
||
// Implements shape-outside: polygon().
|
||
//
|
||
class nsFloatManager::PolygonShapeInfo final
|
||
: public nsFloatManager::ShapeInfo {
|
||
public:
|
||
explicit PolygonShapeInfo(nsTArray<nsPoint>&& aVertices);
|
||
PolygonShapeInfo(nsTArray<nsPoint>&& aVertices, nscoord aShapeMargin,
|
||
int32_t aAppUnitsPerDevPixel, const nsRect& aMarginRect);
|
||
|
||
nscoord LineLeft(const nscoord aBStart, const nscoord aBEnd) const override;
|
||
nscoord LineRight(const nscoord aBStart, const nscoord aBEnd) const override;
|
||
nscoord BStart() const override { return mBStart; }
|
||
nscoord BEnd() const override { return mBEnd; }
|
||
bool IsEmpty() const override {
|
||
// A PolygonShapeInfo is never empty, because the parser prevents us from
|
||
// creating a shape with no vertices. If we only have 1 vertex, the
|
||
// shape acts like a point. With 2 non-coincident vertices, the shape
|
||
// acts like a line.
|
||
return false;
|
||
}
|
||
bool MayNarrowInBlockDirection() const override { return true; }
|
||
|
||
void Translate(nscoord aLineLeft, nscoord aBlockStart) override;
|
||
|
||
private:
|
||
// Helper method for determining the mBStart and mBEnd based on the
|
||
// vertices' y extent.
|
||
void ComputeExtent();
|
||
|
||
// Helper method for implementing LineLeft() and LineRight().
|
||
nscoord ComputeLineIntercept(
|
||
const nscoord aBStart, const nscoord aBEnd,
|
||
nscoord (*aCompareOp)(std::initializer_list<nscoord>),
|
||
const nscoord aLineInterceptInitialValue) const;
|
||
|
||
// Given a horizontal line y, and two points p1 and p2 forming a line
|
||
// segment L. Solve x for the intersection of y and L. This method
|
||
// assumes y and L do intersect, and L is *not* horizontal.
|
||
static nscoord XInterceptAtY(const nscoord aY, const nsPoint& aP1,
|
||
const nsPoint& aP2);
|
||
|
||
// The vertices of the polygon in the float manager's coordinate space.
|
||
nsTArray<nsPoint> mVertices;
|
||
|
||
// An interval is slice of the float area defined by this PolygonShapeInfo.
|
||
// These are only generated and used in float area calculations for
|
||
// shape-margin > 0. Each interval is a rectangle that is one device pixel
|
||
// deep in the block axis. The values are stored as block edges in the y
|
||
// coordinates, and inline edges as the x coordinates.
|
||
|
||
// The intervals are stored in ascending order on y.
|
||
nsTArray<nsRect> mIntervals;
|
||
|
||
// Computed block start and block end value of the polygon shape. These
|
||
// initial values are set to correct values in ComputeExtent(), which is
|
||
// called from all constructors. Afterwards, mBStart is guaranteed to be
|
||
// less than or equal to mBEnd.
|
||
nscoord mBStart = nscoord_MAX;
|
||
nscoord mBEnd = nscoord_MIN;
|
||
};
|
||
|
||
nsFloatManager::PolygonShapeInfo::PolygonShapeInfo(
|
||
nsTArray<nsPoint>&& aVertices)
|
||
: mVertices(std::move(aVertices)) {
|
||
ComputeExtent();
|
||
}
|
||
|
||
nsFloatManager::PolygonShapeInfo::PolygonShapeInfo(
|
||
nsTArray<nsPoint>&& aVertices, nscoord aShapeMargin,
|
||
int32_t aAppUnitsPerDevPixel, const nsRect& aMarginRect)
|
||
: mVertices(std::move(aVertices)) {
|
||
MOZ_ASSERT(aShapeMargin > 0,
|
||
"This constructor should only be used for a "
|
||
"polygon with a positive shape-margin.");
|
||
|
||
ComputeExtent();
|
||
|
||
// With a positive aShapeMargin, we have to calculate a distance
|
||
// field from the opaque pixels, then build intervals based on
|
||
// them being within aShapeMargin distance to an opaque pixel.
|
||
|
||
// Roughly: for each pixel in the margin box, we need to determine the
|
||
// distance to the nearest opaque image-pixel. If that distance is less
|
||
// than aShapeMargin, we consider this margin-box pixel as being part of
|
||
// the float area.
|
||
|
||
// Computing the distance field is a two-pass O(n) operation.
|
||
// We use a chamfer 5-7-11 5x5 matrix to compute minimum distance
|
||
// to an opaque pixel. This integer math computation is reasonably
|
||
// close to the true Euclidean distance. The distances will be
|
||
// approximately 5x the true distance, quantized in integer units.
|
||
// The 5x is factored away in the comparison used in the final
|
||
// pass which builds the intervals.
|
||
dfType usedMargin5X =
|
||
CalcUsedShapeMargin5X(aShapeMargin, aAppUnitsPerDevPixel);
|
||
|
||
// Allocate our distance field. The distance field has to cover
|
||
// the entire aMarginRect, since aShapeMargin could bleed into it.
|
||
// Conveniently, our vertices have been converted into this same space,
|
||
// so if we cover the aMarginRect, we cover all the vertices.
|
||
const LayoutDeviceIntSize marginRectDevPixels =
|
||
LayoutDevicePixel::FromAppUnitsRounded(aMarginRect.Size(),
|
||
aAppUnitsPerDevPixel);
|
||
|
||
// Since our distance field is computed with a 5x5 neighborhood,
|
||
// we need to expand our distance field by a further 4 pixels in
|
||
// both axes, 2 on the leading edge and 2 on the trailing edge.
|
||
// We call this edge area the "expanded region".
|
||
static const uint32_t kiExpansionPerSide = 2;
|
||
static const uint32_t kbExpansionPerSide = 2;
|
||
|
||
// Clamp the size of our distance field sizes to prevent multiplication
|
||
// overflow.
|
||
static const uint32_t DF_SIDE_MAX =
|
||
floor(sqrt((double)(std::numeric_limits<int32_t>::max())));
|
||
|
||
// Clamp the margin plus 2X the expansion values between expansion + 1 and
|
||
// DF_SIDE_MAX. This ensures that the distance field allocation doesn't
|
||
// overflow during multiplication, and the reverse iteration doesn't
|
||
// underflow.
|
||
const uint32_t iSize =
|
||
std::max(std::min(marginRectDevPixels.width + (kiExpansionPerSide * 2),
|
||
DF_SIDE_MAX),
|
||
kiExpansionPerSide + 1);
|
||
const uint32_t bSize =
|
||
std::max(std::min(marginRectDevPixels.height + (kbExpansionPerSide * 2),
|
||
DF_SIDE_MAX),
|
||
kbExpansionPerSide + 1);
|
||
|
||
// Since the margin-box size is CSS controlled, and large values will
|
||
// generate large iSize and bSize values, we do a fallible allocation for
|
||
// the distance field. If allocation fails, we early exit and layout will
|
||
// be wrong, but we'll avoid aborting from OOM.
|
||
auto df = MakeUniqueFallible<dfType[]>(iSize * bSize);
|
||
if (!df) {
|
||
// Without a distance field, we can't reason about the float area.
|
||
return;
|
||
}
|
||
|
||
// First pass setting distance field, starting at top-left, three cases:
|
||
// 1) Expanded region pixel: set to MAX_MARGIN_5X.
|
||
// 2) Pixel within the polygon: set to 0.
|
||
// 3) Other pixel: set to minimum backward-looking neighborhood
|
||
// distance value, computed with 5-7-11 chamfer.
|
||
|
||
for (uint32_t b = 0; b < bSize; ++b) {
|
||
// Find the left and right i intercepts of the polygon edge for this
|
||
// block row, and adjust them to compensate for the expansion of the
|
||
// inline dimension. If we're in the expanded region, or if we're using
|
||
// a b that's less than the bStart of the polygon, the intercepts are
|
||
// the nscoord min and max limits.
|
||
nscoord bInAppUnits = (b - kbExpansionPerSide) * aAppUnitsPerDevPixel;
|
||
bool bIsInExpandedRegion(b < kbExpansionPerSide ||
|
||
b >= bSize - kbExpansionPerSide);
|
||
|
||
// We now figure out the i values that correspond to the left edge and
|
||
// the right edge of the polygon at one-dev-pixel-thick strip of b. We
|
||
// have a ComputeLineIntercept function that takes and returns app unit
|
||
// coordinates in the space of aMarginRect. So to pass in b values, we
|
||
// first have to add the aMarginRect.y value. And for the values that we
|
||
// get out, we have to subtract away the aMarginRect.x value before
|
||
// converting the app units to dev pixels.
|
||
nscoord bInAppUnitsMarginRect = bInAppUnits + aMarginRect.y;
|
||
bool bIsLessThanPolygonBStart(bInAppUnitsMarginRect < mBStart);
|
||
bool bIsMoreThanPolygonBEnd(bInAppUnitsMarginRect > mBEnd);
|
||
|
||
const int32_t iLeftEdge =
|
||
(bIsInExpandedRegion || bIsLessThanPolygonBStart ||
|
||
bIsMoreThanPolygonBEnd)
|
||
? nscoord_MAX
|
||
: kiExpansionPerSide +
|
||
NSAppUnitsToIntPixels(
|
||
ComputeLineIntercept(
|
||
bInAppUnitsMarginRect,
|
||
bInAppUnitsMarginRect + aAppUnitsPerDevPixel,
|
||
std::min<nscoord>, nscoord_MAX) -
|
||
aMarginRect.x,
|
||
aAppUnitsPerDevPixel);
|
||
|
||
const int32_t iRightEdge =
|
||
(bIsInExpandedRegion || bIsLessThanPolygonBStart ||
|
||
bIsMoreThanPolygonBEnd)
|
||
? nscoord_MIN
|
||
: kiExpansionPerSide +
|
||
NSAppUnitsToIntPixels(
|
||
ComputeLineIntercept(
|
||
bInAppUnitsMarginRect,
|
||
bInAppUnitsMarginRect + aAppUnitsPerDevPixel,
|
||
std::max<nscoord>, nscoord_MIN) -
|
||
aMarginRect.x,
|
||
aAppUnitsPerDevPixel);
|
||
|
||
for (uint32_t i = 0; i < iSize; ++i) {
|
||
const uint32_t index = i + b * iSize;
|
||
MOZ_ASSERT(index < (iSize * bSize),
|
||
"Our distance field index should be in-bounds.");
|
||
|
||
// Handle our three cases, in order.
|
||
if (i < kiExpansionPerSide || i >= iSize - kiExpansionPerSide ||
|
||
bIsInExpandedRegion) {
|
||
// Case 1: Expanded pixel.
|
||
df[index] = MAX_MARGIN_5X;
|
||
} else if ((int32_t)i >= iLeftEdge && (int32_t)i <= iRightEdge) {
|
||
// Case 2: Polygon pixel, either inside or just adjacent to the right
|
||
// edge. We need this special distinction to detect a space between
|
||
// edges that is less than one dev pixel.
|
||
df[index] = (int32_t)i < iRightEdge ? 0 : 5;
|
||
} else {
|
||
// Case 3: Other pixel.
|
||
|
||
// Backward-looking neighborhood distance from target pixel X
|
||
// with chamfer 5-7-11 looks like:
|
||
//
|
||
// +--+--+--+--+--+
|
||
// | |11| |11| |
|
||
// +--+--+--+--+--+
|
||
// |11| 7| 5| 7|11|
|
||
// +--+--+--+--+--+
|
||
// | | 5| X| | |
|
||
// +--+--+--+--+--+
|
||
//
|
||
// X should be set to the minimum of MAX_MARGIN_5X and the
|
||
// values of all of the numbered neighbors summed with the
|
||
// value in that chamfer cell.
|
||
MOZ_ASSERT(index - (iSize * 2) - 1 < (iSize * bSize) &&
|
||
index - iSize - 2 < (iSize * bSize),
|
||
"Our distance field most extreme indices should be "
|
||
"in-bounds.");
|
||
|
||
// clang-format off
|
||
df[index] = std::min<dfType>(MAX_MARGIN_5X,
|
||
std::min<dfType>(df[index - (iSize * 2) - 1] + 11,
|
||
std::min<dfType>(df[index - (iSize * 2) + 1] + 11,
|
||
std::min<dfType>(df[index - iSize - 2] + 11,
|
||
std::min<dfType>(df[index - iSize - 1] + 7,
|
||
std::min<dfType>(df[index - iSize] + 5,
|
||
std::min<dfType>(df[index - iSize + 1] + 7,
|
||
std::min<dfType>(df[index - iSize + 2] + 11,
|
||
df[index - 1] + 5))))))));
|
||
// clang-format on
|
||
}
|
||
}
|
||
}
|
||
|
||
// Okay, time for the second pass. This pass is in reverse order from
|
||
// the first pass. All of our opaque pixels have been set to 0, and all
|
||
// of our expanded region pixels have been set to MAX_MARGIN_5X. Other
|
||
// pixels have been set to some value between those two (inclusive) but
|
||
// this hasn't yet taken into account the neighbors that were processed
|
||
// after them in the first pass. This time we reverse iterate so we can
|
||
// apply the forward-looking chamfer.
|
||
|
||
// This time, we constrain our outer and inner loop to ignore the
|
||
// expanded region pixels. For each pixel we iterate, we set the df value
|
||
// to the minimum forward-looking neighborhood distance value, computed
|
||
// with a 5-7-11 chamfer. We also check each df value against the
|
||
// usedMargin5X threshold, and use that to set the iMin and iMax values
|
||
// for the interval we'll create for that block axis value (b).
|
||
|
||
// At the end of each row, if any of the other pixels had a value less
|
||
// than usedMargin5X, we create an interval.
|
||
for (uint32_t b = bSize - kbExpansionPerSide - 1; b >= kbExpansionPerSide;
|
||
--b) {
|
||
// iMin tracks the first df pixel and iMax the last df pixel whose
|
||
// df[] value is less than usedMargin5X. Set iMin and iMax in
|
||
// preparation for this row or column.
|
||
int32_t iMin = iSize;
|
||
int32_t iMax = -1;
|
||
|
||
for (uint32_t i = iSize - kiExpansionPerSide - 1; i >= kiExpansionPerSide;
|
||
--i) {
|
||
const uint32_t index = i + b * iSize;
|
||
MOZ_ASSERT(index < (iSize * bSize),
|
||
"Our distance field index should be in-bounds.");
|
||
|
||
// Only apply the chamfer calculation if the df value is not
|
||
// already 0, since the chamfer can only reduce the value.
|
||
if (df[index]) {
|
||
// Forward-looking neighborhood distance from target pixel X
|
||
// with chamfer 5-7-11 looks like:
|
||
//
|
||
// +--+--+--+--+--+
|
||
// | | | X| 5| |
|
||
// +--+--+--+--+--+
|
||
// |11| 7| 5| 7|11|
|
||
// +--+--+--+--+--+
|
||
// | |11| |11| |
|
||
// +--+--+--+--+--+
|
||
//
|
||
// X should be set to the minimum of its current value and
|
||
// the values of all of the numbered neighbors summed with
|
||
// the value in that chamfer cell.
|
||
MOZ_ASSERT(index + (iSize * 2) + 1 < (iSize * bSize) &&
|
||
index + iSize + 2 < (iSize * bSize),
|
||
"Our distance field most extreme indices should be "
|
||
"in-bounds.");
|
||
|
||
// clang-format off
|
||
df[index] = std::min<dfType>(df[index],
|
||
std::min<dfType>(df[index + (iSize * 2) + 1] + 11,
|
||
std::min<dfType>(df[index + (iSize * 2) - 1] + 11,
|
||
std::min<dfType>(df[index + iSize + 2] + 11,
|
||
std::min<dfType>(df[index + iSize + 1] + 7,
|
||
std::min<dfType>(df[index + iSize] + 5,
|
||
std::min<dfType>(df[index + iSize - 1] + 7,
|
||
std::min<dfType>(df[index + iSize - 2] + 11,
|
||
df[index + 1] + 5))))))));
|
||
// clang-format on
|
||
}
|
||
|
||
// Finally, we can check the df value and see if it's less than
|
||
// or equal to the usedMargin5X value.
|
||
if (df[index] <= usedMargin5X) {
|
||
if (iMax == -1) {
|
||
iMax = i;
|
||
}
|
||
MOZ_ASSERT(iMin > (int32_t)i);
|
||
iMin = i;
|
||
}
|
||
}
|
||
|
||
if (iMax != -1) {
|
||
// Our interval values, iMin, iMax, and b are all calculated from
|
||
// the expanded region, which is based on the margin rect. To create
|
||
// our interval, we have to subtract kiExpansionPerSide from iMin and
|
||
// iMax, and subtract kbExpansionPerSide from b to account for the
|
||
// expanded region edges. This produces coords that are relative to
|
||
// our margin-rect.
|
||
|
||
// Origin for this interval is at the aMarginRect origin, adjusted in
|
||
// the block direction by b in app units, and in the inline direction
|
||
// by iMin in app units.
|
||
nsPoint origin(
|
||
aMarginRect.x + (iMin - kiExpansionPerSide) * aAppUnitsPerDevPixel,
|
||
aMarginRect.y + (b - kbExpansionPerSide) * aAppUnitsPerDevPixel);
|
||
|
||
// Size is the difference in iMax and iMin, plus 1 (to account for the
|
||
// whole pixel) dev pixels, by 1 block dev pixel. We don't bother
|
||
// subtracting kiExpansionPerSide from iMin and iMax in this case
|
||
// because we only care about the distance between them. We convert
|
||
// everything to app units.
|
||
nsSize size((iMax - iMin + 1) * aAppUnitsPerDevPixel,
|
||
aAppUnitsPerDevPixel);
|
||
|
||
mIntervals.AppendElement(nsRect(origin, size));
|
||
}
|
||
}
|
||
|
||
// Reverse the intervals keep the array sorted on the block direction.
|
||
mIntervals.Reverse();
|
||
|
||
// Adjust our extents by aShapeMargin. This may cause overflow of some
|
||
// kind if aShapeMargin is large, so we do some clamping to maintain the
|
||
// invariant mBStart <= mBEnd.
|
||
mBStart = std::min(mBStart, mBStart - aShapeMargin);
|
||
mBEnd = std::max(mBEnd, mBEnd + aShapeMargin);
|
||
}
|
||
|
||
nscoord nsFloatManager::PolygonShapeInfo::LineLeft(const nscoord aBStart,
|
||
const nscoord aBEnd) const {
|
||
// Use intervals if we have them.
|
||
if (!mIntervals.IsEmpty()) {
|
||
return LineEdge(mIntervals, aBStart, aBEnd, true);
|
||
}
|
||
|
||
// We want the line-left-most inline-axis coordinate where the
|
||
// (block-axis) aBStart/aBEnd band crosses a line segment of the polygon.
|
||
// To get that, we start as line-right as possible (at nscoord_MAX). Then
|
||
// we iterate each line segment to compute its intersection point with the
|
||
// band (if any) and using std::min() successively to get the smallest
|
||
// inline-coordinates among those intersection points.
|
||
//
|
||
// Note: std::min<nscoord> means the function std::min() with template
|
||
// parameter nscoord, not the minimum value of nscoord.
|
||
return ComputeLineIntercept(aBStart, aBEnd, std::min<nscoord>, nscoord_MAX);
|
||
}
|
||
|
||
nscoord nsFloatManager::PolygonShapeInfo::LineRight(const nscoord aBStart,
|
||
const nscoord aBEnd) const {
|
||
// Use intervals if we have them.
|
||
if (!mIntervals.IsEmpty()) {
|
||
return LineEdge(mIntervals, aBStart, aBEnd, false);
|
||
}
|
||
|
||
// Similar to LineLeft(). Though here, we want the line-right-most
|
||
// inline-axis coordinate, so we instead start at nscoord_MIN and use
|
||
// std::max() to get the biggest inline-coordinate among those
|
||
// intersection points.
|
||
return ComputeLineIntercept(aBStart, aBEnd, std::max<nscoord>, nscoord_MIN);
|
||
}
|
||
|
||
void nsFloatManager::PolygonShapeInfo::ComputeExtent() {
|
||
// mBStart and mBEnd are the lower and the upper bounds of all the
|
||
// vertex.y, respectively. The vertex.y is actually on the block-axis of
|
||
// the float manager's writing mode.
|
||
for (const nsPoint& vertex : mVertices) {
|
||
mBStart = std::min(mBStart, vertex.y);
|
||
mBEnd = std::max(mBEnd, vertex.y);
|
||
}
|
||
|
||
MOZ_ASSERT(mBStart <= mBEnd,
|
||
"Start of float area should be less than "
|
||
"or equal to the end.");
|
||
}
|
||
|
||
nscoord nsFloatManager::PolygonShapeInfo::ComputeLineIntercept(
|
||
const nscoord aBStart, const nscoord aBEnd,
|
||
nscoord (*aCompareOp)(std::initializer_list<nscoord>),
|
||
const nscoord aLineInterceptInitialValue) const {
|
||
MOZ_ASSERT(aBStart <= aBEnd,
|
||
"The band's block start is greater than its block end?");
|
||
|
||
const size_t len = mVertices.Length();
|
||
nscoord lineIntercept = aLineInterceptInitialValue;
|
||
|
||
// We have some special treatment of horizontal lines between vertices.
|
||
// Generally, we can ignore the impact of the horizontal lines since their
|
||
// endpoints will be included in the lines preceeding or following them.
|
||
// However, it's possible the polygon is entirely a horizontal line,
|
||
// possibly built from more than one horizontal segment. In such a case,
|
||
// we need to have the horizontal line(s) contribute to the line intercepts.
|
||
// We do this by accepting horizontal lines until we find a non-horizontal
|
||
// line, after which all further horizontal lines are ignored.
|
||
bool canIgnoreHorizontalLines = false;
|
||
|
||
// Iterate each line segment {p0, p1}, {p1, p2}, ..., {pn, p0}.
|
||
for (size_t i = 0; i < len; ++i) {
|
||
const nsPoint* smallYVertex = &mVertices[i];
|
||
const nsPoint* bigYVertex = &mVertices[(i + 1) % len];
|
||
|
||
// Swap the two points to satisfy the requirement for calling
|
||
// XInterceptAtY.
|
||
if (smallYVertex->y > bigYVertex->y) {
|
||
std::swap(smallYVertex, bigYVertex);
|
||
}
|
||
|
||
// Generally, we need to ignore line segments that either don't intersect
|
||
// the band, or merely touch it. However, if the polygon has no block extent
|
||
// (it is a point, or a horizontal line), and the band touches the line
|
||
// segment, we let that line segment through.
|
||
if ((aBStart >= bigYVertex->y || aBEnd <= smallYVertex->y) &&
|
||
!(mBStart == mBEnd && aBStart == bigYVertex->y)) {
|
||
// Skip computing the intercept if the band doesn't intersect the
|
||
// line segment.
|
||
continue;
|
||
}
|
||
|
||
nscoord bStartLineIntercept;
|
||
nscoord bEndLineIntercept;
|
||
|
||
if (smallYVertex->y == bigYVertex->y) {
|
||
// The line is horizontal; see if we can ignore it.
|
||
if (canIgnoreHorizontalLines) {
|
||
continue;
|
||
}
|
||
|
||
// For a horizontal line that we can't ignore, we treat the two x value
|
||
// ends as the bStartLineIntercept and bEndLineIntercept. It doesn't
|
||
// matter which is applied to which, because they'll both be applied
|
||
// to aCompareOp.
|
||
bStartLineIntercept = smallYVertex->x;
|
||
bEndLineIntercept = bigYVertex->x;
|
||
} else {
|
||
// This is not a horizontal line. We can now ignore all future
|
||
// horizontal lines.
|
||
canIgnoreHorizontalLines = true;
|
||
|
||
bStartLineIntercept =
|
||
aBStart <= smallYVertex->y
|
||
? smallYVertex->x
|
||
: XInterceptAtY(aBStart, *smallYVertex, *bigYVertex);
|
||
bEndLineIntercept =
|
||
aBEnd >= bigYVertex->y
|
||
? bigYVertex->x
|
||
: XInterceptAtY(aBEnd, *smallYVertex, *bigYVertex);
|
||
}
|
||
|
||
// If either new intercept is more extreme than lineIntercept (per
|
||
// aCompareOp), then update lineIntercept to that value.
|
||
lineIntercept =
|
||
aCompareOp({lineIntercept, bStartLineIntercept, bEndLineIntercept});
|
||
}
|
||
|
||
return lineIntercept;
|
||
}
|
||
|
||
void nsFloatManager::PolygonShapeInfo::Translate(nscoord aLineLeft,
|
||
nscoord aBlockStart) {
|
||
for (nsPoint& vertex : mVertices) {
|
||
vertex.MoveBy(aLineLeft, aBlockStart);
|
||
}
|
||
for (nsRect& interval : mIntervals) {
|
||
interval.MoveBy(aLineLeft, aBlockStart);
|
||
}
|
||
mBStart += aBlockStart;
|
||
mBEnd += aBlockStart;
|
||
}
|
||
|
||
/* static */
|
||
nscoord nsFloatManager::PolygonShapeInfo::XInterceptAtY(const nscoord aY,
|
||
const nsPoint& aP1,
|
||
const nsPoint& aP2) {
|
||
// Solve for x in the linear equation: x = x1 + (y-y1) * (x2-x1) / (y2-y1),
|
||
// where aP1 = (x1, y1) and aP2 = (x2, y2).
|
||
|
||
MOZ_ASSERT(aP1.y <= aY && aY <= aP2.y,
|
||
"This function won't work if the horizontal line at aY and "
|
||
"the line segment (aP1, aP2) do not intersect!");
|
||
|
||
MOZ_ASSERT(aP1.y != aP2.y,
|
||
"A horizontal line segment results in dividing by zero error!");
|
||
|
||
return aP1.x + (aY - aP1.y) * (aP2.x - aP1.x) / (aP2.y - aP1.y);
|
||
}
|
||
|
||
/////////////////////////////////////////////////////////////////////////////
|
||
// ImageShapeInfo
|
||
//
|
||
// Implements shape-outside: <image>
|
||
//
|
||
class nsFloatManager::ImageShapeInfo final : public nsFloatManager::ShapeInfo {
|
||
public:
|
||
ImageShapeInfo(uint8_t* aAlphaPixels, int32_t aStride,
|
||
const LayoutDeviceIntSize& aImageSize,
|
||
int32_t aAppUnitsPerDevPixel, float aShapeImageThreshold,
|
||
nscoord aShapeMargin, const nsRect& aContentRect,
|
||
const nsRect& aMarginRect, WritingMode aWM,
|
||
const nsSize& aContainerSize);
|
||
|
||
nscoord LineLeft(const nscoord aBStart, const nscoord aBEnd) const override;
|
||
nscoord LineRight(const nscoord aBStart, const nscoord aBEnd) const override;
|
||
nscoord BStart() const override { return mBStart; }
|
||
nscoord BEnd() const override { return mBEnd; }
|
||
bool IsEmpty() const override { return mIntervals.IsEmpty(); }
|
||
bool MayNarrowInBlockDirection() const override { return true; }
|
||
|
||
void Translate(nscoord aLineLeft, nscoord aBlockStart) override;
|
||
|
||
private:
|
||
// An interval is slice of the float area defined by this ImageShapeInfo.
|
||
// Each interval is a rectangle that is one pixel deep in the block
|
||
// axis. The values are stored as block edges in the y coordinates,
|
||
// and inline edges as the x coordinates.
|
||
|
||
// The intervals are stored in ascending order on y.
|
||
nsTArray<nsRect> mIntervals;
|
||
|
||
nscoord mBStart = nscoord_MAX;
|
||
nscoord mBEnd = nscoord_MIN;
|
||
|
||
// CreateInterval transforms the supplied aIMin and aIMax and aB
|
||
// values into an interval that respects the writing mode. An
|
||
// aOffsetFromContainer can be provided if the aIMin, aIMax, aB
|
||
// values were generated relative to something other than the container
|
||
// rect (such as the content rect or margin rect).
|
||
void CreateInterval(int32_t aIMin, int32_t aIMax, int32_t aB,
|
||
int32_t aAppUnitsPerDevPixel,
|
||
const nsPoint& aOffsetFromContainer, WritingMode aWM,
|
||
const nsSize& aContainerSize);
|
||
};
|
||
|
||
nsFloatManager::ImageShapeInfo::ImageShapeInfo(
|
||
uint8_t* aAlphaPixels, int32_t aStride,
|
||
const LayoutDeviceIntSize& aImageSize, int32_t aAppUnitsPerDevPixel,
|
||
float aShapeImageThreshold, nscoord aShapeMargin,
|
||
const nsRect& aContentRect, const nsRect& aMarginRect, WritingMode aWM,
|
||
const nsSize& aContainerSize) {
|
||
MOZ_ASSERT(aShapeImageThreshold >= 0.0 && aShapeImageThreshold <= 1.0,
|
||
"The computed value of shape-image-threshold is wrong!");
|
||
|
||
const uint8_t threshold = NSToIntFloor(aShapeImageThreshold * 255);
|
||
|
||
MOZ_ASSERT(aImageSize.width >= 0 && aImageSize.height >= 0,
|
||
"Image size must be non-negative for our math to work.");
|
||
const uint32_t w = aImageSize.width;
|
||
const uint32_t h = aImageSize.height;
|
||
|
||
if (aShapeMargin <= 0) {
|
||
// Without a positive aShapeMargin, all we have to do is a
|
||
// direct threshold comparison of the alpha pixels.
|
||
// https://drafts.csswg.org/css-shapes-1/#valdef-shape-image-threshold-number
|
||
|
||
// Scan the pixels in a double loop. For horizontal writing modes, we do
|
||
// this row by row, from top to bottom. For vertical writing modes, we do
|
||
// column by column, from left to right. We define the two loops
|
||
// generically, then figure out the rows and cols within the inner loop.
|
||
const uint32_t bSize = aWM.IsVertical() ? w : h;
|
||
const uint32_t iSize = aWM.IsVertical() ? h : w;
|
||
for (uint32_t b = 0; b < bSize; ++b) {
|
||
// iMin and max store the start and end of the float area for the row
|
||
// or column represented by this iteration of the outer loop.
|
||
int32_t iMin = -1;
|
||
int32_t iMax = -1;
|
||
|
||
for (uint32_t i = 0; i < iSize; ++i) {
|
||
const uint32_t col = aWM.IsVertical() ? b : i;
|
||
const uint32_t row = aWM.IsVertical() ? i : b;
|
||
const uint32_t index = col + row * aStride;
|
||
|
||
// Determine if the alpha pixel at this row and column has a value
|
||
// greater than the threshold. If it does, update our iMin and iMax
|
||
// values to track the edges of the float area for this row or column.
|
||
// https://drafts.csswg.org/css-shapes-1/#valdef-shape-image-threshold-number
|
||
const uint8_t alpha = aAlphaPixels[index];
|
||
if (alpha > threshold) {
|
||
if (iMin == -1) {
|
||
iMin = i;
|
||
}
|
||
MOZ_ASSERT(iMax < (int32_t)i);
|
||
iMax = i;
|
||
}
|
||
}
|
||
|
||
// At the end of a row or column; did we find something?
|
||
if (iMin != -1) {
|
||
// We need to supply an offset of the content rect top left, since
|
||
// our col and row have been calculated from the content rect,
|
||
// instead of the margin rect (against which floats are applied).
|
||
CreateInterval(iMin, iMax, b, aAppUnitsPerDevPixel,
|
||
aContentRect.TopLeft(), aWM, aContainerSize);
|
||
}
|
||
}
|
||
|
||
if (aWM.IsVerticalRL()) {
|
||
// vertical-rl or sideways-rl.
|
||
// Because we scan the columns from left to right, we need to reverse
|
||
// the array so that it's sorted (in ascending order) on the block
|
||
// direction.
|
||
mIntervals.Reverse();
|
||
}
|
||
} else {
|
||
// With a positive aShapeMargin, we have to calculate a distance
|
||
// field from the opaque pixels, then build intervals based on
|
||
// them being within aShapeMargin distance to an opaque pixel.
|
||
|
||
// Roughly: for each pixel in the margin box, we need to determine the
|
||
// distance to the nearest opaque image-pixel. If that distance is less
|
||
// than aShapeMargin, we consider this margin-box pixel as being part of
|
||
// the float area.
|
||
|
||
// Computing the distance field is a two-pass O(n) operation.
|
||
// We use a chamfer 5-7-11 5x5 matrix to compute minimum distance
|
||
// to an opaque pixel. This integer math computation is reasonably
|
||
// close to the true Euclidean distance. The distances will be
|
||
// approximately 5x the true distance, quantized in integer units.
|
||
// The 5x is factored away in the comparison used in the final
|
||
// pass which builds the intervals.
|
||
dfType usedMargin5X =
|
||
CalcUsedShapeMargin5X(aShapeMargin, aAppUnitsPerDevPixel);
|
||
|
||
// Allocate our distance field. The distance field has to cover
|
||
// the entire aMarginRect, since aShapeMargin could bleed into it,
|
||
// beyond the content rect covered by aAlphaPixels. To make this work,
|
||
// we calculate a dfOffset value which is the top left of the content
|
||
// rect relative to the margin rect.
|
||
nsPoint offsetPoint = aContentRect.TopLeft() - aMarginRect.TopLeft();
|
||
LayoutDeviceIntPoint dfOffset = LayoutDevicePixel::FromAppUnitsRounded(
|
||
offsetPoint, aAppUnitsPerDevPixel);
|
||
|
||
// Since our distance field is computed with a 5x5 neighborhood,
|
||
// we need to expand our distance field by a further 4 pixels in
|
||
// both axes, 2 on the leading edge and 2 on the trailing edge.
|
||
// We call this edge area the "expanded region".
|
||
|
||
// Our expansion amounts need to be the same for our math to work.
|
||
static uint32_t kExpansionPerSide = 2;
|
||
// Since dfOffset will be used in comparisons against expanded region
|
||
// pixel values, it's convenient to add expansion amounts to dfOffset in
|
||
// both axes, to simplify comparison math later.
|
||
dfOffset.x += kExpansionPerSide;
|
||
dfOffset.y += kExpansionPerSide;
|
||
|
||
// In all these calculations, we purposely ignore aStride, because
|
||
// we don't have to replicate the packing that we received in
|
||
// aAlphaPixels. When we need to convert from df coordinates to
|
||
// alpha coordinates, we do that with math based on row and col.
|
||
const LayoutDeviceIntSize marginRectDevPixels =
|
||
LayoutDevicePixel::FromAppUnitsRounded(aMarginRect.Size(),
|
||
aAppUnitsPerDevPixel);
|
||
|
||
// Clamp the size of our distance field sizes to prevent multiplication
|
||
// overflow.
|
||
static const uint32_t DF_SIDE_MAX =
|
||
floor(sqrt((double)(std::numeric_limits<int32_t>::max())));
|
||
|
||
// Clamp the margin plus 2X the expansion values between expansion + 1
|
||
// and DF_SIDE_MAX. This ensures that the distance field allocation
|
||
// doesn't overflow during multiplication, and the reverse iteration
|
||
// doesn't underflow.
|
||
const uint32_t wEx =
|
||
std::max(std::min(marginRectDevPixels.width + (kExpansionPerSide * 2),
|
||
DF_SIDE_MAX),
|
||
kExpansionPerSide + 1);
|
||
const uint32_t hEx =
|
||
std::max(std::min(marginRectDevPixels.height + (kExpansionPerSide * 2),
|
||
DF_SIDE_MAX),
|
||
kExpansionPerSide + 1);
|
||
|
||
// Since the margin-box size is CSS controlled, and large values will
|
||
// generate large wEx and hEx values, we do a falliable allocation for
|
||
// the distance field. If allocation fails, we early exit and layout will
|
||
// be wrong, but we'll avoid aborting from OOM.
|
||
auto df = MakeUniqueFallible<dfType[]>(wEx * hEx);
|
||
if (!df) {
|
||
// Without a distance field, we can't reason about the float area.
|
||
return;
|
||
}
|
||
|
||
const uint32_t bSize = aWM.IsVertical() ? wEx : hEx;
|
||
const uint32_t iSize = aWM.IsVertical() ? hEx : wEx;
|
||
|
||
// First pass setting distance field, starting at top-left, three cases:
|
||
// 1) Expanded region pixel: set to MAX_MARGIN_5X.
|
||
// 2) Image pixel with alpha greater than threshold: set to 0.
|
||
// 3) Other pixel: set to minimum backward-looking neighborhood
|
||
// distance value, computed with 5-7-11 chamfer.
|
||
|
||
// Scan the pixels in a double loop. For horizontal writing modes, we do
|
||
// this row by row, from top to bottom. For vertical writing modes, we do
|
||
// column by column, from left to right. We define the two loops
|
||
// generically, then figure out the rows and cols within the inner loop.
|
||
for (uint32_t b = 0; b < bSize; ++b) {
|
||
for (uint32_t i = 0; i < iSize; ++i) {
|
||
const uint32_t col = aWM.IsVertical() ? b : i;
|
||
const uint32_t row = aWM.IsVertical() ? i : b;
|
||
const uint32_t index = col + row * wEx;
|
||
MOZ_ASSERT(index < (wEx * hEx),
|
||
"Our distance field index should be in-bounds.");
|
||
|
||
// Handle our three cases, in order.
|
||
if (col < kExpansionPerSide || col >= wEx - kExpansionPerSide ||
|
||
row < kExpansionPerSide || row >= hEx - kExpansionPerSide) {
|
||
// Case 1: Expanded pixel.
|
||
df[index] = MAX_MARGIN_5X;
|
||
} else if ((int32_t)col >= dfOffset.x &&
|
||
(int32_t)col < (dfOffset.x + aImageSize.width) &&
|
||
(int32_t)row >= dfOffset.y &&
|
||
(int32_t)row < (dfOffset.y + aImageSize.height) &&
|
||
aAlphaPixels[col - dfOffset.x +
|
||
(row - dfOffset.y) * aStride] > threshold) {
|
||
// Case 2: Image pixel that is opaque.
|
||
DebugOnly<uint32_t> alphaIndex =
|
||
col - dfOffset.x + (row - dfOffset.y) * aStride;
|
||
MOZ_ASSERT(alphaIndex < (aStride * h),
|
||
"Our aAlphaPixels index should be in-bounds.");
|
||
|
||
df[index] = 0;
|
||
} else {
|
||
// Case 3: Other pixel.
|
||
if (aWM.IsVertical()) {
|
||
// Column-by-column, starting at the left, each column
|
||
// top-to-bottom.
|
||
// Backward-looking neighborhood distance from target pixel X
|
||
// with chamfer 5-7-11 looks like:
|
||
//
|
||
// +--+--+--+
|
||
// | |11| | | +
|
||
// +--+--+--+ | /|
|
||
// |11| 7| 5| | / |
|
||
// +--+--+--+ | / V
|
||
// | | 5| X| |/
|
||
// +--+--+--+ +
|
||
// |11| 7| |
|
||
// +--+--+--+
|
||
// | |11| |
|
||
// +--+--+--+
|
||
//
|
||
// X should be set to the minimum of MAX_MARGIN_5X and the
|
||
// values of all of the numbered neighbors summed with the
|
||
// value in that chamfer cell.
|
||
MOZ_ASSERT(index - wEx - 2 < (iSize * bSize) &&
|
||
index + wEx - 2 < (iSize * bSize) &&
|
||
index - (wEx * 2) - 1 < (iSize * bSize),
|
||
"Our distance field most extreme indices should be "
|
||
"in-bounds.");
|
||
|
||
// clang-format off
|
||
df[index] = std::min<dfType>(MAX_MARGIN_5X,
|
||
std::min<dfType>(df[index - wEx - 2] + 11,
|
||
std::min<dfType>(df[index + wEx - 2] + 11,
|
||
std::min<dfType>(df[index - (wEx * 2) - 1] + 11,
|
||
std::min<dfType>(df[index - wEx - 1] + 7,
|
||
std::min<dfType>(df[index - 1] + 5,
|
||
std::min<dfType>(df[index + wEx - 1] + 7,
|
||
std::min<dfType>(df[index + (wEx * 2) - 1] + 11,
|
||
df[index - wEx] + 5))))))));
|
||
// clang-format on
|
||
} else {
|
||
// Row-by-row, starting at the top, each row left-to-right.
|
||
// Backward-looking neighborhood distance from target pixel X
|
||
// with chamfer 5-7-11 looks like:
|
||
//
|
||
// +--+--+--+--+--+
|
||
// | |11| |11| | ----+
|
||
// +--+--+--+--+--+ /
|
||
// |11| 7| 5| 7|11| /
|
||
// +--+--+--+--+--+ /
|
||
// | | 5| X| | | +-->
|
||
// +--+--+--+--+--+
|
||
//
|
||
// X should be set to the minimum of MAX_MARGIN_5X and the
|
||
// values of all of the numbered neighbors summed with the
|
||
// value in that chamfer cell.
|
||
MOZ_ASSERT(index - (wEx * 2) - 1 < (iSize * bSize) &&
|
||
index - wEx - 2 < (iSize * bSize),
|
||
"Our distance field most extreme indices should be "
|
||
"in-bounds.");
|
||
|
||
// clang-format off
|
||
df[index] = std::min<dfType>(MAX_MARGIN_5X,
|
||
std::min<dfType>(df[index - (wEx * 2) - 1] + 11,
|
||
std::min<dfType>(df[index - (wEx * 2) + 1] + 11,
|
||
std::min<dfType>(df[index - wEx - 2] + 11,
|
||
std::min<dfType>(df[index - wEx - 1] + 7,
|
||
std::min<dfType>(df[index - wEx] + 5,
|
||
std::min<dfType>(df[index - wEx + 1] + 7,
|
||
std::min<dfType>(df[index - wEx + 2] + 11,
|
||
df[index - 1] + 5))))))));
|
||
// clang-format on
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// Okay, time for the second pass. This pass is in reverse order from
|
||
// the first pass. All of our opaque pixels have been set to 0, and all
|
||
// of our expanded region pixels have been set to MAX_MARGIN_5X. Other
|
||
// pixels have been set to some value between those two (inclusive) but
|
||
// this hasn't yet taken into account the neighbors that were processed
|
||
// after them in the first pass. This time we reverse iterate so we can
|
||
// apply the forward-looking chamfer.
|
||
|
||
// This time, we constrain our outer and inner loop to ignore the
|
||
// expanded region pixels. For each pixel we iterate, we set the df value
|
||
// to the minimum forward-looking neighborhood distance value, computed
|
||
// with a 5-7-11 chamfer. We also check each df value against the
|
||
// usedMargin5X threshold, and use that to set the iMin and iMax values
|
||
// for the interval we'll create for that block axis value (b).
|
||
|
||
// At the end of each row (or column in vertical writing modes),
|
||
// if any of the other pixels had a value less than usedMargin5X,
|
||
// we create an interval. Note: "bSize - kExpansionPerSide - 1" is the
|
||
// index of the final row of pixels before the trailing expanded region.
|
||
for (uint32_t b = bSize - kExpansionPerSide - 1; b >= kExpansionPerSide;
|
||
--b) {
|
||
// iMin tracks the first df pixel and iMax the last df pixel whose
|
||
// df[] value is less than usedMargin5X. Set iMin and iMax in
|
||
// preparation for this row or column.
|
||
int32_t iMin = iSize;
|
||
int32_t iMax = -1;
|
||
|
||
// Note: "iSize - kExpansionPerSide - 1" is the index of the final row
|
||
// of pixels before the trailing expanded region.
|
||
for (uint32_t i = iSize - kExpansionPerSide - 1; i >= kExpansionPerSide;
|
||
--i) {
|
||
const uint32_t col = aWM.IsVertical() ? b : i;
|
||
const uint32_t row = aWM.IsVertical() ? i : b;
|
||
const uint32_t index = col + row * wEx;
|
||
MOZ_ASSERT(index < (wEx * hEx),
|
||
"Our distance field index should be in-bounds.");
|
||
|
||
// Only apply the chamfer calculation if the df value is not
|
||
// already 0, since the chamfer can only reduce the value.
|
||
if (df[index]) {
|
||
if (aWM.IsVertical()) {
|
||
// Column-by-column, starting at the right, each column
|
||
// bottom-to-top.
|
||
// Forward-looking neighborhood distance from target pixel X
|
||
// with chamfer 5-7-11 looks like:
|
||
//
|
||
// +--+--+--+
|
||
// | |11| | +
|
||
// +--+--+--+ /|
|
||
// | | 7|11| A / |
|
||
// +--+--+--+ | / |
|
||
// | X| 5| | |/ |
|
||
// +--+--+--+ + |
|
||
// | 5| 7|11|
|
||
// +--+--+--+
|
||
// | |11| |
|
||
// +--+--+--+
|
||
//
|
||
// X should be set to the minimum of its current value and
|
||
// the values of all of the numbered neighbors summed with
|
||
// the value in that chamfer cell.
|
||
MOZ_ASSERT(index + wEx + 2 < (wEx * hEx) &&
|
||
index + (wEx * 2) + 1 < (wEx * hEx) &&
|
||
index - (wEx * 2) + 1 < (wEx * hEx),
|
||
"Our distance field most extreme indices should be "
|
||
"in-bounds.");
|
||
|
||
// clang-format off
|
||
df[index] = std::min<dfType>(df[index],
|
||
std::min<dfType>(df[index + wEx + 2] + 11,
|
||
std::min<dfType>(df[index - wEx + 2] + 11,
|
||
std::min<dfType>(df[index + (wEx * 2) + 1] + 11,
|
||
std::min<dfType>(df[index + wEx + 1] + 7,
|
||
std::min<dfType>(df[index + 1] + 5,
|
||
std::min<dfType>(df[index - wEx + 1] + 7,
|
||
std::min<dfType>(df[index - (wEx * 2) + 1] + 11,
|
||
df[index + wEx] + 5))))))));
|
||
// clang-format on
|
||
} else {
|
||
// Row-by-row, starting at the bottom, each row right-to-left.
|
||
// Forward-looking neighborhood distance from target pixel X
|
||
// with chamfer 5-7-11 looks like:
|
||
//
|
||
// +--+--+--+--+--+
|
||
// | | | X| 5| | <--+
|
||
// +--+--+--+--+--+ /
|
||
// |11| 7| 5| 7|11| /
|
||
// +--+--+--+--+--+ /
|
||
// | |11| |11| | +----
|
||
// +--+--+--+--+--+
|
||
//
|
||
// X should be set to the minimum of its current value and
|
||
// the values of all of the numbered neighbors summed with
|
||
// the value in that chamfer cell.
|
||
MOZ_ASSERT(index + (wEx * 2) + 1 < (wEx * hEx) &&
|
||
index + wEx + 2 < (wEx * hEx),
|
||
"Our distance field most extreme indices should be "
|
||
"in-bounds.");
|
||
|
||
// clang-format off
|
||
df[index] = std::min<dfType>(df[index],
|
||
std::min<dfType>(df[index + (wEx * 2) + 1] + 11,
|
||
std::min<dfType>(df[index + (wEx * 2) - 1] + 11,
|
||
std::min<dfType>(df[index + wEx + 2] + 11,
|
||
std::min<dfType>(df[index + wEx + 1] + 7,
|
||
std::min<dfType>(df[index + wEx] + 5,
|
||
std::min<dfType>(df[index + wEx - 1] + 7,
|
||
std::min<dfType>(df[index + wEx - 2] + 11,
|
||
df[index + 1] + 5))))))));
|
||
// clang-format on
|
||
}
|
||
}
|
||
|
||
// Finally, we can check the df value and see if it's less than
|
||
// or equal to the usedMargin5X value.
|
||
if (df[index] <= usedMargin5X) {
|
||
if (iMax == -1) {
|
||
iMax = i;
|
||
}
|
||
MOZ_ASSERT(iMin > (int32_t)i);
|
||
iMin = i;
|
||
}
|
||
}
|
||
|
||
if (iMax != -1) {
|
||
// Our interval values, iMin, iMax, and b are all calculated from
|
||
// the expanded region, which is based on the margin rect. To create
|
||
// our interval, we have to subtract kExpansionPerSide from (iMin,
|
||
// iMax, and b) to account for the expanded region edges. This
|
||
// produces coords that are relative to our margin-rect, so we pass
|
||
// in aMarginRect.TopLeft() to make CreateInterval convert to our
|
||
// container's coordinate space.
|
||
CreateInterval(iMin - kExpansionPerSide, iMax - kExpansionPerSide,
|
||
b - kExpansionPerSide, aAppUnitsPerDevPixel,
|
||
aMarginRect.TopLeft(), aWM, aContainerSize);
|
||
}
|
||
}
|
||
|
||
if (!aWM.IsVerticalRL()) {
|
||
// Anything other than vertical-rl or sideways-rl.
|
||
// Because we assembled our intervals on the bottom-up pass,
|
||
// they are reversed for most writing modes. Reverse them to
|
||
// keep the array sorted on the block direction.
|
||
mIntervals.Reverse();
|
||
}
|
||
}
|
||
|
||
if (!mIntervals.IsEmpty()) {
|
||
mBStart = mIntervals[0].Y();
|
||
mBEnd = mIntervals.LastElement().YMost();
|
||
}
|
||
}
|
||
|
||
void nsFloatManager::ImageShapeInfo::CreateInterval(
|
||
int32_t aIMin, int32_t aIMax, int32_t aB, int32_t aAppUnitsPerDevPixel,
|
||
const nsPoint& aOffsetFromContainer, WritingMode aWM,
|
||
const nsSize& aContainerSize) {
|
||
// Store an interval as an nsRect with our inline axis values stored in x
|
||
// and our block axis values stored in y. The position is dependent on
|
||
// the writing mode, but the size is the same for all writing modes.
|
||
|
||
// Size is the difference in inline axis edges stored as x, and one
|
||
// block axis pixel stored as y. For the inline axis, we add 1 to aIMax
|
||
// because we want to capture the far edge of the last pixel.
|
||
nsSize size(((aIMax + 1) - aIMin) * aAppUnitsPerDevPixel,
|
||
aAppUnitsPerDevPixel);
|
||
|
||
// Since we started our scanning of the image pixels from the top left,
|
||
// the interval position starts from the origin of the content rect,
|
||
// converted to logical coordinates.
|
||
nsPoint origin =
|
||
ConvertToFloatLogical(aOffsetFromContainer, aWM, aContainerSize);
|
||
|
||
// Depending on the writing mode, we now move the origin.
|
||
if (aWM.IsVerticalRL()) {
|
||
// vertical-rl or sideways-rl.
|
||
// These writing modes proceed from the top right, and each interval
|
||
// moves in a positive inline direction and negative block direction.
|
||
// That means that the intervals will be reversed after all have been
|
||
// constructed. We add 1 to aB to capture the end of the block axis pixel.
|
||
origin.MoveBy(aIMin * aAppUnitsPerDevPixel,
|
||
(aB + 1) * -aAppUnitsPerDevPixel);
|
||
} else if (aWM.IsSidewaysLR()) {
|
||
// This writing mode proceeds from the bottom left, and each interval
|
||
// moves in a negative inline direction and a positive block direction.
|
||
// We add 1 to aIMax to capture the end of the inline axis pixel.
|
||
origin.MoveBy((aIMax + 1) * -aAppUnitsPerDevPixel,
|
||
aB * aAppUnitsPerDevPixel);
|
||
} else {
|
||
// horizontal-tb or vertical-lr.
|
||
// These writing modes proceed from the top left and each interval
|
||
// moves in a positive step in both inline and block directions.
|
||
origin.MoveBy(aIMin * aAppUnitsPerDevPixel, aB * aAppUnitsPerDevPixel);
|
||
}
|
||
|
||
mIntervals.AppendElement(nsRect(origin, size));
|
||
}
|
||
|
||
nscoord nsFloatManager::ImageShapeInfo::LineLeft(const nscoord aBStart,
|
||
const nscoord aBEnd) const {
|
||
return LineEdge(mIntervals, aBStart, aBEnd, true);
|
||
}
|
||
|
||
nscoord nsFloatManager::ImageShapeInfo::LineRight(const nscoord aBStart,
|
||
const nscoord aBEnd) const {
|
||
return LineEdge(mIntervals, aBStart, aBEnd, false);
|
||
}
|
||
|
||
void nsFloatManager::ImageShapeInfo::Translate(nscoord aLineLeft,
|
||
nscoord aBlockStart) {
|
||
for (nsRect& interval : mIntervals) {
|
||
interval.MoveBy(aLineLeft, aBlockStart);
|
||
}
|
||
|
||
mBStart += aBlockStart;
|
||
mBEnd += aBlockStart;
|
||
}
|
||
|
||
/////////////////////////////////////////////////////////////////////////////
|
||
// FloatInfo
|
||
|
||
nsFloatManager::FloatInfo::FloatInfo(nsIFrame* aFrame, nscoord aLineLeft,
|
||
nscoord aBlockStart,
|
||
const LogicalRect& aMarginRect,
|
||
WritingMode aWM,
|
||
const nsSize& aContainerSize)
|
||
: mFrame(aFrame),
|
||
mLeftBEnd(nscoord_MIN),
|
||
mRightBEnd(nscoord_MIN),
|
||
mRect(ShapeInfo::ConvertToFloatLogical(aMarginRect, aWM, aContainerSize) +
|
||
nsPoint(aLineLeft, aBlockStart)) {
|
||
MOZ_COUNT_CTOR(nsFloatManager::FloatInfo);
|
||
using ShapeOutsideType = StyleShapeOutside::Tag;
|
||
|
||
if (IsEmpty()) {
|
||
// Per spec, a float area defined by a shape is clipped to the float’s
|
||
// margin box. Therefore, no need to create a shape info if the float's
|
||
// margin box is empty, since a float area can only be smaller than the
|
||
// margin box.
|
||
|
||
// https://drafts.csswg.org/css-shapes/#relation-to-box-model-and-float-behavior
|
||
return;
|
||
}
|
||
|
||
const nsStyleDisplay* styleDisplay = mFrame->StyleDisplay();
|
||
const auto& shapeOutside = styleDisplay->mShapeOutside;
|
||
|
||
nscoord shapeMargin = shapeOutside.IsNone()
|
||
? 0
|
||
: nsLayoutUtils::ResolveToLength<true>(
|
||
styleDisplay->mShapeMargin,
|
||
LogicalSize(aWM, aContainerSize).ISize(aWM));
|
||
|
||
switch (shapeOutside.tag) {
|
||
case ShapeOutsideType::None:
|
||
// No need to create shape info.
|
||
return;
|
||
|
||
case ShapeOutsideType::Image: {
|
||
float shapeImageThreshold = styleDisplay->mShapeImageThreshold;
|
||
mShapeInfo = ShapeInfo::CreateImageShape(
|
||
shapeOutside.AsImage(), shapeImageThreshold, shapeMargin, mFrame,
|
||
aMarginRect, aWM, aContainerSize);
|
||
if (!mShapeInfo) {
|
||
// Image is not ready, or fails to load, etc.
|
||
return;
|
||
}
|
||
|
||
break;
|
||
}
|
||
|
||
case ShapeOutsideType::Box: {
|
||
// Initialize <shape-box>'s reference rect.
|
||
LogicalRect shapeBoxRect = ShapeInfo::ComputeShapeBoxRect(
|
||
shapeOutside.AsBox(), mFrame, aMarginRect, aWM);
|
||
mShapeInfo = ShapeInfo::CreateShapeBox(mFrame, shapeMargin, shapeBoxRect,
|
||
aWM, aContainerSize);
|
||
break;
|
||
}
|
||
|
||
case ShapeOutsideType::Shape: {
|
||
const auto& shape = *shapeOutside.AsShape()._0;
|
||
// Initialize <shape-box>'s reference rect.
|
||
LogicalRect shapeBoxRect = ShapeInfo::ComputeShapeBoxRect(
|
||
shapeOutside.AsShape()._1, mFrame, aMarginRect, aWM);
|
||
mShapeInfo =
|
||
ShapeInfo::CreateBasicShape(shape, shapeMargin, mFrame, shapeBoxRect,
|
||
aMarginRect, aWM, aContainerSize);
|
||
break;
|
||
}
|
||
}
|
||
|
||
MOZ_ASSERT(mShapeInfo,
|
||
"All shape-outside values except none should have mShapeInfo!");
|
||
|
||
// Translate the shape to the same origin as nsFloatManager.
|
||
mShapeInfo->Translate(aLineLeft, aBlockStart);
|
||
}
|
||
|
||
#ifdef NS_BUILD_REFCNT_LOGGING
|
||
nsFloatManager::FloatInfo::FloatInfo(FloatInfo&& aOther)
|
||
: mFrame(std::move(aOther.mFrame)),
|
||
mLeftBEnd(std::move(aOther.mLeftBEnd)),
|
||
mRightBEnd(std::move(aOther.mRightBEnd)),
|
||
mRect(std::move(aOther.mRect)),
|
||
mShapeInfo(std::move(aOther.mShapeInfo)) {
|
||
MOZ_COUNT_CTOR(nsFloatManager::FloatInfo);
|
||
}
|
||
|
||
nsFloatManager::FloatInfo::~FloatInfo() {
|
||
MOZ_COUNT_DTOR(nsFloatManager::FloatInfo);
|
||
}
|
||
#endif
|
||
|
||
nscoord nsFloatManager::FloatInfo::LineLeft(ShapeType aShapeType,
|
||
const nscoord aBStart,
|
||
const nscoord aBEnd) const {
|
||
if (aShapeType == ShapeType::Margin) {
|
||
return LineLeft();
|
||
}
|
||
|
||
MOZ_ASSERT(aShapeType == ShapeType::ShapeOutside);
|
||
if (!mShapeInfo) {
|
||
return LineLeft();
|
||
}
|
||
// Clip the flow area to the margin-box because
|
||
// https://drafts.csswg.org/css-shapes-1/#relation-to-box-model-and-float-behavior
|
||
// says "When a shape is used to define a float area, the shape is clipped
|
||
// to the float’s margin box."
|
||
return std::max(LineLeft(), mShapeInfo->LineLeft(aBStart, aBEnd));
|
||
}
|
||
|
||
nscoord nsFloatManager::FloatInfo::LineRight(ShapeType aShapeType,
|
||
const nscoord aBStart,
|
||
const nscoord aBEnd) const {
|
||
if (aShapeType == ShapeType::Margin) {
|
||
return LineRight();
|
||
}
|
||
|
||
MOZ_ASSERT(aShapeType == ShapeType::ShapeOutside);
|
||
if (!mShapeInfo) {
|
||
return LineRight();
|
||
}
|
||
// Clip the flow area to the margin-box. See LineLeft().
|
||
return std::min(LineRight(), mShapeInfo->LineRight(aBStart, aBEnd));
|
||
}
|
||
|
||
nscoord nsFloatManager::FloatInfo::BStart(ShapeType aShapeType) const {
|
||
if (aShapeType == ShapeType::Margin) {
|
||
return BStart();
|
||
}
|
||
|
||
MOZ_ASSERT(aShapeType == ShapeType::ShapeOutside);
|
||
if (!mShapeInfo) {
|
||
return BStart();
|
||
}
|
||
// Clip the flow area to the margin-box. See LineLeft().
|
||
return std::max(BStart(), mShapeInfo->BStart());
|
||
}
|
||
|
||
nscoord nsFloatManager::FloatInfo::BEnd(ShapeType aShapeType) const {
|
||
if (aShapeType == ShapeType::Margin) {
|
||
return BEnd();
|
||
}
|
||
|
||
MOZ_ASSERT(aShapeType == ShapeType::ShapeOutside);
|
||
if (!mShapeInfo) {
|
||
return BEnd();
|
||
}
|
||
// Clip the flow area to the margin-box. See LineLeft().
|
||
return std::min(BEnd(), mShapeInfo->BEnd());
|
||
}
|
||
|
||
bool nsFloatManager::FloatInfo::IsEmpty(ShapeType aShapeType) const {
|
||
if (aShapeType == ShapeType::Margin) {
|
||
return IsEmpty();
|
||
}
|
||
|
||
MOZ_ASSERT(aShapeType == ShapeType::ShapeOutside);
|
||
if (!mShapeInfo) {
|
||
return IsEmpty();
|
||
}
|
||
return mShapeInfo->IsEmpty();
|
||
}
|
||
|
||
bool nsFloatManager::FloatInfo::MayNarrowInBlockDirection(
|
||
ShapeType aShapeType) const {
|
||
// This function mirrors the cases of the three argument versions of
|
||
// LineLeft() and LineRight(). This function returns true if and only if
|
||
// either of those functions could possibly return "narrower" values with
|
||
// increasing aBStart values. "Narrower" means closer to the far end of
|
||
// the float shape.
|
||
if (aShapeType == ShapeType::Margin) {
|
||
return false;
|
||
}
|
||
|
||
MOZ_ASSERT(aShapeType == ShapeType::ShapeOutside);
|
||
if (!mShapeInfo) {
|
||
return false;
|
||
}
|
||
|
||
return mShapeInfo->MayNarrowInBlockDirection();
|
||
}
|
||
|
||
/////////////////////////////////////////////////////////////////////////////
|
||
// ShapeInfo
|
||
|
||
/* static */
|
||
LogicalRect nsFloatManager::ShapeInfo::ComputeShapeBoxRect(
|
||
StyleShapeBox aBox, nsIFrame* const aFrame, const LogicalRect& aMarginRect,
|
||
WritingMode aWM) {
|
||
LogicalRect rect = aMarginRect;
|
||
|
||
switch (aBox) {
|
||
case StyleShapeBox::ContentBox:
|
||
rect.Deflate(aWM, aFrame->GetLogicalUsedPadding(aWM));
|
||
[[fallthrough]];
|
||
case StyleShapeBox::PaddingBox:
|
||
rect.Deflate(aWM, aFrame->GetLogicalUsedBorder(aWM));
|
||
[[fallthrough]];
|
||
case StyleShapeBox::BorderBox:
|
||
rect.Deflate(aWM, aFrame->GetLogicalUsedMargin(aWM));
|
||
break;
|
||
case StyleShapeBox::MarginBox:
|
||
// Do nothing. rect is already a margin rect.
|
||
break;
|
||
default:
|
||
MOZ_ASSERT_UNREACHABLE("Unknown shape box");
|
||
break;
|
||
}
|
||
|
||
return rect;
|
||
}
|
||
|
||
/* static */ UniquePtr<nsFloatManager::ShapeInfo>
|
||
nsFloatManager::ShapeInfo::CreateShapeBox(nsIFrame* const aFrame,
|
||
nscoord aShapeMargin,
|
||
const LogicalRect& aShapeBoxRect,
|
||
WritingMode aWM,
|
||
const nsSize& aContainerSize) {
|
||
nsRect logicalShapeBoxRect =
|
||
ConvertToFloatLogical(aShapeBoxRect, aWM, aContainerSize);
|
||
|
||
// Inflate logicalShapeBoxRect by aShapeMargin.
|
||
logicalShapeBoxRect.Inflate(aShapeMargin);
|
||
|
||
nscoord physicalRadii[8];
|
||
bool hasRadii = aFrame->GetShapeBoxBorderRadii(physicalRadii);
|
||
if (!hasRadii) {
|
||
return MakeUnique<RoundedBoxShapeInfo>(logicalShapeBoxRect,
|
||
UniquePtr<nscoord[]>());
|
||
}
|
||
|
||
// Add aShapeMargin to each of the radii.
|
||
for (nscoord& r : physicalRadii) {
|
||
r += aShapeMargin;
|
||
}
|
||
|
||
return MakeUnique<RoundedBoxShapeInfo>(
|
||
logicalShapeBoxRect, ConvertToFloatLogical(physicalRadii, aWM));
|
||
}
|
||
|
||
/* static */ UniquePtr<nsFloatManager::ShapeInfo>
|
||
nsFloatManager::ShapeInfo::CreateBasicShape(const StyleBasicShape& aBasicShape,
|
||
nscoord aShapeMargin,
|
||
nsIFrame* const aFrame,
|
||
const LogicalRect& aShapeBoxRect,
|
||
const LogicalRect& aMarginRect,
|
||
WritingMode aWM,
|
||
const nsSize& aContainerSize) {
|
||
switch (aBasicShape.tag) {
|
||
case StyleBasicShape::Tag::Polygon:
|
||
return CreatePolygon(aBasicShape, aShapeMargin, aFrame, aShapeBoxRect,
|
||
aMarginRect, aWM, aContainerSize);
|
||
case StyleBasicShape::Tag::Circle:
|
||
case StyleBasicShape::Tag::Ellipse:
|
||
return CreateCircleOrEllipse(aBasicShape, aShapeMargin, aFrame,
|
||
aShapeBoxRect, aWM, aContainerSize);
|
||
case StyleBasicShape::Tag::Inset:
|
||
return CreateInset(aBasicShape, aShapeMargin, aFrame, aShapeBoxRect, aWM,
|
||
aContainerSize);
|
||
}
|
||
return nullptr;
|
||
}
|
||
|
||
/* static */ UniquePtr<nsFloatManager::ShapeInfo>
|
||
nsFloatManager::ShapeInfo::CreateInset(const StyleBasicShape& aBasicShape,
|
||
nscoord aShapeMargin, nsIFrame* aFrame,
|
||
const LogicalRect& aShapeBoxRect,
|
||
WritingMode aWM,
|
||
const nsSize& aContainerSize) {
|
||
// Use physical coordinates to compute inset() because the top, right,
|
||
// bottom and left offsets are physical.
|
||
// https://drafts.csswg.org/css-shapes-1/#funcdef-inset
|
||
nsRect physicalShapeBoxRect =
|
||
aShapeBoxRect.GetPhysicalRect(aWM, aContainerSize);
|
||
nsRect insetRect =
|
||
ShapeUtils::ComputeInsetRect(aBasicShape, physicalShapeBoxRect);
|
||
|
||
nsRect logicalInsetRect = ConvertToFloatLogical(
|
||
LogicalRect(aWM, insetRect, aContainerSize), aWM, aContainerSize);
|
||
nscoord physicalRadii[8];
|
||
bool hasRadii = ShapeUtils::ComputeInsetRadii(
|
||
aBasicShape, physicalShapeBoxRect, physicalRadii);
|
||
|
||
// With a zero shape-margin, we will be able to use the fast constructor.
|
||
if (aShapeMargin == 0) {
|
||
if (!hasRadii) {
|
||
return MakeUnique<RoundedBoxShapeInfo>(logicalInsetRect,
|
||
UniquePtr<nscoord[]>());
|
||
}
|
||
return MakeUnique<RoundedBoxShapeInfo>(
|
||
logicalInsetRect, ConvertToFloatLogical(physicalRadii, aWM));
|
||
}
|
||
|
||
// With a positive shape-margin, we might still be able to use the fast
|
||
// constructor. With no radii, we can build a rounded box by inflating
|
||
// logicalInsetRect, and supplying aShapeMargin as the radius for all
|
||
// corners.
|
||
if (!hasRadii) {
|
||
logicalInsetRect.Inflate(aShapeMargin);
|
||
auto logicalRadii = MakeUnique<nscoord[]>(8);
|
||
for (int32_t i = 0; i < 8; ++i) {
|
||
logicalRadii[i] = aShapeMargin;
|
||
}
|
||
return MakeUnique<RoundedBoxShapeInfo>(logicalInsetRect,
|
||
std::move(logicalRadii));
|
||
}
|
||
|
||
// If we have radii, and they have balanced/equal corners, we can inflate
|
||
// both logicalInsetRect and all the radii and use the fast constructor.
|
||
if (RoundedBoxShapeInfo::EachCornerHasBalancedRadii(physicalRadii)) {
|
||
logicalInsetRect.Inflate(aShapeMargin);
|
||
for (nscoord& r : physicalRadii) {
|
||
r += aShapeMargin;
|
||
}
|
||
return MakeUnique<RoundedBoxShapeInfo>(
|
||
logicalInsetRect, ConvertToFloatLogical(physicalRadii, aWM));
|
||
}
|
||
|
||
// With positive shape-margin and elliptical radii, we have to use the
|
||
// slow constructor.
|
||
nsDeviceContext* dc = aFrame->PresContext()->DeviceContext();
|
||
int32_t appUnitsPerDevPixel = dc->AppUnitsPerDevPixel();
|
||
return MakeUnique<RoundedBoxShapeInfo>(
|
||
logicalInsetRect, ConvertToFloatLogical(physicalRadii, aWM), aShapeMargin,
|
||
appUnitsPerDevPixel);
|
||
}
|
||
|
||
/* static */ UniquePtr<nsFloatManager::ShapeInfo>
|
||
nsFloatManager::ShapeInfo::CreateCircleOrEllipse(
|
||
const StyleBasicShape& aBasicShape, nscoord aShapeMargin,
|
||
nsIFrame* const aFrame, const LogicalRect& aShapeBoxRect, WritingMode aWM,
|
||
const nsSize& aContainerSize) {
|
||
// Use physical coordinates to compute the center of circle() or ellipse()
|
||
// since the <position> keywords such as 'left', 'top', etc. are physical.
|
||
// https://drafts.csswg.org/css-shapes-1/#funcdef-ellipse
|
||
nsRect physicalShapeBoxRect =
|
||
aShapeBoxRect.GetPhysicalRect(aWM, aContainerSize);
|
||
nsPoint physicalCenter = ShapeUtils::ComputeCircleOrEllipseCenter(
|
||
aBasicShape, physicalShapeBoxRect);
|
||
nsPoint logicalCenter =
|
||
ConvertToFloatLogical(physicalCenter, aWM, aContainerSize);
|
||
|
||
// Compute the circle or ellipse radii.
|
||
nsSize radii;
|
||
if (aBasicShape.IsCircle()) {
|
||
nscoord radius = ShapeUtils::ComputeCircleRadius(
|
||
aBasicShape, physicalCenter, physicalShapeBoxRect);
|
||
// Circles can use the three argument, math constructor for
|
||
// EllipseShapeInfo.
|
||
radii = nsSize(radius, radius);
|
||
return MakeUnique<EllipseShapeInfo>(logicalCenter, radii, aShapeMargin);
|
||
}
|
||
|
||
MOZ_ASSERT(aBasicShape.IsEllipse());
|
||
nsSize physicalRadii = ShapeUtils::ComputeEllipseRadii(
|
||
aBasicShape, physicalCenter, physicalShapeBoxRect);
|
||
LogicalSize logicalRadii(aWM, physicalRadii);
|
||
radii = nsSize(logicalRadii.ISize(aWM), logicalRadii.BSize(aWM));
|
||
|
||
// If radii are close to the same value, or if aShapeMargin is small
|
||
// enough (as specified in css pixels), then we can use the three argument
|
||
// constructor for EllipseShapeInfo, which uses math for a more efficient
|
||
// method of float area computation.
|
||
if (EllipseShapeInfo::ShapeMarginIsNegligible(aShapeMargin) ||
|
||
EllipseShapeInfo::RadiiAreRoughlyEqual(radii)) {
|
||
return MakeUnique<EllipseShapeInfo>(logicalCenter, radii, aShapeMargin);
|
||
}
|
||
|
||
// We have to use the full constructor for EllipseShapeInfo. This
|
||
// computes the float area using a rasterization method.
|
||
nsDeviceContext* dc = aFrame->PresContext()->DeviceContext();
|
||
int32_t appUnitsPerDevPixel = dc->AppUnitsPerDevPixel();
|
||
return MakeUnique<EllipseShapeInfo>(logicalCenter, radii, aShapeMargin,
|
||
appUnitsPerDevPixel);
|
||
}
|
||
|
||
/* static */ UniquePtr<nsFloatManager::ShapeInfo>
|
||
nsFloatManager::ShapeInfo::CreatePolygon(const StyleBasicShape& aBasicShape,
|
||
nscoord aShapeMargin,
|
||
nsIFrame* const aFrame,
|
||
const LogicalRect& aShapeBoxRect,
|
||
const LogicalRect& aMarginRect,
|
||
WritingMode aWM,
|
||
const nsSize& aContainerSize) {
|
||
// Use physical coordinates to compute each (xi, yi) vertex because CSS
|
||
// represents them using physical coordinates.
|
||
// https://drafts.csswg.org/css-shapes-1/#funcdef-polygon
|
||
nsRect physicalShapeBoxRect =
|
||
aShapeBoxRect.GetPhysicalRect(aWM, aContainerSize);
|
||
|
||
// Get physical vertices.
|
||
nsTArray<nsPoint> vertices =
|
||
ShapeUtils::ComputePolygonVertices(aBasicShape, physicalShapeBoxRect);
|
||
|
||
// Convert all the physical vertices to logical.
|
||
for (nsPoint& vertex : vertices) {
|
||
vertex = ConvertToFloatLogical(vertex, aWM, aContainerSize);
|
||
}
|
||
|
||
if (aShapeMargin == 0) {
|
||
return MakeUnique<PolygonShapeInfo>(std::move(vertices));
|
||
}
|
||
|
||
nsRect marginRect = ConvertToFloatLogical(aMarginRect, aWM, aContainerSize);
|
||
|
||
// We have to use the full constructor for PolygonShapeInfo. This
|
||
// computes the float area using a rasterization method.
|
||
int32_t appUnitsPerDevPixel = aFrame->PresContext()->AppUnitsPerDevPixel();
|
||
return MakeUnique<PolygonShapeInfo>(std::move(vertices), aShapeMargin,
|
||
appUnitsPerDevPixel, marginRect);
|
||
}
|
||
|
||
/* static */ UniquePtr<nsFloatManager::ShapeInfo>
|
||
nsFloatManager::ShapeInfo::CreateImageShape(const StyleImage& aShapeImage,
|
||
float aShapeImageThreshold,
|
||
nscoord aShapeMargin,
|
||
nsIFrame* const aFrame,
|
||
const LogicalRect& aMarginRect,
|
||
WritingMode aWM,
|
||
const nsSize& aContainerSize) {
|
||
MOZ_ASSERT(&aShapeImage == &aFrame->StyleDisplay()->mShapeOutside.AsImage(),
|
||
"aFrame should be the frame that we got aShapeImage from");
|
||
|
||
nsImageRenderer imageRenderer(aFrame, &aShapeImage,
|
||
nsImageRenderer::FLAG_SYNC_DECODE_IMAGES);
|
||
|
||
if (!imageRenderer.PrepareImage()) {
|
||
// The image is not ready yet. Boost its loading priority since it will
|
||
// affect layout.
|
||
if (imgRequestProxy* req = aShapeImage.GetImageRequest()) {
|
||
req->BoostPriority(imgIRequest::CATEGORY_SIZE_QUERY);
|
||
}
|
||
return nullptr;
|
||
}
|
||
|
||
nsRect contentRect = aFrame->GetContentRect();
|
||
|
||
// Create a draw target and draw shape image on it.
|
||
nsDeviceContext* dc = aFrame->PresContext()->DeviceContext();
|
||
int32_t appUnitsPerDevPixel = dc->AppUnitsPerDevPixel();
|
||
LayoutDeviceIntSize contentSizeInDevPixels =
|
||
LayoutDeviceIntSize::FromAppUnitsRounded(contentRect.Size(),
|
||
appUnitsPerDevPixel);
|
||
|
||
// Use empty CSSSizeOrRatio to force set the preferred size as the frame's
|
||
// content box size.
|
||
imageRenderer.SetPreferredSize(CSSSizeOrRatio(), contentRect.Size());
|
||
|
||
RefPtr<gfx::DrawTarget> drawTarget =
|
||
gfxPlatform::GetPlatform()->CreateOffscreenCanvasDrawTarget(
|
||
contentSizeInDevPixels.ToUnknownSize(), gfx::SurfaceFormat::A8);
|
||
if (!drawTarget) {
|
||
return nullptr;
|
||
}
|
||
|
||
RefPtr<gfxContext> context = gfxContext::CreateOrNull(drawTarget);
|
||
MOZ_ASSERT(context); // already checked the target above
|
||
|
||
ImgDrawResult result =
|
||
imageRenderer.DrawShapeImage(aFrame->PresContext(), *context);
|
||
|
||
if (result != ImgDrawResult::SUCCESS) {
|
||
return nullptr;
|
||
}
|
||
|
||
// Retrieve the pixel image buffer to create the image shape info.
|
||
RefPtr<SourceSurface> sourceSurface = drawTarget->Snapshot();
|
||
RefPtr<DataSourceSurface> dataSourceSurface = sourceSurface->GetDataSurface();
|
||
DataSourceSurface::ScopedMap map(dataSourceSurface, DataSourceSurface::READ);
|
||
|
||
if (!map.IsMapped()) {
|
||
return nullptr;
|
||
}
|
||
|
||
MOZ_ASSERT(sourceSurface->GetSize() == contentSizeInDevPixels.ToUnknownSize(),
|
||
"Who changes the size?");
|
||
|
||
nsRect marginRect = aMarginRect.GetPhysicalRect(aWM, aContainerSize);
|
||
|
||
uint8_t* alphaPixels = map.GetData();
|
||
int32_t stride = map.GetStride();
|
||
|
||
// NOTE: ImageShapeInfo constructor does not keep a persistent copy of
|
||
// alphaPixels; it's only used during the constructor to compute pixel ranges.
|
||
return MakeUnique<ImageShapeInfo>(alphaPixels, stride, contentSizeInDevPixels,
|
||
appUnitsPerDevPixel, aShapeImageThreshold,
|
||
aShapeMargin, contentRect, marginRect, aWM,
|
||
aContainerSize);
|
||
}
|
||
|
||
/* static */
|
||
nscoord nsFloatManager::ShapeInfo::ComputeEllipseLineInterceptDiff(
|
||
const nscoord aShapeBoxBStart, const nscoord aShapeBoxBEnd,
|
||
const nscoord aBStartCornerRadiusL, const nscoord aBStartCornerRadiusB,
|
||
const nscoord aBEndCornerRadiusL, const nscoord aBEndCornerRadiusB,
|
||
const nscoord aBandBStart, const nscoord aBandBEnd) {
|
||
// An example for the band intersecting with the top right corner of an
|
||
// ellipse with writing-mode horizontal-tb.
|
||
//
|
||
// lineIntercept lineDiff
|
||
// | |
|
||
// +---------------------------------|-------|-+---- aShapeBoxBStart
|
||
// | ##########^ | | |
|
||
// | ##############|#### | | |
|
||
// +---------#################|######|-------|-+---- aBandBStart
|
||
// | ###################|######|## | |
|
||
// | aBStartCornerRadiusB |######|### | |
|
||
// | ######################|######|##### | |
|
||
// +---#######################|<-----------><->^---- aBandBEnd
|
||
// | ########################|############## |
|
||
// | ########################|############## |---- b
|
||
// | #########################|############### |
|
||
// | ######################## v<-------------->v
|
||
// |###################### aBStartCornerRadiusL|
|
||
// |###########################################|
|
||
// |###########################################|
|
||
// |###########################################|
|
||
// |###########################################|
|
||
// | ######################################### |
|
||
// | ######################################### |
|
||
// | ####################################### |
|
||
// | ####################################### |
|
||
// | ##################################### |
|
||
// | ################################### |
|
||
// | ############################### |
|
||
// | ############################# |
|
||
// | ######################### |
|
||
// | ################### |
|
||
// | ########### |
|
||
// +-------------------------------------------+----- aShapeBoxBEnd
|
||
|
||
NS_ASSERTION(aShapeBoxBStart <= aShapeBoxBEnd, "Bad shape box coordinates!");
|
||
NS_ASSERTION(aBandBStart <= aBandBEnd, "Bad band coordinates!");
|
||
|
||
nscoord lineDiff = 0;
|
||
|
||
// If the band intersects both the block-start and block-end corners, we
|
||
// don't need to enter either branch because the correct lineDiff is 0.
|
||
if (aBStartCornerRadiusB > 0 && aBandBEnd >= aShapeBoxBStart &&
|
||
aBandBEnd <= aShapeBoxBStart + aBStartCornerRadiusB) {
|
||
// The band intersects only the block-start corner.
|
||
nscoord b = aBStartCornerRadiusB - (aBandBEnd - aShapeBoxBStart);
|
||
nscoord lineIntercept =
|
||
XInterceptAtY(b, aBStartCornerRadiusL, aBStartCornerRadiusB);
|
||
lineDiff = aBStartCornerRadiusL - lineIntercept;
|
||
} else if (aBEndCornerRadiusB > 0 &&
|
||
aBandBStart >= aShapeBoxBEnd - aBEndCornerRadiusB &&
|
||
aBandBStart <= aShapeBoxBEnd) {
|
||
// The band intersects only the block-end corner.
|
||
nscoord b = aBEndCornerRadiusB - (aShapeBoxBEnd - aBandBStart);
|
||
nscoord lineIntercept =
|
||
XInterceptAtY(b, aBEndCornerRadiusL, aBEndCornerRadiusB);
|
||
lineDiff = aBEndCornerRadiusL - lineIntercept;
|
||
}
|
||
|
||
return lineDiff;
|
||
}
|
||
|
||
/* static */
|
||
nscoord nsFloatManager::ShapeInfo::XInterceptAtY(const nscoord aY,
|
||
const nscoord aRadiusX,
|
||
const nscoord aRadiusY) {
|
||
// Solve for x in the ellipse equation (x/radiusX)^2 + (y/radiusY)^2 = 1.
|
||
MOZ_ASSERT(aRadiusY > 0);
|
||
return aRadiusX * std::sqrt(1 - (aY * aY) / double(aRadiusY * aRadiusY));
|
||
}
|
||
|
||
/* static */
|
||
nsPoint nsFloatManager::ShapeInfo::ConvertToFloatLogical(
|
||
const nsPoint& aPoint, WritingMode aWM, const nsSize& aContainerSize) {
|
||
LogicalPoint logicalPoint(aWM, aPoint, aContainerSize);
|
||
return nsPoint(logicalPoint.LineRelative(aWM, aContainerSize),
|
||
logicalPoint.B(aWM));
|
||
}
|
||
|
||
/* static */ UniquePtr<nscoord[]>
|
||
nsFloatManager::ShapeInfo::ConvertToFloatLogical(const nscoord aRadii[8],
|
||
WritingMode aWM) {
|
||
UniquePtr<nscoord[]> logicalRadii(new nscoord[8]);
|
||
|
||
// Get the physical side for line-left and line-right since border radii
|
||
// are on the physical axis.
|
||
Side lineLeftSide =
|
||
aWM.PhysicalSide(aWM.LogicalSideForLineRelativeDir(eLineRelativeDirLeft));
|
||
logicalRadii[eCornerTopLeftX] =
|
||
aRadii[SideToHalfCorner(lineLeftSide, true, false)];
|
||
logicalRadii[eCornerTopLeftY] =
|
||
aRadii[SideToHalfCorner(lineLeftSide, true, true)];
|
||
logicalRadii[eCornerBottomLeftX] =
|
||
aRadii[SideToHalfCorner(lineLeftSide, false, false)];
|
||
logicalRadii[eCornerBottomLeftY] =
|
||
aRadii[SideToHalfCorner(lineLeftSide, false, true)];
|
||
|
||
Side lineRightSide = aWM.PhysicalSide(
|
||
aWM.LogicalSideForLineRelativeDir(eLineRelativeDirRight));
|
||
logicalRadii[eCornerTopRightX] =
|
||
aRadii[SideToHalfCorner(lineRightSide, false, false)];
|
||
logicalRadii[eCornerTopRightY] =
|
||
aRadii[SideToHalfCorner(lineRightSide, false, true)];
|
||
logicalRadii[eCornerBottomRightX] =
|
||
aRadii[SideToHalfCorner(lineRightSide, true, false)];
|
||
logicalRadii[eCornerBottomRightY] =
|
||
aRadii[SideToHalfCorner(lineRightSide, true, true)];
|
||
|
||
if (aWM.IsLineInverted()) {
|
||
// When IsLineInverted() is true, i.e. aWM is vertical-lr,
|
||
// line-over/line-under are inverted from block-start/block-end. So the
|
||
// relationship reverses between which corner comes first going
|
||
// clockwise, and which corner is block-start versus block-end. We need
|
||
// to swap the values stored in top and bottom corners.
|
||
std::swap(logicalRadii[eCornerTopLeftX], logicalRadii[eCornerBottomLeftX]);
|
||
std::swap(logicalRadii[eCornerTopLeftY], logicalRadii[eCornerBottomLeftY]);
|
||
std::swap(logicalRadii[eCornerTopRightX],
|
||
logicalRadii[eCornerBottomRightX]);
|
||
std::swap(logicalRadii[eCornerTopRightY],
|
||
logicalRadii[eCornerBottomRightY]);
|
||
}
|
||
|
||
return logicalRadii;
|
||
}
|
||
|
||
/* static */
|
||
size_t nsFloatManager::ShapeInfo::MinIntervalIndexContainingY(
|
||
const nsTArray<nsRect>& aIntervals, const nscoord aTargetY) {
|
||
// Perform a binary search to find the minimum index of an interval
|
||
// that contains aTargetY. If no such interval exists, return a value
|
||
// equal to the number of intervals.
|
||
size_t startIdx = 0;
|
||
size_t endIdx = aIntervals.Length();
|
||
while (startIdx < endIdx) {
|
||
size_t midIdx = startIdx + (endIdx - startIdx) / 2;
|
||
if (aIntervals[midIdx].ContainsY(aTargetY)) {
|
||
return midIdx;
|
||
}
|
||
nscoord midY = aIntervals[midIdx].Y();
|
||
if (midY < aTargetY) {
|
||
startIdx = midIdx + 1;
|
||
} else {
|
||
endIdx = midIdx;
|
||
}
|
||
}
|
||
|
||
return endIdx;
|
||
}
|
||
|
||
/* static */
|
||
nscoord nsFloatManager::ShapeInfo::LineEdge(const nsTArray<nsRect>& aIntervals,
|
||
const nscoord aBStart,
|
||
const nscoord aBEnd,
|
||
bool aIsLineLeft) {
|
||
MOZ_ASSERT(aBStart <= aBEnd,
|
||
"The band's block start is greater than its block end?");
|
||
|
||
// Find all the intervals whose rects overlap the aBStart to
|
||
// aBEnd range, and find the most constraining inline edge
|
||
// depending on the value of aLeft.
|
||
|
||
// Since the intervals are stored in block-axis order, we need
|
||
// to find the first interval that overlaps aBStart and check
|
||
// succeeding intervals until we get past aBEnd.
|
||
|
||
nscoord lineEdge = aIsLineLeft ? nscoord_MAX : nscoord_MIN;
|
||
|
||
size_t intervalCount = aIntervals.Length();
|
||
for (size_t i = MinIntervalIndexContainingY(aIntervals, aBStart);
|
||
i < intervalCount; ++i) {
|
||
// We can always get the bCoord from the intervals' mLineLeft,
|
||
// since the y() coordinate is duplicated in both points in the
|
||
// interval.
|
||
auto& interval = aIntervals[i];
|
||
nscoord bCoord = interval.Y();
|
||
if (bCoord >= aBEnd) {
|
||
break;
|
||
}
|
||
// Get the edge from the interval point indicated by aLeft.
|
||
if (aIsLineLeft) {
|
||
lineEdge = std::min(lineEdge, interval.X());
|
||
} else {
|
||
lineEdge = std::max(lineEdge, interval.XMost());
|
||
}
|
||
}
|
||
|
||
return lineEdge;
|
||
}
|
||
|
||
/* static */ nsFloatManager::ShapeInfo::dfType
|
||
nsFloatManager::ShapeInfo::CalcUsedShapeMargin5X(nscoord aShapeMargin,
|
||
int32_t aAppUnitsPerDevPixel) {
|
||
// Our distance field has to be able to hold values equal to the
|
||
// maximum shape-margin value that we care about faithfully rendering,
|
||
// times 5. A 16-bit unsigned int can represent up to ~ 65K which means
|
||
// we can handle a margin up to ~ 13K device pixels. That's good enough
|
||
// for practical usage. Any supplied shape-margin value higher than this
|
||
// maximum will be clamped.
|
||
static const float MAX_MARGIN_5X_FLOAT = (float)MAX_MARGIN_5X;
|
||
|
||
// Convert aShapeMargin to dev pixels, convert that into 5x-dev-pixel
|
||
// space, then clamp to MAX_MARGIN_5X_FLOAT.
|
||
float shapeMarginDevPixels5X =
|
||
5.0f * NSAppUnitsToFloatPixels(aShapeMargin, aAppUnitsPerDevPixel);
|
||
NS_WARNING_ASSERTION(shapeMarginDevPixels5X <= MAX_MARGIN_5X_FLOAT,
|
||
"shape-margin is too large and is being clamped.");
|
||
|
||
// We calculate a minimum in float space, which takes care of any overflow
|
||
// or infinity that may have occurred earlier from multiplication of
|
||
// too-large aShapeMargin values.
|
||
float usedMargin5XFloat =
|
||
std::min(shapeMarginDevPixels5X, MAX_MARGIN_5X_FLOAT);
|
||
return (dfType)NSToIntRound(usedMargin5XFloat);
|
||
}
|
||
|
||
//----------------------------------------------------------------------
|
||
|
||
nsAutoFloatManager::~nsAutoFloatManager() {
|
||
// Restore the old float manager in the reflow input if necessary.
|
||
if (mNew) {
|
||
#ifdef DEBUG
|
||
if (nsBlockFrame::gNoisyFloatManager) {
|
||
printf("restoring old float manager %p\n", mOld);
|
||
}
|
||
#endif
|
||
|
||
mReflowInput.mFloatManager = mOld;
|
||
|
||
#ifdef DEBUG
|
||
if (nsBlockFrame::gNoisyFloatManager) {
|
||
if (mOld) {
|
||
mReflowInput.mFrame->ListTag(stdout);
|
||
printf(": float manager %p after reflow\n", mOld);
|
||
mOld->List(stdout);
|
||
}
|
||
}
|
||
#endif
|
||
}
|
||
}
|
||
|
||
void nsAutoFloatManager::CreateFloatManager(nsPresContext* aPresContext) {
|
||
MOZ_ASSERT(!mNew, "Redundant call to CreateFloatManager!");
|
||
|
||
// Create a new float manager and install it in the reflow
|
||
// input. `Remember' the old float manager so we can restore it
|
||
// later.
|
||
mNew = MakeUnique<nsFloatManager>(aPresContext->PresShell(),
|
||
mReflowInput.GetWritingMode());
|
||
|
||
#ifdef DEBUG
|
||
if (nsBlockFrame::gNoisyFloatManager) {
|
||
printf("constructed new float manager %p (replacing %p)\n", mNew.get(),
|
||
mReflowInput.mFloatManager);
|
||
}
|
||
#endif
|
||
|
||
// Set the float manager in the existing reflow input.
|
||
mOld = mReflowInput.mFloatManager;
|
||
mReflowInput.mFloatManager = mNew.get();
|
||
}
|