gecko-dev/content/media/webaudio/AudioNodeStream.cpp
Ehsan Akhgari c689dbd103 Bug 1055367 - Move the code for AudioNodeStream and AudioNodeEngine to webaudio; r=roc
This code is specific to Web Audio, and is not really part of the
MediaStreamGraph code.  I've always hated how these files being in
two directories gets in the way while hacking on this code.

--HG--
rename : content/media/AudioNodeEngine.cpp => content/media/webaudio/AudioNodeEngine.cpp
rename : content/media/AudioNodeEngine.h => content/media/webaudio/AudioNodeEngine.h
rename : content/media/AudioNodeEngineNEON.cpp => content/media/webaudio/AudioNodeEngineNEON.cpp
rename : content/media/AudioNodeEngineNEON.h => content/media/webaudio/AudioNodeEngineNEON.h
rename : content/media/AudioNodeExternalInputStream.cpp => content/media/webaudio/AudioNodeExternalInputStream.cpp
rename : content/media/AudioNodeExternalInputStream.h => content/media/webaudio/AudioNodeExternalInputStream.h
rename : content/media/AudioNodeStream.cpp => content/media/webaudio/AudioNodeStream.cpp
rename : content/media/AudioNodeStream.h => content/media/webaudio/AudioNodeStream.h
2014-08-20 00:56:31 -04:00

633 lines
20 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*-*/
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "AudioNodeStream.h"
#include "MediaStreamGraphImpl.h"
#include "AudioNodeEngine.h"
#include "ThreeDPoint.h"
#include "AudioChannelFormat.h"
#include "AudioParamTimeline.h"
#include "AudioContext.h"
using namespace mozilla::dom;
namespace mozilla {
/**
* An AudioNodeStream produces a single audio track with ID
* AUDIO_TRACK. This track has rate AudioContext::sIdealAudioRate
* for regular audio contexts, and the rate requested by the web content
* for offline audio contexts.
* Each chunk in the track is a single block of WEBAUDIO_BLOCK_SIZE samples.
* Note: This must be a different value than MEDIA_STREAM_DEST_TRACK_ID
*/
AudioNodeStream::~AudioNodeStream()
{
MOZ_COUNT_DTOR(AudioNodeStream);
}
size_t
AudioNodeStream::SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const
{
size_t amount = 0;
// Not reported:
// - mEngine
amount += ProcessedMediaStream::SizeOfExcludingThis(aMallocSizeOf);
amount += mLastChunks.SizeOfExcludingThis(aMallocSizeOf);
for (size_t i = 0; i < mLastChunks.Length(); i++) {
// NB: This is currently unshared only as there are instances of
// double reporting in DMD otherwise.
amount += mLastChunks[i].SizeOfExcludingThisIfUnshared(aMallocSizeOf);
}
return amount;
}
size_t
AudioNodeStream::SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const
{
return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf);
}
void
AudioNodeStream::SizeOfAudioNodesIncludingThis(MallocSizeOf aMallocSizeOf,
AudioNodeSizes& aUsage) const
{
// Explicitly separate out the stream memory.
aUsage.mStream = SizeOfIncludingThis(aMallocSizeOf);
if (mEngine) {
// This will fill out the rest of |aUsage|.
mEngine->SizeOfIncludingThis(aMallocSizeOf, aUsage);
}
}
void
AudioNodeStream::SetStreamTimeParameter(uint32_t aIndex, AudioContext* aContext,
double aStreamTime)
{
class Message : public ControlMessage {
public:
Message(AudioNodeStream* aStream, uint32_t aIndex, MediaStream* aRelativeToStream,
double aStreamTime)
: ControlMessage(aStream), mStreamTime(aStreamTime),
mRelativeToStream(aRelativeToStream), mIndex(aIndex) {}
virtual void Run()
{
static_cast<AudioNodeStream*>(mStream)->
SetStreamTimeParameterImpl(mIndex, mRelativeToStream, mStreamTime);
}
double mStreamTime;
MediaStream* mRelativeToStream;
uint32_t mIndex;
};
MOZ_ASSERT(this);
GraphImpl()->AppendMessage(new Message(this, aIndex,
aContext->DestinationStream(),
aContext->DOMTimeToStreamTime(aStreamTime)));
}
void
AudioNodeStream::SetStreamTimeParameterImpl(uint32_t aIndex, MediaStream* aRelativeToStream,
double aStreamTime)
{
TrackTicks ticks = TicksFromDestinationTime(aRelativeToStream, aStreamTime);
mEngine->SetStreamTimeParameter(aIndex, ticks);
}
void
AudioNodeStream::SetDoubleParameter(uint32_t aIndex, double aValue)
{
class Message : public ControlMessage {
public:
Message(AudioNodeStream* aStream, uint32_t aIndex, double aValue)
: ControlMessage(aStream), mValue(aValue), mIndex(aIndex) {}
virtual void Run()
{
static_cast<AudioNodeStream*>(mStream)->Engine()->
SetDoubleParameter(mIndex, mValue);
}
double mValue;
uint32_t mIndex;
};
MOZ_ASSERT(this);
GraphImpl()->AppendMessage(new Message(this, aIndex, aValue));
}
void
AudioNodeStream::SetInt32Parameter(uint32_t aIndex, int32_t aValue)
{
class Message : public ControlMessage {
public:
Message(AudioNodeStream* aStream, uint32_t aIndex, int32_t aValue)
: ControlMessage(aStream), mValue(aValue), mIndex(aIndex) {}
virtual void Run()
{
static_cast<AudioNodeStream*>(mStream)->Engine()->
SetInt32Parameter(mIndex, mValue);
}
int32_t mValue;
uint32_t mIndex;
};
MOZ_ASSERT(this);
GraphImpl()->AppendMessage(new Message(this, aIndex, aValue));
}
void
AudioNodeStream::SetTimelineParameter(uint32_t aIndex,
const AudioParamTimeline& aValue)
{
class Message : public ControlMessage {
public:
Message(AudioNodeStream* aStream, uint32_t aIndex,
const AudioParamTimeline& aValue)
: ControlMessage(aStream),
mValue(aValue),
mSampleRate(aStream->SampleRate()),
mIndex(aIndex) {}
virtual void Run()
{
static_cast<AudioNodeStream*>(mStream)->Engine()->
SetTimelineParameter(mIndex, mValue, mSampleRate);
}
AudioParamTimeline mValue;
TrackRate mSampleRate;
uint32_t mIndex;
};
GraphImpl()->AppendMessage(new Message(this, aIndex, aValue));
}
void
AudioNodeStream::SetThreeDPointParameter(uint32_t aIndex, const ThreeDPoint& aValue)
{
class Message : public ControlMessage {
public:
Message(AudioNodeStream* aStream, uint32_t aIndex, const ThreeDPoint& aValue)
: ControlMessage(aStream), mValue(aValue), mIndex(aIndex) {}
virtual void Run()
{
static_cast<AudioNodeStream*>(mStream)->Engine()->
SetThreeDPointParameter(mIndex, mValue);
}
ThreeDPoint mValue;
uint32_t mIndex;
};
MOZ_ASSERT(this);
GraphImpl()->AppendMessage(new Message(this, aIndex, aValue));
}
void
AudioNodeStream::SetBuffer(already_AddRefed<ThreadSharedFloatArrayBufferList>&& aBuffer)
{
class Message : public ControlMessage {
public:
Message(AudioNodeStream* aStream,
already_AddRefed<ThreadSharedFloatArrayBufferList>& aBuffer)
: ControlMessage(aStream), mBuffer(aBuffer) {}
virtual void Run()
{
static_cast<AudioNodeStream*>(mStream)->Engine()->
SetBuffer(mBuffer.forget());
}
nsRefPtr<ThreadSharedFloatArrayBufferList> mBuffer;
};
MOZ_ASSERT(this);
GraphImpl()->AppendMessage(new Message(this, aBuffer));
}
void
AudioNodeStream::SetRawArrayData(nsTArray<float>& aData)
{
class Message : public ControlMessage {
public:
Message(AudioNodeStream* aStream,
nsTArray<float>& aData)
: ControlMessage(aStream)
{
mData.SwapElements(aData);
}
virtual void Run()
{
static_cast<AudioNodeStream*>(mStream)->Engine()->SetRawArrayData(mData);
}
nsTArray<float> mData;
};
MOZ_ASSERT(this);
GraphImpl()->AppendMessage(new Message(this, aData));
}
void
AudioNodeStream::SetChannelMixingParameters(uint32_t aNumberOfChannels,
ChannelCountMode aChannelCountMode,
ChannelInterpretation aChannelInterpretation)
{
class Message : public ControlMessage {
public:
Message(AudioNodeStream* aStream,
uint32_t aNumberOfChannels,
ChannelCountMode aChannelCountMode,
ChannelInterpretation aChannelInterpretation)
: ControlMessage(aStream),
mNumberOfChannels(aNumberOfChannels),
mChannelCountMode(aChannelCountMode),
mChannelInterpretation(aChannelInterpretation)
{}
virtual void Run()
{
static_cast<AudioNodeStream*>(mStream)->
SetChannelMixingParametersImpl(mNumberOfChannels, mChannelCountMode,
mChannelInterpretation);
}
uint32_t mNumberOfChannels;
ChannelCountMode mChannelCountMode;
ChannelInterpretation mChannelInterpretation;
};
MOZ_ASSERT(this);
GraphImpl()->AppendMessage(new Message(this, aNumberOfChannels,
aChannelCountMode,
aChannelInterpretation));
}
void
AudioNodeStream::SetPassThrough(bool aPassThrough)
{
class Message : public ControlMessage {
public:
Message(AudioNodeStream* aStream, bool aPassThrough)
: ControlMessage(aStream), mPassThrough(aPassThrough) {}
virtual void Run()
{
static_cast<AudioNodeStream*>(mStream)->mPassThrough = mPassThrough;
}
bool mPassThrough;
};
MOZ_ASSERT(this);
GraphImpl()->AppendMessage(new Message(this, aPassThrough));
}
void
AudioNodeStream::SetChannelMixingParametersImpl(uint32_t aNumberOfChannels,
ChannelCountMode aChannelCountMode,
ChannelInterpretation aChannelInterpretation)
{
// Make sure that we're not clobbering any significant bits by fitting these
// values in 16 bits.
MOZ_ASSERT(int(aChannelCountMode) < INT16_MAX);
MOZ_ASSERT(int(aChannelInterpretation) < INT16_MAX);
mNumberOfInputChannels = aNumberOfChannels;
mChannelCountMode = aChannelCountMode;
mChannelInterpretation = aChannelInterpretation;
}
uint32_t
AudioNodeStream::ComputedNumberOfChannels(uint32_t aInputChannelCount)
{
switch (mChannelCountMode) {
case ChannelCountMode::Explicit:
// Disregard the channel count we've calculated from inputs, and just use
// mNumberOfInputChannels.
return mNumberOfInputChannels;
case ChannelCountMode::Clamped_max:
// Clamp the computed output channel count to mNumberOfInputChannels.
return std::min(aInputChannelCount, mNumberOfInputChannels);
default:
case ChannelCountMode::Max:
// Nothing to do here, just shut up the compiler warning.
return aInputChannelCount;
}
}
void
AudioNodeStream::ObtainInputBlock(AudioChunk& aTmpChunk, uint32_t aPortIndex)
{
uint32_t inputCount = mInputs.Length();
uint32_t outputChannelCount = 1;
nsAutoTArray<AudioChunk*,250> inputChunks;
for (uint32_t i = 0; i < inputCount; ++i) {
if (aPortIndex != mInputs[i]->InputNumber()) {
// This input is connected to a different port
continue;
}
MediaStream* s = mInputs[i]->GetSource();
AudioNodeStream* a = static_cast<AudioNodeStream*>(s);
MOZ_ASSERT(a == s->AsAudioNodeStream());
if (a->IsAudioParamStream()) {
continue;
}
AudioChunk* chunk = &a->mLastChunks[mInputs[i]->OutputNumber()];
MOZ_ASSERT(chunk);
if (chunk->IsNull() || chunk->mChannelData.IsEmpty()) {
continue;
}
inputChunks.AppendElement(chunk);
outputChannelCount =
GetAudioChannelsSuperset(outputChannelCount, chunk->mChannelData.Length());
}
outputChannelCount = ComputedNumberOfChannels(outputChannelCount);
uint32_t inputChunkCount = inputChunks.Length();
if (inputChunkCount == 0 ||
(inputChunkCount == 1 && inputChunks[0]->mChannelData.Length() == 0)) {
aTmpChunk.SetNull(WEBAUDIO_BLOCK_SIZE);
return;
}
if (inputChunkCount == 1 &&
inputChunks[0]->mChannelData.Length() == outputChannelCount) {
aTmpChunk = *inputChunks[0];
return;
}
if (outputChannelCount == 0) {
aTmpChunk.SetNull(WEBAUDIO_BLOCK_SIZE);
return;
}
AllocateAudioBlock(outputChannelCount, &aTmpChunk);
// The static storage here should be 1KB, so it's fine
nsAutoTArray<float, GUESS_AUDIO_CHANNELS*WEBAUDIO_BLOCK_SIZE> downmixBuffer;
for (uint32_t i = 0; i < inputChunkCount; ++i) {
AccumulateInputChunk(i, *inputChunks[i], &aTmpChunk, &downmixBuffer);
}
}
void
AudioNodeStream::AccumulateInputChunk(uint32_t aInputIndex, const AudioChunk& aChunk,
AudioChunk* aBlock,
nsTArray<float>* aDownmixBuffer)
{
nsAutoTArray<const void*,GUESS_AUDIO_CHANNELS> channels;
UpMixDownMixChunk(&aChunk, aBlock->mChannelData.Length(), channels, *aDownmixBuffer);
for (uint32_t c = 0; c < channels.Length(); ++c) {
const float* inputData = static_cast<const float*>(channels[c]);
float* outputData = static_cast<float*>(const_cast<void*>(aBlock->mChannelData[c]));
if (inputData) {
if (aInputIndex == 0) {
AudioBlockCopyChannelWithScale(inputData, aChunk.mVolume, outputData);
} else {
AudioBlockAddChannelWithScale(inputData, aChunk.mVolume, outputData);
}
} else {
if (aInputIndex == 0) {
PodZero(outputData, WEBAUDIO_BLOCK_SIZE);
}
}
}
}
void
AudioNodeStream::UpMixDownMixChunk(const AudioChunk* aChunk,
uint32_t aOutputChannelCount,
nsTArray<const void*>& aOutputChannels,
nsTArray<float>& aDownmixBuffer)
{
static const float silenceChannel[WEBAUDIO_BLOCK_SIZE] = {0.f};
aOutputChannels.AppendElements(aChunk->mChannelData);
if (aOutputChannels.Length() < aOutputChannelCount) {
if (mChannelInterpretation == ChannelInterpretation::Speakers) {
AudioChannelsUpMix(&aOutputChannels, aOutputChannelCount, nullptr);
NS_ASSERTION(aOutputChannelCount == aOutputChannels.Length(),
"We called GetAudioChannelsSuperset to avoid this");
} else {
// Fill up the remaining aOutputChannels by zeros
for (uint32_t j = aOutputChannels.Length(); j < aOutputChannelCount; ++j) {
aOutputChannels.AppendElement(silenceChannel);
}
}
} else if (aOutputChannels.Length() > aOutputChannelCount) {
if (mChannelInterpretation == ChannelInterpretation::Speakers) {
nsAutoTArray<float*,GUESS_AUDIO_CHANNELS> outputChannels;
outputChannels.SetLength(aOutputChannelCount);
aDownmixBuffer.SetLength(aOutputChannelCount * WEBAUDIO_BLOCK_SIZE);
for (uint32_t j = 0; j < aOutputChannelCount; ++j) {
outputChannels[j] = &aDownmixBuffer[j * WEBAUDIO_BLOCK_SIZE];
}
AudioChannelsDownMix(aOutputChannels, outputChannels.Elements(),
aOutputChannelCount, WEBAUDIO_BLOCK_SIZE);
aOutputChannels.SetLength(aOutputChannelCount);
for (uint32_t j = 0; j < aOutputChannels.Length(); ++j) {
aOutputChannels[j] = outputChannels[j];
}
} else {
// Drop the remaining aOutputChannels
aOutputChannels.RemoveElementsAt(aOutputChannelCount,
aOutputChannels.Length() - aOutputChannelCount);
}
}
}
// The MediaStreamGraph guarantees that this is actually one block, for
// AudioNodeStreams.
void
AudioNodeStream::ProcessInput(GraphTime aFrom, GraphTime aTo, uint32_t aFlags)
{
if (!mFinished) {
EnsureTrack(AUDIO_TRACK, mSampleRate);
}
// No more tracks will be coming
mBuffer.AdvanceKnownTracksTime(STREAM_TIME_MAX);
uint16_t outputCount = std::max(uint16_t(1), mEngine->OutputCount());
mLastChunks.SetLength(outputCount);
// Consider this stream blocked if it has already finished output. Normally
// mBlocked would reflect this, but due to rounding errors our audio track may
// appear to extend slightly beyond aFrom, so we might not be blocked yet.
bool blocked = mFinished || mBlocked.GetAt(aFrom);
// If the stream has finished at this time, it will be blocked.
if (blocked || InMutedCycle()) {
for (uint16_t i = 0; i < outputCount; ++i) {
mLastChunks[i].SetNull(WEBAUDIO_BLOCK_SIZE);
}
} else {
// We need to generate at least one input
uint16_t maxInputs = std::max(uint16_t(1), mEngine->InputCount());
OutputChunks inputChunks;
inputChunks.SetLength(maxInputs);
for (uint16_t i = 0; i < maxInputs; ++i) {
ObtainInputBlock(inputChunks[i], i);
}
bool finished = false;
if (mPassThrough) {
MOZ_ASSERT(outputCount == 1, "For now, we only support nodes that have one output port");
mLastChunks[0] = inputChunks[0];
} else {
if (maxInputs <= 1 && mEngine->OutputCount() <= 1) {
mEngine->ProcessBlock(this, inputChunks[0], &mLastChunks[0], &finished);
} else {
mEngine->ProcessBlocksOnPorts(this, inputChunks, mLastChunks, &finished);
}
}
for (uint16_t i = 0; i < outputCount; ++i) {
NS_ASSERTION(mLastChunks[i].GetDuration() == WEBAUDIO_BLOCK_SIZE,
"Invalid WebAudio chunk size");
}
if (finished) {
mMarkAsFinishedAfterThisBlock = true;
}
if (mDisabledTrackIDs.Contains(static_cast<TrackID>(AUDIO_TRACK))) {
for (uint32_t i = 0; i < outputCount; ++i) {
mLastChunks[i].SetNull(WEBAUDIO_BLOCK_SIZE);
}
}
}
if (!blocked) {
// Don't output anything while blocked
AdvanceOutputSegment();
if (mMarkAsFinishedAfterThisBlock && (aFlags & ALLOW_FINISH)) {
// This stream was finished the last time that we looked at it, and all
// of the depending streams have finished their output as well, so now
// it's time to mark this stream as finished.
FinishOutput();
}
}
}
void
AudioNodeStream::ProduceOutputBeforeInput(GraphTime aFrom)
{
MOZ_ASSERT(mEngine->AsDelayNodeEngine());
MOZ_ASSERT(mEngine->OutputCount() == 1,
"DelayNodeEngine output count should be 1");
MOZ_ASSERT(!InMutedCycle(), "DelayNodes should break cycles");
mLastChunks.SetLength(1);
// Consider this stream blocked if it has already finished output. Normally
// mBlocked would reflect this, but due to rounding errors our audio track may
// appear to extend slightly beyond aFrom, so we might not be blocked yet.
bool blocked = mFinished || mBlocked.GetAt(aFrom);
// If the stream has finished at this time, it will be blocked.
if (blocked) {
mLastChunks[0].SetNull(WEBAUDIO_BLOCK_SIZE);
} else {
mEngine->ProduceBlockBeforeInput(&mLastChunks[0]);
NS_ASSERTION(mLastChunks[0].GetDuration() == WEBAUDIO_BLOCK_SIZE,
"Invalid WebAudio chunk size");
if (mDisabledTrackIDs.Contains(static_cast<TrackID>(AUDIO_TRACK))) {
mLastChunks[0].SetNull(WEBAUDIO_BLOCK_SIZE);
}
}
}
void
AudioNodeStream::AdvanceOutputSegment()
{
StreamBuffer::Track* track = EnsureTrack(AUDIO_TRACK, mSampleRate);
AudioSegment* segment = track->Get<AudioSegment>();
if (mKind == MediaStreamGraph::EXTERNAL_STREAM) {
segment->AppendAndConsumeChunk(&mLastChunks[0]);
} else {
segment->AppendNullData(mLastChunks[0].GetDuration());
}
for (uint32_t j = 0; j < mListeners.Length(); ++j) {
MediaStreamListener* l = mListeners[j];
AudioChunk copyChunk = mLastChunks[0];
AudioSegment tmpSegment;
tmpSegment.AppendAndConsumeChunk(&copyChunk);
l->NotifyQueuedTrackChanges(Graph(), AUDIO_TRACK,
mSampleRate, segment->GetDuration(), 0,
tmpSegment);
}
}
TrackTicks
AudioNodeStream::GetCurrentPosition()
{
NS_ASSERTION(!mFinished, "Don't create another track after finishing");
return EnsureTrack(AUDIO_TRACK, mSampleRate)->Get<AudioSegment>()->GetDuration();
}
void
AudioNodeStream::FinishOutput()
{
if (IsFinishedOnGraphThread()) {
return;
}
StreamBuffer::Track* track = EnsureTrack(AUDIO_TRACK, mSampleRate);
track->SetEnded();
FinishOnGraphThread();
for (uint32_t j = 0; j < mListeners.Length(); ++j) {
MediaStreamListener* l = mListeners[j];
AudioSegment emptySegment;
l->NotifyQueuedTrackChanges(Graph(), AUDIO_TRACK,
mSampleRate,
track->GetSegment()->GetDuration(),
MediaStreamListener::TRACK_EVENT_ENDED, emptySegment);
}
}
double
AudioNodeStream::TimeFromDestinationTime(AudioNodeStream* aDestination,
double aSeconds)
{
MOZ_ASSERT(aDestination->SampleRate() == SampleRate());
double destinationSeconds = std::max(0.0, aSeconds);
StreamTime streamTime =
aDestination->SecondsToStreamTimeRoundDown(destinationSeconds);
// MediaTime does not have the resolution of double
double offset =
destinationSeconds - aDestination->StreamTimeToSeconds(streamTime);
GraphTime graphTime = aDestination->StreamTimeToGraphTime(streamTime);
StreamTime thisStreamTime = GraphTimeToStreamTimeOptimistic(graphTime);
double thisSeconds = StreamTimeToSeconds(thisStreamTime) + offset;
MOZ_ASSERT(thisSeconds >= 0.0);
return thisSeconds;
}
TrackTicks
AudioNodeStream::TicksFromDestinationTime(MediaStream* aDestination,
double aSeconds)
{
AudioNodeStream* destination = aDestination->AsAudioNodeStream();
MOZ_ASSERT(destination);
double thisSeconds = TimeFromDestinationTime(destination, aSeconds);
// Round to nearest
TrackTicks ticks = thisSeconds * SampleRate() + 0.5;
return ticks;
}
double
AudioNodeStream::DestinationTimeFromTicks(AudioNodeStream* aDestination,
TrackTicks aPosition)
{
MOZ_ASSERT(SampleRate() == aDestination->SampleRate());
StreamTime sourceTime = TicksToTimeRoundDown(SampleRate(), aPosition);
GraphTime graphTime = StreamTimeToGraphTime(sourceTime);
StreamTime destinationTime = aDestination->GraphTimeToStreamTimeOptimistic(graphTime);
return StreamTimeToSeconds(destinationTime);
}
}