gecko-dev/ipc/glue/MessageChannel.h
Jim Porter 9354dfda4a Bug 1557447 - Profiler support for IPC information; r=nika,smaug
This adds the ability to add profile markers for both the sender and recipient
sides of IPC messages. These can then be correlated with one another in the
profile visualization. For the UI component of this patch, see
<https://github.com/firefox-devtools/profiler/pull/2172>.

Differential Revision: https://phabricator.services.mozilla.com/D42226

--HG--
extra : moz-landing-system : lando
2019-10-21 20:51:07 +00:00

885 lines
29 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: sw=2 ts=4 et :
*/
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef ipc_glue_MessageChannel_h
#define ipc_glue_MessageChannel_h 1
#include "base/basictypes.h"
#include "base/message_loop.h"
#include "nsIMemoryReporter.h"
#include "mozilla/Atomics.h"
#include "mozilla/DebugOnly.h"
#include "mozilla/Monitor.h"
#include "mozilla/MozPromise.h"
#include "mozilla/Vector.h"
#if defined(OS_WIN)
# include "mozilla/ipc/Neutering.h"
#endif // defined(OS_WIN)
#include "mozilla/ipc/Transport.h"
#include "MessageLink.h"
#include "nsThreadUtils.h"
#include <deque>
#include <functional>
#include <map>
#include <math.h>
#include <stack>
#include <vector>
class nsIEventTarget;
namespace mozilla {
namespace ipc {
class MessageChannel;
class IToplevelProtocol;
class ActorLifecycleProxy;
class RefCountedMonitor : public Monitor {
public:
RefCountedMonitor() : Monitor("mozilla.ipc.MessageChannel.mMonitor") {}
NS_INLINE_DECL_THREADSAFE_REFCOUNTING(RefCountedMonitor)
private:
~RefCountedMonitor() {}
};
enum class MessageDirection {
eSending,
eReceiving,
};
enum class SyncSendError {
SendSuccess,
PreviousTimeout,
SendingCPOWWhileDispatchingSync,
SendingCPOWWhileDispatchingUrgent,
NotConnectedBeforeSend,
DisconnectedDuringSend,
CancelledBeforeSend,
CancelledAfterSend,
TimedOut,
ReplyError,
};
enum class ResponseRejectReason {
SendError,
ChannelClosed,
HandlerRejected,
ActorDestroyed,
EndGuard_,
};
template <typename T>
using ResolveCallback = std::function<void(T&&)>;
using RejectCallback = std::function<void(ResponseRejectReason)>;
enum ChannelState {
ChannelClosed,
ChannelOpening,
ChannelConnected,
ChannelTimeout,
ChannelClosing,
ChannelError
};
class AutoEnterTransaction;
class MessageChannel : HasResultCodes, MessageLoop::DestructionObserver {
friend class ProcessLink;
friend class ThreadLink;
#ifdef FUZZING
friend class ProtocolFuzzerHelper;
#endif
class CxxStackFrame;
class InterruptFrame;
typedef mozilla::Monitor Monitor;
// We could templatize the actor type but it would unnecessarily
// expand the code size. Using the actor address as the
// identifier is already good enough.
typedef void* ActorIdType;
public:
struct UntypedCallbackHolder {
UntypedCallbackHolder(ActorIdType aActorId, RejectCallback&& aReject)
: mActorId(aActorId), mReject(std::move(aReject)) {}
virtual ~UntypedCallbackHolder() {}
void Reject(ResponseRejectReason&& aReason) { mReject(std::move(aReason)); }
ActorIdType mActorId;
RejectCallback mReject;
};
template <typename Value>
struct CallbackHolder : public UntypedCallbackHolder {
CallbackHolder(ActorIdType aActorId, ResolveCallback<Value>&& aResolve,
RejectCallback&& aReject)
: UntypedCallbackHolder(aActorId, std::move(aReject)),
mResolve(std::move(aResolve)) {}
void Resolve(Value&& aReason) { mResolve(std::move(aReason)); }
ResolveCallback<Value> mResolve;
};
private:
static Atomic<size_t> gUnresolvedResponses;
friend class PendingResponseReporter;
public:
static const int32_t kNoTimeout;
typedef IPC::Message Message;
typedef IPC::MessageInfo MessageInfo;
typedef mozilla::ipc::Transport Transport;
explicit MessageChannel(const char* aName, IToplevelProtocol* aListener);
~MessageChannel();
IToplevelProtocol* Listener() const { return mListener; }
// "Open" from the perspective of the transport layer; the underlying
// socketpair/pipe should already be created.
//
// Returns true if the transport layer was successfully connected,
// i.e., mChannelState == ChannelConnected.
bool Open(Transport* aTransport, MessageLoop* aIOLoop = 0,
Side aSide = UnknownSide);
// "Open" a connection to another thread in the same process.
//
// Returns true if the transport layer was successfully connected,
// i.e., mChannelState == ChannelConnected.
//
// For more details on the process of opening a channel between
// threads, see the extended comment on this function
// in MessageChannel.cpp.
bool Open(MessageChannel* aTargetChan, nsIEventTarget* aEventTarget,
Side aSide);
// "Open" a connection to an actor on the current thread.
//
// Returns true if the transport layer was successfully connected,
// i.e., mChannelState == ChannelConnected.
//
// Same-thread channels may not perform synchronous or blocking message
// sends, to avoid deadlocks.
bool OpenOnSameThread(MessageChannel* aTargetChan, Side aSide);
// Close the underlying transport channel.
void Close();
// Force the channel to behave as if a channel error occurred. Valid
// for process links only, not thread links.
void CloseWithError();
void CloseWithTimeout();
void SetAbortOnError(bool abort) { mAbortOnError = abort; }
// Call aInvoke for each pending message until it returns false.
// XXX: You must get permission from an IPC peer to use this function
// since it requires custom deserialization and re-orders events.
void PeekMessages(const std::function<bool(const Message& aMsg)>& aInvoke);
// Misc. behavioral traits consumers can request for this channel
enum ChannelFlags {
REQUIRE_DEFAULT = 0,
// Windows: if this channel operates on the UI thread, indicates
// WindowsMessageLoop code should enable deferred native message
// handling to prevent deadlocks. Should only be used for protocols
// that manage child processes which might create native UI, like
// plugins.
REQUIRE_DEFERRED_MESSAGE_PROTECTION = 1 << 0,
// Windows: When this flag is specified, any wait that occurs during
// synchronous IPC will be alertable, thus allowing a11y code in the
// chrome process to reenter content while content is waiting on a
// synchronous call.
REQUIRE_A11Y_REENTRY = 1 << 1,
};
void SetChannelFlags(ChannelFlags aFlags) { mFlags = aFlags; }
ChannelFlags GetChannelFlags() { return mFlags; }
// Asynchronously send a message to the other side of the channel
bool Send(Message* aMsg);
// Asynchronously send a message to the other side of the channel
// and wait for asynchronous reply.
template <typename Value>
void Send(Message* aMsg, ActorIdType aActorId,
ResolveCallback<Value>&& aResolve, RejectCallback&& aReject) {
int32_t seqno = NextSeqno();
aMsg->set_seqno(seqno);
if (!Send(aMsg)) {
aReject(ResponseRejectReason::SendError);
return;
}
UniquePtr<UntypedCallbackHolder> callback =
MakeUnique<CallbackHolder<Value>>(aActorId, std::move(aResolve),
std::move(aReject));
mPendingResponses.insert(std::make_pair(seqno, std::move(callback)));
gUnresolvedResponses++;
}
bool SendBuildIDsMatchMessage(const char* aParentBuildI);
bool DoBuildIDsMatch() { return mBuildIDsConfirmedMatch; }
// Asynchronously deliver a message back to this side of the
// channel
bool Echo(Message* aMsg);
// Synchronously send |msg| (i.e., wait for |reply|)
bool Send(Message* aMsg, Message* aReply);
// Make an Interrupt call to the other side of the channel
bool Call(Message* aMsg, Message* aReply);
// Wait until a message is received
bool WaitForIncomingMessage();
bool CanSend() const;
// Remove and return a callback that needs reply
UniquePtr<UntypedCallbackHolder> PopCallback(const Message& aMsg);
// Used to reject and remove pending responses owned by the given
// actor when it's about to be destroyed.
void RejectPendingResponsesForActor(ActorIdType aActorId);
// If sending a sync message returns an error, this function gives a more
// descriptive error message.
SyncSendError LastSendError() const {
AssertWorkerThread();
return mLastSendError;
}
// Currently only for debugging purposes, doesn't aquire mMonitor.
ChannelState GetChannelState__TotallyRacy() const { return mChannelState; }
void SetReplyTimeoutMs(int32_t aTimeoutMs);
bool IsOnCxxStack() const { return !mCxxStackFrames.empty(); }
bool IsInTransaction() const;
void CancelCurrentTransaction();
// Force all calls to Send to defer actually sending messages. This will
// cause sync messages to block until another thread calls
// StopPostponingSends.
//
// This must be called from the worker thread.
void BeginPostponingSends();
// Stop postponing sent messages, and immediately flush all postponed
// messages to the link. This may be called from any thread.
//
// Note that there are no ordering guarantees between two different
// MessageChannels. If channel B sends a message, then stops postponing
// channel A, messages from A may arrive before B. The easiest way to order
// this, if needed, is to make B send a sync message.
void StopPostponingSends();
/**
* This function is used by hang annotation code to determine which IPDL
* actor is highest in the call stack at the time of the hang. It should
* be called from the main thread when a sync or intr message is about to
* be sent.
*/
int32_t GetTopmostMessageRoutingId() const;
// Unsound_IsClosed and Unsound_NumQueuedMessages are safe to call from any
// thread, but they make no guarantees about whether you'll get an
// up-to-date value; the values are written on one thread and read without
// locking, on potentially different threads. Thus you should only use
// them when you don't particularly care about getting a recent value (e.g.
// in a memory report).
bool Unsound_IsClosed() const {
return mLink ? mLink->Unsound_IsClosed() : true;
}
uint32_t Unsound_NumQueuedMessages() const {
return mLink ? mLink->Unsound_NumQueuedMessages() : 0;
}
static bool IsPumpingMessages() { return sIsPumpingMessages; }
static void SetIsPumpingMessages(bool aIsPumping) {
sIsPumpingMessages = aIsPumping;
}
/**
* Does this MessageChannel cross process boundaries?
*/
bool IsCrossProcess() const { return mIsCrossProcess; }
// Return whether a message definitely originated from a middleman process,
// due to its sequence number.
static bool MessageOriginatesFromMiddleman(const Message& aMessage);
#ifdef OS_WIN
struct MOZ_STACK_CLASS SyncStackFrame {
SyncStackFrame(MessageChannel* channel, bool interrupt);
~SyncStackFrame();
bool mInterrupt;
bool mSpinNestedEvents;
bool mListenerNotified;
MessageChannel* mChannel;
// The previous stack frame for this channel.
SyncStackFrame* mPrev;
// The previous stack frame on any channel.
SyncStackFrame* mStaticPrev;
};
friend struct MessageChannel::SyncStackFrame;
static bool IsSpinLoopActive() {
for (SyncStackFrame* frame = sStaticTopFrame; frame; frame = frame->mPrev) {
if (frame->mSpinNestedEvents) return true;
}
return false;
}
protected:
// The deepest sync stack frame for this channel.
SyncStackFrame* mTopFrame;
bool mIsSyncWaitingOnNonMainThread;
// The deepest sync stack frame on any channel.
static SyncStackFrame* sStaticTopFrame;
public:
void ProcessNativeEventsInInterruptCall();
static void NotifyGeckoEventDispatch();
private:
void SpinInternalEventLoop();
# if defined(ACCESSIBILITY)
bool WaitForSyncNotifyWithA11yReentry();
# endif // defined(ACCESSIBILITY)
#endif // defined(OS_WIN)
private:
void CommonThreadOpenInit(MessageChannel* aTargetChan, Side aSide);
void OnOpenAsSlave(MessageChannel* aTargetChan, Side aSide);
void PostErrorNotifyTask();
void OnNotifyMaybeChannelError();
void ReportConnectionError(const char* aChannelName,
Message* aMsg = nullptr) const;
void ReportMessageRouteError(const char* channelName) const;
bool MaybeHandleError(Result code, const Message& aMsg,
const char* channelName);
void Clear();
// Send OnChannelConnected notification to listeners.
void DispatchOnChannelConnected();
bool InterruptEventOccurred();
bool HasPendingEvents();
void ProcessPendingRequests(AutoEnterTransaction& aTransaction);
bool ProcessPendingRequest(Message&& aUrgent);
void MaybeUndeferIncall();
void EnqueuePendingMessages();
// Dispatches an incoming message to its appropriate handler.
void DispatchMessage(Message&& aMsg);
// DispatchMessage will route to one of these functions depending on the
// protocol type of the message.
void DispatchSyncMessage(ActorLifecycleProxy* aProxy, const Message& aMsg,
Message*& aReply);
void DispatchAsyncMessage(ActorLifecycleProxy* aProxy, const Message& aMsg);
void DispatchInterruptMessage(ActorLifecycleProxy* aProxy, Message&& aMsg,
size_t aStackDepth);
// Return true if the wait ended because a notification was received.
//
// Return false if the time elapsed from when we started the process of
// waiting until afterwards exceeded the currently allotted timeout.
// That *DOES NOT* mean false => "no event" (== timeout); there are many
// circumstances that could cause the measured elapsed time to exceed the
// timeout EVEN WHEN we were notified.
//
// So in sum: true is a meaningful return value; false isn't,
// necessarily.
bool WaitForSyncNotify(bool aHandleWindowsMessages);
bool WaitForInterruptNotify();
bool WaitResponse(bool aWaitTimedOut);
bool ShouldContinueFromTimeout();
void EndTimeout();
void CancelTransaction(int transaction);
void RepostAllMessages();
// The "remote view of stack depth" can be different than the
// actual stack depth when there are out-of-turn replies. When we
// receive one, our actual Interrupt stack depth doesn't decrease, but
// the other side (that sent the reply) thinks it has. So, the
// "view" returned here is |stackDepth| minus the number of
// out-of-turn replies.
//
// Only called from the worker thread.
size_t RemoteViewOfStackDepth(size_t stackDepth) const {
AssertWorkerThread();
return stackDepth - mOutOfTurnReplies.size();
}
int32_t NextSeqno() {
AssertWorkerThread();
return (mSide == ChildSide) ? --mNextSeqno : ++mNextSeqno;
}
// This helper class manages mCxxStackDepth on behalf of MessageChannel.
// When the stack depth is incremented from zero to non-zero, it invokes
// a callback, and similarly for when the depth goes from non-zero to zero.
void EnteredCxxStack();
void ExitedCxxStack();
void EnteredCall();
void ExitedCall();
void EnteredSyncSend();
void ExitedSyncSend();
void DebugAbort(const char* file, int line, const char* cond, const char* why,
bool reply = false);
// This method is only safe to call on the worker thread, or in a
// debugger with all threads paused.
void DumpInterruptStack(const char* const pfx = "") const;
void AddProfilerMarker(const IPC::Message* aMessage,
MessageDirection aDirection);
private:
// Called from both threads
size_t InterruptStackDepth() const {
mMonitor->AssertCurrentThreadOwns();
return mInterruptStack.size();
}
bool AwaitingInterruptReply() const {
mMonitor->AssertCurrentThreadOwns();
return !mInterruptStack.empty();
}
bool AwaitingIncomingMessage() const {
mMonitor->AssertCurrentThreadOwns();
return mIsWaitingForIncoming;
}
class MOZ_STACK_CLASS AutoEnterWaitForIncoming {
public:
explicit AutoEnterWaitForIncoming(MessageChannel& aChannel)
: mChannel(aChannel) {
aChannel.mMonitor->AssertCurrentThreadOwns();
aChannel.mIsWaitingForIncoming = true;
}
~AutoEnterWaitForIncoming() { mChannel.mIsWaitingForIncoming = false; }
private:
MessageChannel& mChannel;
};
friend class AutoEnterWaitForIncoming;
// Returns true if we're dispatching an async message's callback.
bool DispatchingAsyncMessage() const {
AssertWorkerThread();
return mDispatchingAsyncMessage;
}
int DispatchingAsyncMessageNestedLevel() const {
AssertWorkerThread();
return mDispatchingAsyncMessageNestedLevel;
}
bool Connected() const;
private:
// Executed on the IO thread.
void NotifyWorkerThread();
// Return true if |aMsg| is a special message targeted at the IO
// thread, in which case it shouldn't be delivered to the worker.
bool MaybeInterceptSpecialIOMessage(const Message& aMsg);
void OnChannelConnected(int32_t peer_id);
// Tell the IO thread to close the channel and wait for it to ACK.
void SynchronouslyClose();
// Returns true if ShouldDeferMessage(aMsg) is guaranteed to return true.
// Otherwise, the result of ShouldDeferMessage(aMsg) may be true or false,
// depending on context.
static bool IsAlwaysDeferred(const Message& aMsg);
// Helper for sending a message via the link. This should only be used for
// non-special messages that might have to be postponed.
void SendMessageToLink(Message* aMsg);
bool WasTransactionCanceled(int transaction);
bool ShouldDeferMessage(const Message& aMsg);
bool ShouldDeferInterruptMessage(const Message& aMsg, size_t aStackDepth);
void OnMessageReceivedFromLink(Message&& aMsg);
void OnChannelErrorFromLink();
private:
// Run on the not current thread.
void NotifyChannelClosed();
void NotifyMaybeChannelError();
private:
// Can be run on either thread
void AssertWorkerThread() const {
MOZ_ASSERT(mWorkerThread, "Channel hasn't been opened yet");
MOZ_RELEASE_ASSERT(mWorkerThread == GetCurrentVirtualThread(),
"not on worker thread!");
}
// The "link" thread is either the I/O thread (ProcessLink), the other
// actor's work thread (ThreadLink), or the worker thread (same-thread
// channels).
void AssertLinkThread() const {
if (mIsSameThreadChannel) {
// If we're a same-thread channel, we have to be on our worker
// thread.
AssertWorkerThread();
return;
}
// If we aren't a same-thread channel, our "link" thread is _not_ our
// worker thread!
MOZ_ASSERT(mWorkerThread, "Channel hasn't been opened yet");
MOZ_RELEASE_ASSERT(mWorkerThread != GetCurrentVirtualThread(),
"on worker thread but should not be!");
}
private:
class MessageTask : public CancelableRunnable,
public LinkedListElement<RefPtr<MessageTask>>,
public nsIRunnablePriority,
public nsIRunnableIPCMessageType {
public:
explicit MessageTask(MessageChannel* aChannel, Message&& aMessage);
NS_DECL_ISUPPORTS_INHERITED
NS_IMETHOD Run() override;
nsresult Cancel() override;
NS_IMETHOD GetPriority(uint32_t* aPriority) override;
NS_DECL_NSIRUNNABLEIPCMESSAGETYPE
void Post();
void Clear();
bool IsScheduled() const { return mScheduled; }
Message& Msg() { return mMessage; }
const Message& Msg() const { return mMessage; }
private:
MessageTask() = delete;
MessageTask(const MessageTask&) = delete;
~MessageTask() {}
MessageChannel* mChannel;
Message mMessage;
bool mScheduled : 1;
};
bool ShouldRunMessage(const Message& aMsg);
void RunMessage(MessageTask& aTask);
typedef LinkedList<RefPtr<MessageTask>> MessageQueue;
typedef std::map<size_t, Message> MessageMap;
typedef std::map<size_t, UniquePtr<UntypedCallbackHolder>> CallbackMap;
typedef IPC::Message::msgid_t msgid_t;
void WillDestroyCurrentMessageLoop() override;
private:
// This will be a string literal, so lifetime is not an issue.
const char* mName;
// Based on presumption the listener owns and overlives the channel,
// this is never nullified.
IToplevelProtocol* mListener;
ChannelState mChannelState;
RefPtr<RefCountedMonitor> mMonitor;
Side mSide;
bool mIsCrossProcess;
MessageLink* mLink;
MessageLoop* mWorkerLoop; // thread where work is done
RefPtr<CancelableRunnable>
mChannelErrorTask; // NotifyMaybeChannelError runnable
// Thread we are allowed to send and receive on. This persists even after
// mWorkerLoop is cleared during channel shutdown.
PRThread* mWorkerThread;
// Timeout periods are broken up in two to prevent system suspension from
// triggering an abort. This method (called by WaitForEvent with a 'did
// timeout' flag) decides if we should wait again for half of mTimeoutMs
// or give up.
int32_t mTimeoutMs;
bool mInTimeoutSecondHalf;
// Worker-thread only; sequence numbers for messages that require
// replies.
int32_t mNextSeqno;
static bool sIsPumpingMessages;
// If ::Send returns false, this gives a more descriptive error.
SyncSendError mLastSendError;
template <class T>
class AutoSetValue {
public:
explicit AutoSetValue(T& var, const T& newValue)
: mVar(var), mPrev(var), mNew(newValue) {
mVar = newValue;
}
~AutoSetValue() {
// The value may have been zeroed if the transaction was
// canceled. In that case we shouldn't return it to its previous
// value.
if (mVar == mNew) {
mVar = mPrev;
}
}
private:
T& mVar;
T mPrev;
T mNew;
};
bool mDispatchingAsyncMessage;
int mDispatchingAsyncMessageNestedLevel;
// When we send an urgent request from the parent process, we could race
// with an RPC message that was issued by the child beforehand. In this
// case, if the parent were to wake up while waiting for the urgent reply,
// and process the RPC, it could send an additional urgent message. The
// child would wake up to process the urgent message (as it always will),
// then send a reply, which could be received by the parent out-of-order
// with respect to the first urgent reply.
//
// To address this problem, urgent or RPC requests are associated with a
// "transaction". Whenever one side of the channel wishes to start a
// chain of RPC/urgent messages, it allocates a new transaction ID. Any
// messages the parent receives, not apart of this transaction, are
// deferred. When issuing RPC/urgent requests on top of a started
// transaction, the initiating transaction ID is used.
//
// To ensure IDs are unique, we use sequence numbers for transaction IDs,
// which grow in opposite directions from child to parent.
friend class AutoEnterTransaction;
AutoEnterTransaction* mTransactionStack;
int32_t CurrentNestedInsideSyncTransaction() const;
bool AwaitingSyncReply() const;
int AwaitingSyncReplyNestedLevel() const;
bool DispatchingSyncMessage() const;
int DispatchingSyncMessageNestedLevel() const;
#ifdef DEBUG
void AssertMaybeDeferredCountCorrect();
#else
void AssertMaybeDeferredCountCorrect() {}
#endif
// If a sync message times out, we store its sequence number here. Any
// future sync messages will fail immediately. Once the reply for original
// sync message is received, we allow sync messages again.
//
// When a message times out, nothing is done to inform the other side. The
// other side will eventually dispatch the message and send a reply. Our
// side is responsible for replying to all sync messages sent by the other
// side when it dispatches the timed out message. The response is always an
// error.
//
// A message is only timed out if it initiated a transaction. This avoids
// hitting a lot of corner cases with message nesting that we don't really
// care about.
int32_t mTimedOutMessageSeqno;
int mTimedOutMessageNestedLevel;
// Queue of all incoming messages.
//
// If both this side and the other side are functioning correctly, the queue
// can only be in certain configurations. Let
//
// |A<| be an async in-message,
// |S<| be a sync in-message,
// |C<| be an Interrupt in-call,
// |R<| be an Interrupt reply.
//
// The queue can only match this configuration
//
// A<* (S< | C< | R< (?{mInterruptStack.size() == 1} A<* (S< | C<)))
//
// The other side can send as many async messages |A<*| as it wants before
// sending us a blocking message.
//
// The first case is |S<|, a sync in-msg. The other side must be blocked,
// and thus can't send us any more messages until we process the sync
// in-msg.
//
// The second case is |C<|, an Interrupt in-call; the other side must be
// blocked. (There's a subtlety here: this in-call might have raced with an
// out-call, but we detect that with the mechanism below,
// |mRemoteStackDepth|, and races don't matter to the queue.)
//
// Final case, the other side replied to our most recent out-call |R<|.
// If that was the *only* out-call on our stack,
// |?{mInterruptStack.size() == 1}|, then other side "finished with us,"
// and went back to its own business. That business might have included
// sending any number of async message |A<*| until sending a blocking
// message |(S< | C<)|. If we had more than one Interrupt call on our
// stack, the other side *better* not have sent us another blocking
// message, because it's blocked on a reply from us.
//
MessageQueue mPending;
// The number of messages in mPending for which IsAlwaysDeferred is false
// (i.e., the number of messages that might not be deferred, depending on
// context).
size_t mMaybeDeferredPendingCount;
// Stack of all the out-calls on which this channel is awaiting responses.
// Each stack refers to a different protocol and the stacks are mutually
// exclusive: multiple outcalls of the same kind cannot be initiated while
// another is active.
std::stack<MessageInfo> mInterruptStack;
// This is what we think the Interrupt stack depth is on the "other side" of
// this Interrupt channel. We maintain this variable so that we can detect
// racy Interrupt calls. With each Interrupt out-call sent, we send along
// what *we* think the stack depth of the remote side is *before* it will
// receive the Interrupt call.
//
// After sending the out-call, our stack depth is "incremented" by pushing
// that pending message onto mPending.
//
// Then when processing an in-call |c|, it must be true that
//
// mInterruptStack.size() == c.remoteDepth
//
// I.e., my depth is actually the same as what the other side thought it
// was when it sent in-call |c|. If this fails to hold, we have detected
// racy Interrupt calls.
//
// We then increment mRemoteStackDepth *just before* processing the
// in-call, since we know the other side is waiting on it, and decrement
// it *just after* finishing processing that in-call, since our response
// will pop the top of the other side's |mPending|.
//
// One nice aspect of this race detection is that it is symmetric; if one
// side detects a race, then the other side must also detect the same race.
size_t mRemoteStackDepthGuess;
// Approximation of code frames on the C++ stack. It can only be
// interpreted as the implication:
//
// !mCxxStackFrames.empty() => MessageChannel code on C++ stack
//
// This member is only accessed on the worker thread, and so is not
// protected by mMonitor. It is managed exclusively by the helper
// |class CxxStackFrame|.
mozilla::Vector<InterruptFrame> mCxxStackFrames;
// Did we process an Interrupt out-call during this stack? Only meaningful in
// ExitedCxxStack(), from which this variable is reset.
bool mSawInterruptOutMsg;
// Are we waiting on this channel for an incoming message? This is used
// to implement WaitForIncomingMessage(). Must only be accessed while owning
// mMonitor.
bool mIsWaitingForIncoming;
// Map of replies received "out of turn", because of Interrupt
// in-calls racing with replies to outstanding in-calls. See
// https://bugzilla.mozilla.org/show_bug.cgi?id=521929.
MessageMap mOutOfTurnReplies;
// Map of async Callbacks that are still waiting replies.
CallbackMap mPendingResponses;
// Stack of Interrupt in-calls that were deferred because of race
// conditions.
std::stack<Message> mDeferred;
#ifdef OS_WIN
HANDLE mEvent;
#endif
// Should the channel abort the process from the I/O thread when
// a channel error occurs?
bool mAbortOnError;
// True if the listener has already been notified of a channel close or
// error.
bool mNotifiedChannelDone;
// See SetChannelFlags
ChannelFlags mFlags;
// Task and state used to asynchronously notify channel has been connected
// safely. This is necessary to be able to cancel notification if we are
// closed at the same time.
RefPtr<CancelableRunnable> mOnChannelConnectedTask;
bool mPeerPidSet;
int32_t mPeerPid;
// Channels can enter messages are not sent immediately; instead, they are
// held in a queue until another thread deems it is safe to send them.
bool mIsPostponingSends;
std::vector<UniquePtr<Message>> mPostponedSends;
bool mBuildIDsConfirmedMatch;
// If this is true, both ends of this message channel have event targets
// on the same thread.
bool mIsSameThreadChannel;
};
void CancelCPOWs();
} // namespace ipc
} // namespace mozilla
namespace IPC {
template <>
struct ParamTraits<mozilla::ipc::ResponseRejectReason>
: public ContiguousEnumSerializer<
mozilla::ipc::ResponseRejectReason,
mozilla::ipc::ResponseRejectReason::SendError,
mozilla::ipc::ResponseRejectReason::EndGuard_> {};
} // namespace IPC
#endif // ifndef ipc_glue_MessageChannel_h