gecko-dev/gfx/thebes/gfxHarfBuzzShaper.cpp
Birunthan Mohanathas 690e6fe38b Bug 1235261 - Part 3: Switch remaining uses of AutoFallibleTArray to AutoTArray. r=froydnj
This is effectively a no-op because the affected array operations already use
`mozilla::fallible`.
2016-02-02 17:36:30 +02:00

1857 lines
67 KiB
C++

/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "nsString.h"
#include "gfxContext.h"
#include "gfxFontConstants.h"
#include "gfxHarfBuzzShaper.h"
#include "gfxFontUtils.h"
#include "gfxTextRun.h"
#include "mozilla/Snprintf.h"
#include "nsUnicodeProperties.h"
#include "nsUnicodeScriptCodes.h"
#include "nsUnicodeNormalizer.h"
#include "harfbuzz/hb.h"
#include "harfbuzz/hb-ot.h"
#if ENABLE_INTL_API // ICU is available: we'll use it for Unicode composition
// and decomposition in preference to nsUnicodeNormalizer.
#include "unicode/unorm.h"
#include "unicode/utext.h"
#define MOZ_HB_SHAPER_USE_ICU_NORMALIZATION 1
static const UNormalizer2 * sNormalizer = nullptr;
#else
#undef MOZ_HB_SHAPER_USE_ICU_NORMALIZATION
#endif
#include <algorithm>
#define FloatToFixed(f) (65536 * (f))
#define FixedToFloat(f) ((f) * (1.0 / 65536.0))
// Right shifts of negative (signed) integers are undefined, as are overflows
// when converting unsigned to negative signed integers.
// (If speed were an issue we could make some 2's complement assumptions.)
#define FixedToIntRound(f) ((f) > 0 ? ((32768 + (f)) >> 16) \
: -((32767 - (f)) >> 16))
using namespace mozilla; // for AutoSwap_* types
using namespace mozilla::unicode; // for Unicode property lookup
/*
* Creation and destruction; on deletion, release any font tables we're holding
*/
gfxHarfBuzzShaper::gfxHarfBuzzShaper(gfxFont *aFont)
: gfxFontShaper(aFont),
mHBFace(aFont->GetFontEntry()->GetHBFace()),
mHBFont(nullptr),
mKernTable(nullptr),
mHmtxTable(nullptr),
mVmtxTable(nullptr),
mVORGTable(nullptr),
mLocaTable(nullptr),
mGlyfTable(nullptr),
mCmapTable(nullptr),
mCmapFormat(-1),
mSubtableOffset(0),
mUVSTableOffset(0),
mNumLongHMetrics(0),
mNumLongVMetrics(0),
mUseFontGetGlyph(aFont->ProvidesGetGlyph()),
mUseFontGlyphWidths(false),
mInitialized(false),
mVerticalInitialized(false),
mLoadedLocaGlyf(false),
mLocaLongOffsets(false)
{
}
gfxHarfBuzzShaper::~gfxHarfBuzzShaper()
{
if (mCmapTable) {
hb_blob_destroy(mCmapTable);
}
if (mHmtxTable) {
hb_blob_destroy(mHmtxTable);
}
if (mKernTable) {
hb_blob_destroy(mKernTable);
}
if (mVmtxTable) {
hb_blob_destroy(mVmtxTable);
}
if (mVORGTable) {
hb_blob_destroy(mVORGTable);
}
if (mLocaTable) {
hb_blob_destroy(mLocaTable);
}
if (mGlyfTable) {
hb_blob_destroy(mGlyfTable);
}
if (mHBFont) {
hb_font_destroy(mHBFont);
}
if (mHBFace) {
hb_face_destroy(mHBFace);
}
}
#define UNICODE_BMP_LIMIT 0x10000
hb_codepoint_t
gfxHarfBuzzShaper::GetGlyph(hb_codepoint_t unicode,
hb_codepoint_t variation_selector) const
{
hb_codepoint_t gid = 0;
if (mUseFontGetGlyph) {
gid = mFont->GetGlyph(unicode, variation_selector);
} else {
// we only instantiate a harfbuzz shaper if there's a cmap available
NS_ASSERTION(mFont->GetFontEntry()->HasCmapTable(),
"we cannot be using this font!");
NS_ASSERTION(mCmapTable && (mCmapFormat > 0) && (mSubtableOffset > 0),
"cmap data not correctly set up, expect disaster");
const uint8_t* data =
(const uint8_t*)hb_blob_get_data(mCmapTable, nullptr);
if (variation_selector) {
if (mUVSTableOffset) {
gid =
gfxFontUtils::MapUVSToGlyphFormat14(data + mUVSTableOffset,
unicode,
variation_selector);
}
if (!gid) {
uint32_t compat =
gfxFontUtils::GetUVSFallback(unicode, variation_selector);
if (compat) {
switch (mCmapFormat) {
case 4:
if (compat < UNICODE_BMP_LIMIT) {
gid = gfxFontUtils::MapCharToGlyphFormat4(data + mSubtableOffset,
compat);
}
break;
case 10:
gid = gfxFontUtils::MapCharToGlyphFormat10(data + mSubtableOffset,
compat);
break;
case 12:
gid = gfxFontUtils::MapCharToGlyphFormat12(data + mSubtableOffset,
compat);
break;
}
}
}
// If the variation sequence was not supported, return zero here;
// harfbuzz will call us again for the base character alone
return gid;
}
switch (mCmapFormat) {
case 4:
gid = unicode < UNICODE_BMP_LIMIT ?
gfxFontUtils::MapCharToGlyphFormat4(data + mSubtableOffset,
unicode) : 0;
break;
case 10:
gid = gfxFontUtils::MapCharToGlyphFormat10(data + mSubtableOffset,
unicode);
break;
case 12:
gid = gfxFontUtils::MapCharToGlyphFormat12(data + mSubtableOffset,
unicode);
break;
default:
NS_WARNING("unsupported cmap format, glyphs will be missing");
break;
}
}
if (!gid) {
// if there's no glyph for &nbsp;, just use the space glyph instead
if (unicode == 0xA0) {
gid = mFont->GetSpaceGlyph();
}
}
return gid;
}
static int
VertFormsGlyphCompare(const void* aKey, const void* aElem)
{
return int(*((hb_codepoint_t*)(aKey))) - int(*((uint16_t*)(aElem)));
}
// Return a vertical presentation-form codepoint corresponding to the
// given Unicode value, or 0 if no such form is available.
static hb_codepoint_t
GetVerticalPresentationForm(hb_codepoint_t unicode)
{
static const uint16_t sVerticalForms[][2] = {
{ 0x2013, 0xfe32 }, // EN DASH
{ 0x2014, 0xfe31 }, // EM DASH
{ 0x2025, 0xfe30 }, // TWO DOT LEADER
{ 0x2026, 0xfe19 }, // HORIZONTAL ELLIPSIS
{ 0x3001, 0xfe11 }, // IDEOGRAPHIC COMMA
{ 0x3002, 0xfe12 }, // IDEOGRAPHIC FULL STOP
{ 0x3008, 0xfe3f }, // LEFT ANGLE BRACKET
{ 0x3009, 0xfe40 }, // RIGHT ANGLE BRACKET
{ 0x300a, 0xfe3d }, // LEFT DOUBLE ANGLE BRACKET
{ 0x300b, 0xfe3e }, // RIGHT DOUBLE ANGLE BRACKET
{ 0x300c, 0xfe41 }, // LEFT CORNER BRACKET
{ 0x300d, 0xfe42 }, // RIGHT CORNER BRACKET
{ 0x300e, 0xfe43 }, // LEFT WHITE CORNER BRACKET
{ 0x300f, 0xfe44 }, // RIGHT WHITE CORNER BRACKET
{ 0x3010, 0xfe3b }, // LEFT BLACK LENTICULAR BRACKET
{ 0x3011, 0xfe3c }, // RIGHT BLACK LENTICULAR BRACKET
{ 0x3014, 0xfe39 }, // LEFT TORTOISE SHELL BRACKET
{ 0x3015, 0xfe3a }, // RIGHT TORTOISE SHELL BRACKET
{ 0x3016, 0xfe17 }, // LEFT WHITE LENTICULAR BRACKET
{ 0x3017, 0xfe18 }, // RIGHT WHITE LENTICULAR BRACKET
{ 0xfe4f, 0xfe34 }, // WAVY LOW LINE
{ 0xff01, 0xfe15 }, // FULLWIDTH EXCLAMATION MARK
{ 0xff08, 0xfe35 }, // FULLWIDTH LEFT PARENTHESIS
{ 0xff09, 0xfe36 }, // FULLWIDTH RIGHT PARENTHESIS
{ 0xff0c, 0xfe10 }, // FULLWIDTH COMMA
{ 0xff1a, 0xfe13 }, // FULLWIDTH COLON
{ 0xff1b, 0xfe14 }, // FULLWIDTH SEMICOLON
{ 0xff1f, 0xfe16 }, // FULLWIDTH QUESTION MARK
{ 0xff3b, 0xfe47 }, // FULLWIDTH LEFT SQUARE BRACKET
{ 0xff3d, 0xfe48 }, // FULLWIDTH RIGHT SQUARE BRACKET
{ 0xff3f, 0xfe33 }, // FULLWIDTH LOW LINE
{ 0xff5b, 0xfe37 }, // FULLWIDTH LEFT CURLY BRACKET
{ 0xff5d, 0xfe38 } // FULLWIDTH RIGHT CURLY BRACKET
};
const uint16_t* charPair =
static_cast<const uint16_t*>(bsearch(&unicode,
sVerticalForms,
ArrayLength(sVerticalForms),
sizeof(sVerticalForms[0]),
VertFormsGlyphCompare));
return charPair ? charPair[1] : 0;
}
static hb_bool_t
HBGetGlyph(hb_font_t *font, void *font_data,
hb_codepoint_t unicode, hb_codepoint_t variation_selector,
hb_codepoint_t *glyph,
void *user_data)
{
const gfxHarfBuzzShaper::FontCallbackData *fcd =
static_cast<const gfxHarfBuzzShaper::FontCallbackData*>(font_data);
if (fcd->mShaper->UseVerticalPresentationForms()) {
hb_codepoint_t verticalForm = GetVerticalPresentationForm(unicode);
if (verticalForm) {
*glyph = fcd->mShaper->GetGlyph(verticalForm, variation_selector);
if (*glyph != 0) {
return true;
}
}
// fall back to the non-vertical form if we didn't find an alternate
}
*glyph = fcd->mShaper->GetGlyph(unicode, variation_selector);
return *glyph != 0;
}
// Glyph metrics structures, shared (with appropriate reinterpretation of
// field names) by horizontal and vertical metrics tables.
struct LongMetric {
AutoSwap_PRUint16 advanceWidth; // or advanceHeight, when vertical
AutoSwap_PRInt16 lsb; // or tsb, when vertical
};
struct GlyphMetrics {
LongMetric metrics[1]; // actually numberOfLongMetrics
// the variable-length metrics[] array is immediately followed by:
// AutoSwap_PRUint16 leftSideBearing[];
};
hb_position_t
gfxHarfBuzzShaper::GetGlyphHAdvance(hb_codepoint_t glyph) const
{
// font did not implement GetGlyphWidth, so get an unhinted value
// directly from the font tables
NS_ASSERTION((mNumLongHMetrics > 0) && mHmtxTable != nullptr,
"font is lacking metrics, we shouldn't be here");
if (glyph >= uint32_t(mNumLongHMetrics)) {
glyph = mNumLongHMetrics - 1;
}
// glyph must be valid now, because we checked during initialization
// that mNumLongHMetrics is > 0, and that the metrics table is large enough
// to contain mNumLongHMetrics records
const GlyphMetrics* metrics =
reinterpret_cast<const GlyphMetrics*>(hb_blob_get_data(mHmtxTable,
nullptr));
return FloatToFixed(mFont->FUnitsToDevUnitsFactor() *
uint16_t(metrics->metrics[glyph].advanceWidth));
}
hb_position_t
gfxHarfBuzzShaper::GetGlyphVAdvance(hb_codepoint_t glyph) const
{
if (!mVmtxTable) {
// Must be a "vertical" font that doesn't actually have vertical metrics;
// use a fixed advance.
return FloatToFixed(mFont->GetMetrics(gfxFont::eVertical).aveCharWidth);
}
NS_ASSERTION(mNumLongVMetrics > 0,
"font is lacking metrics, we shouldn't be here");
if (glyph >= uint32_t(mNumLongVMetrics)) {
glyph = mNumLongVMetrics - 1;
}
// glyph must be valid now, because we checked during initialization
// that mNumLongVMetrics is > 0, and that the metrics table is large enough
// to contain mNumLongVMetrics records
const GlyphMetrics* metrics =
reinterpret_cast<const GlyphMetrics*>(hb_blob_get_data(mVmtxTable,
nullptr));
return FloatToFixed(mFont->FUnitsToDevUnitsFactor() *
uint16_t(metrics->metrics[glyph].advanceWidth));
}
/* static */
hb_position_t
gfxHarfBuzzShaper::HBGetGlyphHAdvance(hb_font_t *font, void *font_data,
hb_codepoint_t glyph, void *user_data)
{
const gfxHarfBuzzShaper::FontCallbackData *fcd =
static_cast<const gfxHarfBuzzShaper::FontCallbackData*>(font_data);
gfxFont *gfxfont = fcd->mShaper->GetFont();
if (gfxfont->ProvidesGlyphWidths()) {
return gfxfont->GetGlyphWidth(*fcd->mDrawTarget, glyph);
}
return fcd->mShaper->GetGlyphHAdvance(glyph);
}
/* static */
hb_position_t
gfxHarfBuzzShaper::HBGetGlyphVAdvance(hb_font_t *font, void *font_data,
hb_codepoint_t glyph, void *user_data)
{
const gfxHarfBuzzShaper::FontCallbackData *fcd =
static_cast<const gfxHarfBuzzShaper::FontCallbackData*>(font_data);
// Currently, we don't offer gfxFont subclasses a method to override this
// and provide hinted platform-specific vertical advances (analogous to the
// GetGlyphWidth method for horizontal advances). If that proves necessary,
// we'll add a new gfxFont method and call it from here.
return fcd->mShaper->GetGlyphVAdvance(glyph);
}
struct VORG {
AutoSwap_PRUint16 majorVersion;
AutoSwap_PRUint16 minorVersion;
AutoSwap_PRInt16 defaultVertOriginY;
AutoSwap_PRUint16 numVertOriginYMetrics;
};
struct VORGrec {
AutoSwap_PRUint16 glyphIndex;
AutoSwap_PRInt16 vertOriginY;
};
/* static */
hb_bool_t
gfxHarfBuzzShaper::HBGetGlyphVOrigin(hb_font_t *font, void *font_data,
hb_codepoint_t glyph,
hb_position_t *x, hb_position_t *y,
void *user_data)
{
const gfxHarfBuzzShaper::FontCallbackData *fcd =
static_cast<const gfxHarfBuzzShaper::FontCallbackData*>(font_data);
fcd->mShaper->GetGlyphVOrigin(glyph, x, y);
return true;
}
void
gfxHarfBuzzShaper::GetGlyphVOrigin(hb_codepoint_t aGlyph,
hb_position_t *aX, hb_position_t *aY) const
{
*aX = -0.5 * GetGlyphHAdvance(aGlyph);
if (mVORGTable) {
// We checked in Initialize() that the VORG table is safely readable,
// so no length/bounds-check needed here.
const VORG* vorg =
reinterpret_cast<const VORG*>(hb_blob_get_data(mVORGTable, nullptr));
const VORGrec *lo = reinterpret_cast<const VORGrec*>(vorg + 1);
const VORGrec *hi = lo + uint16_t(vorg->numVertOriginYMetrics);
const VORGrec *limit = hi;
while (lo < hi) {
const VORGrec *mid = lo + (hi - lo) / 2;
if (uint16_t(mid->glyphIndex) < aGlyph) {
lo = mid + 1;
} else {
hi = mid;
}
}
if (lo < limit && uint16_t(lo->glyphIndex) == aGlyph) {
*aY = -FloatToFixed(GetFont()->FUnitsToDevUnitsFactor() *
int16_t(lo->vertOriginY));
} else {
*aY = -FloatToFixed(GetFont()->FUnitsToDevUnitsFactor() *
int16_t(vorg->defaultVertOriginY));
}
return;
}
if (mVmtxTable) {
bool emptyGlyf;
const Glyf *glyf = FindGlyf(aGlyph, &emptyGlyf);
if (glyf) {
if (emptyGlyf) {
*aY = 0;
return;
}
const GlyphMetrics* metrics =
reinterpret_cast<const GlyphMetrics*>
(hb_blob_get_data(mVmtxTable, nullptr));
int16_t lsb;
if (aGlyph < hb_codepoint_t(mNumLongVMetrics)) {
// Glyph is covered by the first (advance & sidebearing) array
lsb = int16_t(metrics->metrics[aGlyph].lsb);
} else {
// Glyph is covered by the second (sidebearing-only) array
const AutoSwap_PRInt16* sidebearings =
reinterpret_cast<const AutoSwap_PRInt16*>
(&metrics->metrics[mNumLongVMetrics]);
lsb = int16_t(sidebearings[aGlyph - mNumLongVMetrics]);
}
*aY = -FloatToFixed(mFont->FUnitsToDevUnitsFactor() *
(lsb + int16_t(glyf->yMax)));
return;
} else {
// XXX TODO: not a truetype font; need to get glyph extents
// via some other API?
// For now, fall through to default code below.
}
}
// XXX should we consider using OS/2 sTypo* metrics if available?
gfxFontEntry::AutoTable hheaTable(GetFont()->GetFontEntry(),
TRUETYPE_TAG('h','h','e','a'));
if (hheaTable) {
uint32_t len;
const MetricsHeader* hhea =
reinterpret_cast<const MetricsHeader*>(hb_blob_get_data(hheaTable,
&len));
if (len >= sizeof(MetricsHeader)) {
// divide up the default advance we're using (1em) in proportion
// to ascender:descender from the hhea table
int16_t a = int16_t(hhea->ascender);
int16_t d = int16_t(hhea->descender);
*aY = -FloatToFixed(GetFont()->GetAdjustedSize() * a / (a - d));
return;
}
}
NS_NOTREACHED("we shouldn't be here!");
*aY = -FloatToFixed(GetFont()->GetAdjustedSize() / 2);
}
static hb_bool_t
HBGetGlyphExtents(hb_font_t *font, void *font_data,
hb_codepoint_t glyph,
hb_glyph_extents_t *extents,
void *user_data)
{
const gfxHarfBuzzShaper::FontCallbackData *fcd =
static_cast<const gfxHarfBuzzShaper::FontCallbackData*>(font_data);
return fcd->mShaper->GetGlyphExtents(glyph, extents);
}
// Find the data for glyph ID |aGlyph| in the 'glyf' table, if present.
// Returns null if not found, otherwise pointer to the beginning of the
// glyph's data. Sets aEmptyGlyf true if there is no actual data;
// otherwise, it's guaranteed that we can read at least the bounding box.
const gfxHarfBuzzShaper::Glyf*
gfxHarfBuzzShaper::FindGlyf(hb_codepoint_t aGlyph, bool *aEmptyGlyf) const
{
if (!mLoadedLocaGlyf) {
mLoadedLocaGlyf = true; // only try this once; if it fails, this
// isn't a truetype font
gfxFontEntry *entry = mFont->GetFontEntry();
uint32_t len;
gfxFontEntry::AutoTable headTable(entry,
TRUETYPE_TAG('h','e','a','d'));
if (!headTable) {
return nullptr;
}
const HeadTable* head =
reinterpret_cast<const HeadTable*>(hb_blob_get_data(headTable,
&len));
if (len < sizeof(HeadTable)) {
return nullptr;
}
mLocaLongOffsets = int16_t(head->indexToLocFormat) > 0;
mLocaTable = entry->GetFontTable(TRUETYPE_TAG('l','o','c','a'));
mGlyfTable = entry->GetFontTable(TRUETYPE_TAG('g','l','y','f'));
}
if (!mLocaTable || !mGlyfTable) {
// it's not a truetype font
return nullptr;
}
uint32_t offset; // offset of glyph record in the 'glyf' table
uint32_t len;
const char* data = hb_blob_get_data(mLocaTable, &len);
if (mLocaLongOffsets) {
if ((aGlyph + 1) * sizeof(AutoSwap_PRUint32) > len) {
return nullptr;
}
const AutoSwap_PRUint32* offsets =
reinterpret_cast<const AutoSwap_PRUint32*>(data);
offset = offsets[aGlyph];
*aEmptyGlyf = (offset == uint16_t(offsets[aGlyph + 1]));
} else {
if ((aGlyph + 1) * sizeof(AutoSwap_PRUint16) > len) {
return nullptr;
}
const AutoSwap_PRUint16* offsets =
reinterpret_cast<const AutoSwap_PRUint16*>(data);
offset = uint16_t(offsets[aGlyph]);
*aEmptyGlyf = (offset == uint16_t(offsets[aGlyph + 1]));
offset *= 2;
}
data = hb_blob_get_data(mGlyfTable, &len);
if (offset + sizeof(Glyf) > len) {
return nullptr;
}
return reinterpret_cast<const Glyf*>(data + offset);
}
hb_bool_t
gfxHarfBuzzShaper::GetGlyphExtents(hb_codepoint_t aGlyph,
hb_glyph_extents_t *aExtents) const
{
bool emptyGlyf;
const Glyf *glyf = FindGlyf(aGlyph, &emptyGlyf);
if (!glyf) {
// TODO: for non-truetype fonts, get extents some other way?
return false;
}
if (emptyGlyf) {
aExtents->x_bearing = 0;
aExtents->y_bearing = 0;
aExtents->width = 0;
aExtents->height = 0;
return true;
}
double f = mFont->FUnitsToDevUnitsFactor();
aExtents->x_bearing = FloatToFixed(int16_t(glyf->xMin) * f);
aExtents->width =
FloatToFixed((int16_t(glyf->xMax) - int16_t(glyf->xMin)) * f);
// Our y-coordinates are positive-downwards, whereas harfbuzz assumes
// positive-upwards; hence the apparently-reversed subtractions here.
aExtents->y_bearing =
FloatToFixed(int16_t(glyf->yMax) * f -
mFont->GetHorizontalMetrics().emAscent);
aExtents->height =
FloatToFixed((int16_t(glyf->yMin) - int16_t(glyf->yMax)) * f);
return true;
}
static hb_bool_t
HBGetContourPoint(hb_font_t *font, void *font_data,
unsigned int point_index, hb_codepoint_t glyph,
hb_position_t *x, hb_position_t *y,
void *user_data)
{
/* not yet implemented - no support for used of hinted contour points
to fine-tune anchor positions in GPOS AnchorFormat2 */
return false;
}
struct KernHeaderFmt0 {
AutoSwap_PRUint16 nPairs;
AutoSwap_PRUint16 searchRange;
AutoSwap_PRUint16 entrySelector;
AutoSwap_PRUint16 rangeShift;
};
struct KernPair {
AutoSwap_PRUint16 left;
AutoSwap_PRUint16 right;
AutoSwap_PRInt16 value;
};
// Find a kern pair in a Format 0 subtable.
// The aSubtable parameter points to the subtable itself, NOT its header,
// as the header structure differs between Windows and Mac (v0 and v1.0)
// versions of the 'kern' table.
// aSubtableLen is the length of the subtable EXCLUDING its header.
// If the pair <aFirstGlyph,aSecondGlyph> is found, the kerning value is
// added to aValue, so that multiple subtables can accumulate a total
// kerning value for a given pair.
static void
GetKernValueFmt0(const void* aSubtable,
uint32_t aSubtableLen,
uint16_t aFirstGlyph,
uint16_t aSecondGlyph,
int32_t& aValue,
bool aIsOverride = false,
bool aIsMinimum = false)
{
const KernHeaderFmt0* hdr =
reinterpret_cast<const KernHeaderFmt0*>(aSubtable);
const KernPair *lo = reinterpret_cast<const KernPair*>(hdr + 1);
const KernPair *hi = lo + uint16_t(hdr->nPairs);
const KernPair *limit = hi;
if (reinterpret_cast<const char*>(aSubtable) + aSubtableLen <
reinterpret_cast<const char*>(hi)) {
// subtable is not large enough to contain the claimed number
// of kern pairs, so just ignore it
return;
}
#define KERN_PAIR_KEY(l,r) (uint32_t((uint16_t(l) << 16) + uint16_t(r)))
uint32_t key = KERN_PAIR_KEY(aFirstGlyph, aSecondGlyph);
while (lo < hi) {
const KernPair *mid = lo + (hi - lo) / 2;
if (KERN_PAIR_KEY(mid->left, mid->right) < key) {
lo = mid + 1;
} else {
hi = mid;
}
}
if (lo < limit && KERN_PAIR_KEY(lo->left, lo->right) == key) {
if (aIsOverride) {
aValue = int16_t(lo->value);
} else if (aIsMinimum) {
aValue = std::max(aValue, int32_t(lo->value));
} else {
aValue += int16_t(lo->value);
}
}
}
// Get kerning value from Apple (version 1.0) kern table,
// subtable format 2 (simple N x M array of kerning values)
// See http://developer.apple.com/fonts/TTRefMan/RM06/Chap6kern.html
// for details of version 1.0 format 2 subtable.
struct KernHeaderVersion1Fmt2 {
KernTableSubtableHeaderVersion1 header;
AutoSwap_PRUint16 rowWidth;
AutoSwap_PRUint16 leftOffsetTable;
AutoSwap_PRUint16 rightOffsetTable;
AutoSwap_PRUint16 array;
};
struct KernClassTableHdr {
AutoSwap_PRUint16 firstGlyph;
AutoSwap_PRUint16 nGlyphs;
AutoSwap_PRUint16 offsets[1]; // actually an array of nGlyphs entries
};
static int16_t
GetKernValueVersion1Fmt2(const void* aSubtable,
uint32_t aSubtableLen,
uint16_t aFirstGlyph,
uint16_t aSecondGlyph)
{
if (aSubtableLen < sizeof(KernHeaderVersion1Fmt2)) {
return 0;
}
const char* base = reinterpret_cast<const char*>(aSubtable);
const char* subtableEnd = base + aSubtableLen;
const KernHeaderVersion1Fmt2* h =
reinterpret_cast<const KernHeaderVersion1Fmt2*>(aSubtable);
uint32_t offset = h->array;
const KernClassTableHdr* leftClassTable =
reinterpret_cast<const KernClassTableHdr*>(base +
uint16_t(h->leftOffsetTable));
if (reinterpret_cast<const char*>(leftClassTable) +
sizeof(KernClassTableHdr) > subtableEnd) {
return 0;
}
if (aFirstGlyph >= uint16_t(leftClassTable->firstGlyph)) {
aFirstGlyph -= uint16_t(leftClassTable->firstGlyph);
if (aFirstGlyph < uint16_t(leftClassTable->nGlyphs)) {
if (reinterpret_cast<const char*>(leftClassTable) +
sizeof(KernClassTableHdr) +
aFirstGlyph * sizeof(uint16_t) >= subtableEnd) {
return 0;
}
offset = uint16_t(leftClassTable->offsets[aFirstGlyph]);
}
}
const KernClassTableHdr* rightClassTable =
reinterpret_cast<const KernClassTableHdr*>(base +
uint16_t(h->rightOffsetTable));
if (reinterpret_cast<const char*>(rightClassTable) +
sizeof(KernClassTableHdr) > subtableEnd) {
return 0;
}
if (aSecondGlyph >= uint16_t(rightClassTable->firstGlyph)) {
aSecondGlyph -= uint16_t(rightClassTable->firstGlyph);
if (aSecondGlyph < uint16_t(rightClassTable->nGlyphs)) {
if (reinterpret_cast<const char*>(rightClassTable) +
sizeof(KernClassTableHdr) +
aSecondGlyph * sizeof(uint16_t) >= subtableEnd) {
return 0;
}
offset += uint16_t(rightClassTable->offsets[aSecondGlyph]);
}
}
const AutoSwap_PRInt16* pval =
reinterpret_cast<const AutoSwap_PRInt16*>(base + offset);
if (reinterpret_cast<const char*>(pval + 1) >= subtableEnd) {
return 0;
}
return *pval;
}
// Get kerning value from Apple (version 1.0) kern table,
// subtable format 3 (simple N x M array of kerning values)
// See http://developer.apple.com/fonts/TTRefMan/RM06/Chap6kern.html
// for details of version 1.0 format 3 subtable.
struct KernHeaderVersion1Fmt3 {
KernTableSubtableHeaderVersion1 header;
AutoSwap_PRUint16 glyphCount;
uint8_t kernValueCount;
uint8_t leftClassCount;
uint8_t rightClassCount;
uint8_t flags;
};
static int16_t
GetKernValueVersion1Fmt3(const void* aSubtable,
uint32_t aSubtableLen,
uint16_t aFirstGlyph,
uint16_t aSecondGlyph)
{
// check that we can safely read the header fields
if (aSubtableLen < sizeof(KernHeaderVersion1Fmt3)) {
return 0;
}
const KernHeaderVersion1Fmt3* hdr =
reinterpret_cast<const KernHeaderVersion1Fmt3*>(aSubtable);
if (hdr->flags != 0) {
return 0;
}
uint16_t glyphCount = hdr->glyphCount;
// check that table is large enough for the arrays
if (sizeof(KernHeaderVersion1Fmt3) +
hdr->kernValueCount * sizeof(int16_t) +
glyphCount + glyphCount +
hdr->leftClassCount * hdr->rightClassCount > aSubtableLen) {
return 0;
}
if (aFirstGlyph >= glyphCount || aSecondGlyph >= glyphCount) {
// glyphs are out of range for the class tables
return 0;
}
// get pointers to the four arrays within the subtable
const AutoSwap_PRInt16* kernValue =
reinterpret_cast<const AutoSwap_PRInt16*>(hdr + 1);
const uint8_t* leftClass =
reinterpret_cast<const uint8_t*>(kernValue + hdr->kernValueCount);
const uint8_t* rightClass = leftClass + glyphCount;
const uint8_t* kernIndex = rightClass + glyphCount;
uint8_t lc = leftClass[aFirstGlyph];
uint8_t rc = rightClass[aSecondGlyph];
if (lc >= hdr->leftClassCount || rc >= hdr->rightClassCount) {
return 0;
}
uint8_t ki = kernIndex[leftClass[aFirstGlyph] * hdr->rightClassCount +
rightClass[aSecondGlyph]];
if (ki >= hdr->kernValueCount) {
return 0;
}
return kernValue[ki];
}
#define KERN0_COVERAGE_HORIZONTAL 0x0001
#define KERN0_COVERAGE_MINIMUM 0x0002
#define KERN0_COVERAGE_CROSS_STREAM 0x0004
#define KERN0_COVERAGE_OVERRIDE 0x0008
#define KERN0_COVERAGE_RESERVED 0x00F0
#define KERN1_COVERAGE_VERTICAL 0x8000
#define KERN1_COVERAGE_CROSS_STREAM 0x4000
#define KERN1_COVERAGE_VARIATION 0x2000
#define KERN1_COVERAGE_RESERVED 0x1F00
hb_position_t
gfxHarfBuzzShaper::GetHKerning(uint16_t aFirstGlyph,
uint16_t aSecondGlyph) const
{
// We want to ignore any kern pairs involving <space>, because we are
// handling words in isolation, the only space characters seen here are
// the ones artificially added by the textRun code.
uint32_t spaceGlyph = mFont->GetSpaceGlyph();
if (aFirstGlyph == spaceGlyph || aSecondGlyph == spaceGlyph) {
return 0;
}
if (!mKernTable) {
mKernTable = mFont->GetFontEntry()->GetFontTable(TRUETYPE_TAG('k','e','r','n'));
if (!mKernTable) {
mKernTable = hb_blob_get_empty();
}
}
uint32_t len;
const char* base = hb_blob_get_data(mKernTable, &len);
if (len < sizeof(KernTableVersion0)) {
return 0;
}
int32_t value = 0;
// First try to interpret as "version 0" kern table
// (see http://www.microsoft.com/typography/otspec/kern.htm)
const KernTableVersion0* kern0 =
reinterpret_cast<const KernTableVersion0*>(base);
if (uint16_t(kern0->version) == 0) {
uint16_t nTables = kern0->nTables;
uint32_t offs = sizeof(KernTableVersion0);
for (uint16_t i = 0; i < nTables; ++i) {
if (offs + sizeof(KernTableSubtableHeaderVersion0) > len) {
break;
}
const KernTableSubtableHeaderVersion0* st0 =
reinterpret_cast<const KernTableSubtableHeaderVersion0*>
(base + offs);
uint16_t subtableLen = uint16_t(st0->length);
if (offs + subtableLen > len) {
break;
}
offs += subtableLen;
uint16_t coverage = st0->coverage;
if (!(coverage & KERN0_COVERAGE_HORIZONTAL)) {
// we only care about horizontal kerning (for now)
continue;
}
if (coverage &
(KERN0_COVERAGE_CROSS_STREAM | KERN0_COVERAGE_RESERVED)) {
// we don't support cross-stream kerning, and
// reserved bits should be zero;
// ignore the subtable if not
continue;
}
uint8_t format = (coverage >> 8);
switch (format) {
case 0:
GetKernValueFmt0(st0 + 1, subtableLen - sizeof(*st0),
aFirstGlyph, aSecondGlyph, value,
(coverage & KERN0_COVERAGE_OVERRIDE) != 0,
(coverage & KERN0_COVERAGE_MINIMUM) != 0);
break;
default:
// TODO: implement support for other formats,
// if they're ever used in practice
#if DEBUG
{
char buf[1024];
snprintf_literal(buf, "unknown kern subtable in %s: "
"ver 0 format %d\n",
NS_ConvertUTF16toUTF8(mFont->GetName()).get(),
format);
NS_WARNING(buf);
}
#endif
break;
}
}
} else {
// It wasn't a "version 0" table; check if it is Apple version 1.0
// (see http://developer.apple.com/fonts/TTRefMan/RM06/Chap6kern.html)
const KernTableVersion1* kern1 =
reinterpret_cast<const KernTableVersion1*>(base);
if (uint32_t(kern1->version) == 0x00010000) {
uint32_t nTables = kern1->nTables;
uint32_t offs = sizeof(KernTableVersion1);
for (uint32_t i = 0; i < nTables; ++i) {
if (offs + sizeof(KernTableSubtableHeaderVersion1) > len) {
break;
}
const KernTableSubtableHeaderVersion1* st1 =
reinterpret_cast<const KernTableSubtableHeaderVersion1*>
(base + offs);
uint32_t subtableLen = uint32_t(st1->length);
offs += subtableLen;
uint16_t coverage = st1->coverage;
if (coverage &
(KERN1_COVERAGE_VERTICAL |
KERN1_COVERAGE_CROSS_STREAM |
KERN1_COVERAGE_VARIATION |
KERN1_COVERAGE_RESERVED)) {
// we only care about horizontal kerning (for now),
// we don't support cross-stream kerning,
// we don't support variations,
// reserved bits should be zero;
// ignore the subtable if not
continue;
}
uint8_t format = (coverage & 0xff);
switch (format) {
case 0:
GetKernValueFmt0(st1 + 1, subtableLen - sizeof(*st1),
aFirstGlyph, aSecondGlyph, value);
break;
case 2:
value = GetKernValueVersion1Fmt2(st1, subtableLen,
aFirstGlyph, aSecondGlyph);
break;
case 3:
value = GetKernValueVersion1Fmt3(st1, subtableLen,
aFirstGlyph, aSecondGlyph);
break;
default:
// TODO: implement support for other formats.
// Note that format 1 cannot be supported here,
// as it requires the full glyph array to run the FSM,
// not just the current glyph pair.
#if DEBUG
{
char buf[1024];
snprintf_literal(buf, "unknown kern subtable in %s: "
"ver 0 format %d\n",
NS_ConvertUTF16toUTF8(mFont->GetName()).get(),
format);
NS_WARNING(buf);
}
#endif
break;
}
}
}
}
if (value != 0) {
return FloatToFixed(mFont->FUnitsToDevUnitsFactor() * value);
}
return 0;
}
static hb_position_t
HBGetHKerning(hb_font_t *font, void *font_data,
hb_codepoint_t first_glyph, hb_codepoint_t second_glyph,
void *user_data)
{
const gfxHarfBuzzShaper::FontCallbackData *fcd =
static_cast<const gfxHarfBuzzShaper::FontCallbackData*>(font_data);
return fcd->mShaper->GetHKerning(first_glyph, second_glyph);
}
/*
* HarfBuzz unicode property callbacks
*/
static hb_codepoint_t
HBGetMirroring(hb_unicode_funcs_t *ufuncs, hb_codepoint_t aCh,
void *user_data)
{
return GetMirroredChar(aCh);
}
static hb_unicode_general_category_t
HBGetGeneralCategory(hb_unicode_funcs_t *ufuncs, hb_codepoint_t aCh,
void *user_data)
{
return hb_unicode_general_category_t(GetGeneralCategory(aCh));
}
static hb_script_t
HBGetScript(hb_unicode_funcs_t *ufuncs, hb_codepoint_t aCh, void *user_data)
{
return hb_script_t(GetScriptTagForCode(GetScriptCode(aCh)));
}
static hb_unicode_combining_class_t
HBGetCombiningClass(hb_unicode_funcs_t *ufuncs, hb_codepoint_t aCh,
void *user_data)
{
return hb_unicode_combining_class_t(GetCombiningClass(aCh));
}
// Hebrew presentation forms with dagesh, for characters 0x05D0..0x05EA;
// note that some letters do not have a dagesh presForm encoded
static const char16_t sDageshForms[0x05EA - 0x05D0 + 1] = {
0xFB30, // ALEF
0xFB31, // BET
0xFB32, // GIMEL
0xFB33, // DALET
0xFB34, // HE
0xFB35, // VAV
0xFB36, // ZAYIN
0, // HET
0xFB38, // TET
0xFB39, // YOD
0xFB3A, // FINAL KAF
0xFB3B, // KAF
0xFB3C, // LAMED
0, // FINAL MEM
0xFB3E, // MEM
0, // FINAL NUN
0xFB40, // NUN
0xFB41, // SAMEKH
0, // AYIN
0xFB43, // FINAL PE
0xFB44, // PE
0, // FINAL TSADI
0xFB46, // TSADI
0xFB47, // QOF
0xFB48, // RESH
0xFB49, // SHIN
0xFB4A // TAV
};
static hb_bool_t
HBUnicodeCompose(hb_unicode_funcs_t *ufuncs,
hb_codepoint_t a,
hb_codepoint_t b,
hb_codepoint_t *ab,
void *user_data)
{
#if MOZ_HB_SHAPER_USE_ICU_NORMALIZATION
if (sNormalizer) {
UChar32 ch = unorm2_composePair(sNormalizer, a, b);
if (ch >= 0) {
*ab = ch;
return true;
}
}
#else // no ICU available, use the old nsUnicodeNormalizer
if (nsUnicodeNormalizer::Compose(a, b, ab)) {
return true;
}
#endif
if ((b & 0x1fff80) == 0x0580) {
// special-case Hebrew presentation forms that are excluded from
// standard normalization, but wanted for old fonts
switch (b) {
case 0x05B4: // HIRIQ
if (a == 0x05D9) { // YOD
*ab = 0xFB1D;
return true;
}
break;
case 0x05B7: // patah
if (a == 0x05F2) { // YIDDISH YOD YOD
*ab = 0xFB1F;
return true;
}
if (a == 0x05D0) { // ALEF
*ab = 0xFB2E;
return true;
}
break;
case 0x05B8: // QAMATS
if (a == 0x05D0) { // ALEF
*ab = 0xFB2F;
return true;
}
break;
case 0x05B9: // HOLAM
if (a == 0x05D5) { // VAV
*ab = 0xFB4B;
return true;
}
break;
case 0x05BC: // DAGESH
if (a >= 0x05D0 && a <= 0x05EA) {
*ab = sDageshForms[a - 0x05D0];
return (*ab != 0);
}
if (a == 0xFB2A) { // SHIN WITH SHIN DOT
*ab = 0xFB2C;
return true;
}
if (a == 0xFB2B) { // SHIN WITH SIN DOT
*ab = 0xFB2D;
return true;
}
break;
case 0x05BF: // RAFE
switch (a) {
case 0x05D1: // BET
*ab = 0xFB4C;
return true;
case 0x05DB: // KAF
*ab = 0xFB4D;
return true;
case 0x05E4: // PE
*ab = 0xFB4E;
return true;
}
break;
case 0x05C1: // SHIN DOT
if (a == 0x05E9) { // SHIN
*ab = 0xFB2A;
return true;
}
if (a == 0xFB49) { // SHIN WITH DAGESH
*ab = 0xFB2C;
return true;
}
break;
case 0x05C2: // SIN DOT
if (a == 0x05E9) { // SHIN
*ab = 0xFB2B;
return true;
}
if (a == 0xFB49) { // SHIN WITH DAGESH
*ab = 0xFB2D;
return true;
}
break;
}
}
return false;
}
static hb_bool_t
HBUnicodeDecompose(hb_unicode_funcs_t *ufuncs,
hb_codepoint_t ab,
hb_codepoint_t *a,
hb_codepoint_t *b,
void *user_data)
{
#ifdef MOZ_WIDGET_ANDROID
// Hack for the SamsungDevanagari font, bug 1012365:
// support U+0972 by decomposing it.
if (ab == 0x0972) {
*a = 0x0905;
*b = 0x0945;
return true;
}
#endif
#if MOZ_HB_SHAPER_USE_ICU_NORMALIZATION
if (!sNormalizer) {
return false;
}
// Canonical decompositions are never more than two characters,
// or a maximum of 4 utf-16 code units.
const unsigned MAX_DECOMP_LENGTH = 4;
UErrorCode error = U_ZERO_ERROR;
UChar decomp[MAX_DECOMP_LENGTH];
int32_t len = unorm2_getRawDecomposition(sNormalizer, ab, decomp,
MAX_DECOMP_LENGTH, &error);
if (U_FAILURE(error) || len < 0) {
return false;
}
UText text = UTEXT_INITIALIZER;
utext_openUChars(&text, decomp, len, &error);
NS_ASSERTION(U_SUCCESS(error), "UText failure?");
UChar32 ch = UTEXT_NEXT32(&text);
if (ch != U_SENTINEL) {
*a = ch;
}
ch = UTEXT_NEXT32(&text);
if (ch != U_SENTINEL) {
*b = ch;
}
utext_close(&text);
return *b != 0 || *a != ab;
#else // no ICU available, use the old nsUnicodeNormalizer
return nsUnicodeNormalizer::DecomposeNonRecursively(ab, a, b);
#endif
}
static void
AddOpenTypeFeature(const uint32_t& aTag, uint32_t& aValue, void *aUserArg)
{
nsTArray<hb_feature_t>* features = static_cast<nsTArray<hb_feature_t>*> (aUserArg);
hb_feature_t feat = { 0, 0, 0, UINT_MAX };
feat.tag = aTag;
feat.value = aValue;
features->AppendElement(feat);
}
/*
* gfxFontShaper override to initialize the text run using HarfBuzz
*/
static hb_font_funcs_t * sHBFontFuncs = nullptr;
static hb_unicode_funcs_t * sHBUnicodeFuncs = nullptr;
static const hb_script_t sMathScript =
hb_ot_tag_to_script(HB_TAG('m','a','t','h'));
bool
gfxHarfBuzzShaper::Initialize()
{
if (mInitialized) {
return mHBFont != nullptr;
}
mInitialized = true;
mCallbackData.mShaper = this;
mUseFontGlyphWidths = mFont->ProvidesGlyphWidths();
if (!sHBFontFuncs) {
// static function callback pointers, initialized by the first
// harfbuzz shaper used
sHBFontFuncs = hb_font_funcs_create();
hb_font_funcs_set_glyph_func(sHBFontFuncs, HBGetGlyph,
nullptr, nullptr);
hb_font_funcs_set_glyph_h_advance_func(sHBFontFuncs,
HBGetGlyphHAdvance,
nullptr, nullptr);
hb_font_funcs_set_glyph_v_advance_func(sHBFontFuncs,
HBGetGlyphVAdvance,
nullptr, nullptr);
hb_font_funcs_set_glyph_v_origin_func(sHBFontFuncs,
HBGetGlyphVOrigin,
nullptr, nullptr);
hb_font_funcs_set_glyph_extents_func(sHBFontFuncs,
HBGetGlyphExtents,
nullptr, nullptr);
hb_font_funcs_set_glyph_contour_point_func(sHBFontFuncs,
HBGetContourPoint,
nullptr, nullptr);
hb_font_funcs_set_glyph_h_kerning_func(sHBFontFuncs,
HBGetHKerning,
nullptr, nullptr);
sHBUnicodeFuncs =
hb_unicode_funcs_create(hb_unicode_funcs_get_empty());
hb_unicode_funcs_set_mirroring_func(sHBUnicodeFuncs,
HBGetMirroring,
nullptr, nullptr);
hb_unicode_funcs_set_script_func(sHBUnicodeFuncs, HBGetScript,
nullptr, nullptr);
hb_unicode_funcs_set_general_category_func(sHBUnicodeFuncs,
HBGetGeneralCategory,
nullptr, nullptr);
hb_unicode_funcs_set_combining_class_func(sHBUnicodeFuncs,
HBGetCombiningClass,
nullptr, nullptr);
hb_unicode_funcs_set_compose_func(sHBUnicodeFuncs,
HBUnicodeCompose,
nullptr, nullptr);
hb_unicode_funcs_set_decompose_func(sHBUnicodeFuncs,
HBUnicodeDecompose,
nullptr, nullptr);
#if MOZ_HB_SHAPER_USE_ICU_NORMALIZATION
UErrorCode error = U_ZERO_ERROR;
sNormalizer = unorm2_getNFCInstance(&error);
NS_ASSERTION(U_SUCCESS(error), "failed to get ICU normalizer");
#endif
}
gfxFontEntry *entry = mFont->GetFontEntry();
if (!mUseFontGetGlyph) {
// get the cmap table and find offset to our subtable
mCmapTable = entry->GetFontTable(TRUETYPE_TAG('c','m','a','p'));
if (!mCmapTable) {
NS_WARNING("failed to load cmap, glyphs will be missing");
return false;
}
uint32_t len;
const uint8_t* data = (const uint8_t*)hb_blob_get_data(mCmapTable, &len);
bool symbol;
mCmapFormat = gfxFontUtils::
FindPreferredSubtable(data, len,
&mSubtableOffset, &mUVSTableOffset,
&symbol);
if (mCmapFormat <= 0) {
return false;
}
}
if (!mUseFontGlyphWidths) {
// If font doesn't implement GetGlyphWidth, we will be reading
// the metrics table directly, so make sure we can load it.
if (!LoadHmtxTable()) {
return false;
}
}
mHBFont = hb_font_create(mHBFace);
hb_font_set_funcs(mHBFont, sHBFontFuncs, &mCallbackData, nullptr);
hb_font_set_ppem(mHBFont, mFont->GetAdjustedSize(), mFont->GetAdjustedSize());
uint32_t scale = FloatToFixed(mFont->GetAdjustedSize()); // 16.16 fixed-point
hb_font_set_scale(mHBFont, scale, scale);
return true;
}
bool
gfxHarfBuzzShaper::LoadHmtxTable()
{
// Read mNumLongHMetrics from metrics-head table without caching its
// blob, and preload/cache the metrics table.
gfxFontEntry *entry = mFont->GetFontEntry();
gfxFontEntry::AutoTable hheaTable(entry, TRUETYPE_TAG('h','h','e','a'));
if (hheaTable) {
uint32_t len;
const MetricsHeader* hhea =
reinterpret_cast<const MetricsHeader*>
(hb_blob_get_data(hheaTable, &len));
if (len >= sizeof(MetricsHeader)) {
mNumLongHMetrics = hhea->numOfLongMetrics;
if (mNumLongHMetrics > 0 &&
int16_t(hhea->metricDataFormat) == 0) {
// no point reading metrics if number of entries is zero!
// in that case, we won't be able to use this font
// (this method will return FALSE below if mHmtxTable
// is null)
mHmtxTable = entry->GetFontTable(TRUETYPE_TAG('h','m','t','x'));
if (mHmtxTable && hb_blob_get_length(mHmtxTable) <
mNumLongHMetrics * sizeof(LongMetric)) {
// metrics table is not large enough for the claimed
// number of entries: invalid, do not use.
hb_blob_destroy(mHmtxTable);
mHmtxTable = nullptr;
}
}
}
}
if (!mHmtxTable) {
return false;
}
return true;
}
bool
gfxHarfBuzzShaper::InitializeVertical()
{
// We only try this once. If we don't have a mHmtxTable after that,
// this font can't handle vertical shaping, so return false.
if (mVerticalInitialized) {
return mHmtxTable != nullptr;
}
mVerticalInitialized = true;
if (!mHmtxTable) {
if (!LoadHmtxTable()) {
return false;
}
}
// Load vertical metrics if present in the font; if not, we'll synthesize
// vertical glyph advances based on (horizontal) ascent/descent metrics.
gfxFontEntry *entry = mFont->GetFontEntry();
gfxFontEntry::AutoTable vheaTable(entry, TRUETYPE_TAG('v','h','e','a'));
if (vheaTable) {
uint32_t len;
const MetricsHeader* vhea =
reinterpret_cast<const MetricsHeader*>
(hb_blob_get_data(vheaTable, &len));
if (len >= sizeof(MetricsHeader)) {
mNumLongVMetrics = vhea->numOfLongMetrics;
gfxFontEntry::AutoTable
maxpTable(entry, TRUETYPE_TAG('m','a','x','p'));
int numGlyphs = -1; // invalid if we fail to read 'maxp'
if (maxpTable &&
hb_blob_get_length(maxpTable) >= sizeof(MaxpTableHeader)) {
const MaxpTableHeader* maxp =
reinterpret_cast<const MaxpTableHeader*>
(hb_blob_get_data(maxpTable, nullptr));
numGlyphs = uint16_t(maxp->numGlyphs);
}
if (mNumLongVMetrics > 0 && mNumLongVMetrics <= numGlyphs &&
int16_t(vhea->metricDataFormat) == 0) {
mVmtxTable = entry->GetFontTable(TRUETYPE_TAG('v','m','t','x'));
if (mVmtxTable && hb_blob_get_length(mVmtxTable) <
mNumLongVMetrics * sizeof(LongMetric) +
(numGlyphs - mNumLongVMetrics) * sizeof(int16_t)) {
// metrics table is not large enough for the claimed
// number of entries: invalid, do not use.
hb_blob_destroy(mVmtxTable);
mVmtxTable = nullptr;
}
}
}
}
// For CFF fonts only, load a VORG table if present.
if (entry->HasFontTable(TRUETYPE_TAG('C','F','F',' '))) {
mVORGTable = entry->GetFontTable(TRUETYPE_TAG('V','O','R','G'));
if (mVORGTable) {
uint32_t len;
const VORG* vorg =
reinterpret_cast<const VORG*>(hb_blob_get_data(mVORGTable,
&len));
if (len < sizeof(VORG) ||
uint16_t(vorg->majorVersion) != 1 ||
uint16_t(vorg->minorVersion) != 0 ||
len < sizeof(VORG) + uint16_t(vorg->numVertOriginYMetrics) *
sizeof(VORGrec)) {
// VORG table is an unknown version, or not large enough
// to be valid -- discard it.
NS_WARNING("discarding invalid VORG table");
hb_blob_destroy(mVORGTable);
mVORGTable = nullptr;
}
}
}
return true;
}
bool
gfxHarfBuzzShaper::ShapeText(DrawTarget *aDrawTarget,
const char16_t *aText,
uint32_t aOffset,
uint32_t aLength,
int32_t aScript,
bool aVertical,
gfxShapedText *aShapedText)
{
// some font back-ends require this in order to get proper hinted metrics
if (!mFont->SetupCairoFont(aDrawTarget)) {
return false;
}
mCallbackData.mDrawTarget = aDrawTarget;
mUseVerticalPresentationForms = false;
if (!Initialize()) {
return false;
}
if (aVertical) {
if (!InitializeVertical()) {
return false;
}
if (!mFont->GetFontEntry()->
SupportsOpenTypeFeature(aScript, HB_TAG('v','e','r','t'))) {
mUseVerticalPresentationForms = true;
}
}
const gfxFontStyle *style = mFont->GetStyle();
// determine whether petite-caps falls back to small-caps
bool addSmallCaps = false;
if (style->variantCaps != NS_FONT_VARIANT_CAPS_NORMAL) {
switch (style->variantCaps) {
case NS_FONT_VARIANT_CAPS_ALLPETITE:
case NS_FONT_VARIANT_CAPS_PETITECAPS:
bool synLower, synUpper;
mFont->SupportsVariantCaps(aScript, style->variantCaps,
addSmallCaps, synLower, synUpper);
break;
default:
break;
}
}
gfxFontEntry *entry = mFont->GetFontEntry();
// insert any merged features into hb_feature array
AutoTArray<hb_feature_t,20> features;
MergeFontFeatures(style,
entry->mFeatureSettings,
aShapedText->DisableLigatures(),
entry->FamilyName(),
addSmallCaps,
AddOpenTypeFeature,
&features);
bool isRightToLeft = aShapedText->IsRightToLeft();
hb_buffer_t *buffer = hb_buffer_create();
hb_buffer_set_unicode_funcs(buffer, sHBUnicodeFuncs);
hb_buffer_set_direction(buffer,
aVertical ? HB_DIRECTION_TTB :
(isRightToLeft ? HB_DIRECTION_RTL :
HB_DIRECTION_LTR));
hb_script_t scriptTag;
if (aShapedText->GetFlags() & gfxTextRunFactory::TEXT_USE_MATH_SCRIPT) {
scriptTag = sMathScript;
} else {
scriptTag = GetHBScriptUsedForShaping(aScript);
}
hb_buffer_set_script(buffer, scriptTag);
hb_language_t language;
if (style->languageOverride) {
language = hb_ot_tag_to_language(style->languageOverride);
} else if (entry->mLanguageOverride) {
language = hb_ot_tag_to_language(entry->mLanguageOverride);
} else if (style->explicitLanguage) {
nsCString langString;
style->language->ToUTF8String(langString);
language =
hb_language_from_string(langString.get(), langString.Length());
} else {
language = hb_ot_tag_to_language(HB_OT_TAG_DEFAULT_LANGUAGE);
}
hb_buffer_set_language(buffer, language);
uint32_t length = aLength;
hb_buffer_add_utf16(buffer,
reinterpret_cast<const uint16_t*>(aText),
length, 0, length);
hb_buffer_set_cluster_level(buffer, HB_BUFFER_CLUSTER_LEVEL_MONOTONE_CHARACTERS);
hb_shape(mHBFont, buffer, features.Elements(), features.Length());
if (isRightToLeft) {
hb_buffer_reverse(buffer);
}
nsresult rv = SetGlyphsFromRun(aDrawTarget, aShapedText, aOffset, aLength,
aText, buffer, aVertical);
NS_WARN_IF_FALSE(NS_SUCCEEDED(rv), "failed to store glyphs into gfxShapedWord");
hb_buffer_destroy(buffer);
return NS_SUCCEEDED(rv);
}
#define SMALL_GLYPH_RUN 128 // some testing indicates that 90%+ of text runs
// will fit without requiring separate allocation
// for charToGlyphArray
nsresult
gfxHarfBuzzShaper::SetGlyphsFromRun(DrawTarget *aDrawTarget,
gfxShapedText *aShapedText,
uint32_t aOffset,
uint32_t aLength,
const char16_t *aText,
hb_buffer_t *aBuffer,
bool aVertical)
{
uint32_t numGlyphs;
const hb_glyph_info_t *ginfo = hb_buffer_get_glyph_infos(aBuffer, &numGlyphs);
if (numGlyphs == 0) {
return NS_OK;
}
AutoTArray<gfxTextRun::DetailedGlyph,1> detailedGlyphs;
uint32_t wordLength = aLength;
static const int32_t NO_GLYPH = -1;
AutoTArray<int32_t,SMALL_GLYPH_RUN> charToGlyphArray;
if (!charToGlyphArray.SetLength(wordLength, fallible)) {
return NS_ERROR_OUT_OF_MEMORY;
}
int32_t *charToGlyph = charToGlyphArray.Elements();
for (uint32_t offset = 0; offset < wordLength; ++offset) {
charToGlyph[offset] = NO_GLYPH;
}
for (uint32_t i = 0; i < numGlyphs; ++i) {
uint32_t loc = ginfo[i].cluster;
if (loc < wordLength) {
charToGlyph[loc] = i;
}
}
int32_t glyphStart = 0; // looking for a clump that starts at this glyph
int32_t charStart = 0; // and this char index within the range of the run
bool roundI, roundB;
if (aVertical) {
GetRoundOffsetsToPixels(aDrawTarget, &roundB, &roundI);
} else {
GetRoundOffsetsToPixels(aDrawTarget, &roundI, &roundB);
}
int32_t appUnitsPerDevUnit = aShapedText->GetAppUnitsPerDevUnit();
gfxShapedText::CompressedGlyph *charGlyphs =
aShapedText->GetCharacterGlyphs() + aOffset;
// factor to convert 16.16 fixed-point pixels to app units
// (only used if not rounding)
double hb2appUnits = FixedToFloat(aShapedText->GetAppUnitsPerDevUnit());
// Residual from rounding of previous advance, for use in rounding the
// subsequent offset or advance appropriately. 16.16 fixed-point
//
// When rounding, the goal is to make the distance between glyphs and
// their base glyph equal to the integral number of pixels closest to that
// suggested by that shaper.
// i.e. posInfo[n].x_advance - posInfo[n].x_offset + posInfo[n+1].x_offset
//
// The value of the residual is the part of the desired distance that has
// not been included in integer offsets.
hb_position_t residual = 0;
// keep track of y-position to set glyph offsets if needed
nscoord bPos = 0;
const hb_glyph_position_t *posInfo =
hb_buffer_get_glyph_positions(aBuffer, nullptr);
while (glyphStart < int32_t(numGlyphs)) {
int32_t charEnd = ginfo[glyphStart].cluster;
int32_t glyphEnd = glyphStart;
int32_t charLimit = wordLength;
while (charEnd < charLimit) {
// This is normally executed once for each iteration of the outer loop,
// but in unusual cases where the character/glyph association is complex,
// the initial character range might correspond to a non-contiguous
// glyph range with "holes" in it. If so, we will repeat this loop to
// extend the character range until we have a contiguous glyph sequence.
charEnd += 1;
while (charEnd != charLimit && charToGlyph[charEnd] == NO_GLYPH) {
charEnd += 1;
}
// find the maximum glyph index covered by the clump so far
for (int32_t i = charStart; i < charEnd; ++i) {
if (charToGlyph[i] != NO_GLYPH) {
glyphEnd = std::max(glyphEnd, charToGlyph[i] + 1);
// update extent of glyph range
}
}
if (glyphEnd == glyphStart + 1) {
// for the common case of a single-glyph clump,
// we can skip the following checks
break;
}
if (glyphEnd == glyphStart) {
// no glyphs, try to extend the clump
continue;
}
// check whether all glyphs in the range are associated with the characters
// in our clump; if not, we have a discontinuous range, and should extend it
// unless we've reached the end of the text
bool allGlyphsAreWithinCluster = true;
for (int32_t i = glyphStart; i < glyphEnd; ++i) {
int32_t glyphCharIndex = ginfo[i].cluster;
if (glyphCharIndex < charStart || glyphCharIndex >= charEnd) {
allGlyphsAreWithinCluster = false;
break;
}
}
if (allGlyphsAreWithinCluster) {
break;
}
}
NS_ASSERTION(glyphStart < glyphEnd,
"character/glyph clump contains no glyphs!");
NS_ASSERTION(charStart != charEnd,
"character/glyph clump contains no characters!");
// Now charStart..charEnd is a ligature clump, corresponding to glyphStart..glyphEnd;
// Set baseCharIndex to the char we'll actually attach the glyphs to (1st of ligature),
// and endCharIndex to the limit (position beyond the last char),
// adjusting for the offset of the stringRange relative to the textRun.
int32_t baseCharIndex, endCharIndex;
while (charEnd < int32_t(wordLength) && charToGlyph[charEnd] == NO_GLYPH)
charEnd++;
baseCharIndex = charStart;
endCharIndex = charEnd;
// Then we check if the clump falls outside our actual string range;
// if so, just go to the next.
if (baseCharIndex >= int32_t(wordLength)) {
glyphStart = glyphEnd;
charStart = charEnd;
continue;
}
// Ensure we won't try to go beyond the valid length of the textRun's text
endCharIndex = std::min<int32_t>(endCharIndex, wordLength);
// Now we're ready to set the glyph info in the textRun
int32_t glyphsInClump = glyphEnd - glyphStart;
// Check for default-ignorable char that didn't get filtered, combined,
// etc by the shaping process, and remove from the run.
// (This may be done within harfbuzz eventually.)
if (glyphsInClump == 1 && baseCharIndex + 1 == endCharIndex &&
aShapedText->FilterIfIgnorable(aOffset + baseCharIndex,
aText[baseCharIndex])) {
glyphStart = glyphEnd;
charStart = charEnd;
continue;
}
// HarfBuzz gives us physical x- and y-coordinates, but we will store
// them as logical inline- and block-direction values in the textrun.
hb_position_t i_offset, i_advance; // inline-direction offset/advance
hb_position_t b_offset, b_advance; // block-direction offset/advance
if (aVertical) {
i_offset = posInfo[glyphStart].y_offset;
i_advance = posInfo[glyphStart].y_advance;
b_offset = posInfo[glyphStart].x_offset;
b_advance = posInfo[glyphStart].x_advance;
} else {
i_offset = posInfo[glyphStart].x_offset;
i_advance = posInfo[glyphStart].x_advance;
b_offset = posInfo[glyphStart].y_offset;
b_advance = posInfo[glyphStart].y_advance;
}
nscoord iOffset, advance;
if (roundI) {
iOffset =
appUnitsPerDevUnit * FixedToIntRound(i_offset + residual);
// Desired distance from the base glyph to the next reference point.
hb_position_t width = i_advance - i_offset;
int intWidth = FixedToIntRound(width);
residual = width - FloatToFixed(intWidth);
advance = appUnitsPerDevUnit * intWidth + iOffset;
} else {
iOffset = floor(hb2appUnits * i_offset + 0.5);
advance = floor(hb2appUnits * i_advance + 0.5);
}
// Check if it's a simple one-to-one mapping
if (glyphsInClump == 1 &&
gfxTextRun::CompressedGlyph::IsSimpleGlyphID(ginfo[glyphStart].codepoint) &&
gfxTextRun::CompressedGlyph::IsSimpleAdvance(advance) &&
charGlyphs[baseCharIndex].IsClusterStart() &&
iOffset == 0 && b_offset == 0 &&
b_advance == 0 && bPos == 0)
{
charGlyphs[baseCharIndex].SetSimpleGlyph(advance,
ginfo[glyphStart].codepoint);
} else {
// Collect all glyphs in a list to be assigned to the first char;
// there must be at least one in the clump, and we already measured
// its advance, hence the placement of the loop-exit test and the
// measurement of the next glyph.
// For vertical orientation, we add a "base offset" to compensate
// for the positioning within the cluster being based on horizontal
// glyph origin/offset.
hb_position_t baseIOffset, baseBOffset;
if (aVertical) {
baseIOffset = 2 * (i_offset - i_advance);
baseBOffset = GetGlyphHAdvance(ginfo[glyphStart].codepoint);
}
while (1) {
gfxTextRun::DetailedGlyph* details =
detailedGlyphs.AppendElement();
details->mGlyphID = ginfo[glyphStart].codepoint;
details->mXOffset = iOffset;
details->mAdvance = advance;
details->mYOffset = bPos -
(roundB ? appUnitsPerDevUnit * FixedToIntRound(b_offset)
: floor(hb2appUnits * b_offset + 0.5));
if (b_advance != 0) {
bPos -=
roundB ? appUnitsPerDevUnit * FixedToIntRound(b_advance)
: floor(hb2appUnits * b_advance + 0.5);
}
if (++glyphStart >= glyphEnd) {
break;
}
if (aVertical) {
i_offset = baseIOffset - posInfo[glyphStart].y_offset;
i_advance = posInfo[glyphStart].y_advance;
b_offset = baseBOffset - posInfo[glyphStart].x_offset;
b_advance = posInfo[glyphStart].x_advance;
} else {
i_offset = posInfo[glyphStart].x_offset;
i_advance = posInfo[glyphStart].x_advance;
b_offset = posInfo[glyphStart].y_offset;
b_advance = posInfo[glyphStart].y_advance;
}
if (roundI) {
iOffset = appUnitsPerDevUnit *
FixedToIntRound(i_offset + residual);
// Desired distance to the next reference point. The
// residual is considered here, and includes the residual
// from the base glyph offset and subsequent advances, so
// that the distance from the base glyph is optimized
// rather than the distance from combining marks.
i_advance += residual;
int intAdvance = FixedToIntRound(i_advance);
residual = i_advance - FloatToFixed(intAdvance);
advance = appUnitsPerDevUnit * intAdvance;
} else {
iOffset = floor(hb2appUnits * i_offset + 0.5);
advance = floor(hb2appUnits * i_advance + 0.5);
}
}
gfxShapedText::CompressedGlyph g;
g.SetComplex(charGlyphs[baseCharIndex].IsClusterStart(),
true, detailedGlyphs.Length());
aShapedText->SetGlyphs(aOffset + baseCharIndex,
g, detailedGlyphs.Elements());
detailedGlyphs.Clear();
}
// the rest of the chars in the group are ligature continuations,
// no associated glyphs
while (++baseCharIndex != endCharIndex &&
baseCharIndex < int32_t(wordLength)) {
gfxShapedText::CompressedGlyph &g = charGlyphs[baseCharIndex];
NS_ASSERTION(!g.IsSimpleGlyph(), "overwriting a simple glyph");
g.SetComplex(g.IsClusterStart(), false, 0);
}
glyphStart = glyphEnd;
charStart = charEnd;
}
return NS_OK;
}