gecko-dev/js/ref/jsmath.c
fur 6b433caaaa (This code is not built by any flavor of Navigator)
Initial check-in to mozilla tree: JSRef development is migrating from
JSFUN13_BRANCH of /m/src repository to /m/pub
1998-04-24 01:35:13 +00:00

414 lines
9.3 KiB
C

/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Netscape
* Communications Corporation. Portions created by Netscape are
* Copyright (C) 1998 Netscape Communications Corporation. All Rights
* Reserved.
*/
/*
* JS math package.
*/
#include <math.h>
#include <stdlib.h>
#include "prtypes.h"
#include "prlong.h"
#include "prtime.h"
#include "jsapi.h"
#include "jsatom.h"
#include "jscntxt.h"
#include "jsconfig.h"
#include "jslock.h"
#include "jsmath.h"
#include "jsnum.h"
#include "jsobj.h"
#ifndef M_E
#define M_E 2.7182818284590452354
#endif
#ifndef M_LOG2E
#define M_LOG2E 1.4426950408889634074
#endif
#ifndef M_LOG10E
#define M_LOG10E 0.43429448190325182765
#endif
#ifndef M_LN2
#define M_LN2 0.69314718055994530942
#endif
#ifndef M_LN10
#define M_LN10 2.30258509299404568402
#endif
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
#ifndef M_SQRT2
#define M_SQRT2 1.41421356237309504880
#endif
#ifndef M_SQRT1_2
#define M_SQRT1_2 0.70710678118654752440
#endif
static JSConstDoubleSpec math_constants[] = {
{M_E, "E"},
{M_LOG2E, "LOG2E"},
{M_LOG10E, "LOG10E"},
{M_LN2, "LN2"},
{M_LN10, "LN10"},
{M_PI, "PI"},
{M_SQRT2, "SQRT2"},
{M_SQRT1_2, "SQRT1_2"},
{0}
};
static JSClass math_class = {
"Math",
0,
JS_PropertyStub, JS_PropertyStub, JS_PropertyStub, JS_PropertyStub,
JS_EnumerateStub, JS_ResolveStub, JS_ConvertStub, JS_FinalizeStub
};
static JSBool
math_abs(JSContext *cx, JSObject *obj, uintN argc, jsval *argv, jsval *rval)
{
jsdouble x, z;
if (!js_ValueToNumber(cx, argv[0], &x))
return JS_FALSE;
z = (x < 0) ? -x : x;
return js_NewNumberValue(cx, z, rval);
}
static JSBool
math_acos(JSContext *cx, JSObject *obj, uintN argc, jsval *argv, jsval *rval)
{
jsdouble x, z;
if (!js_ValueToNumber(cx, argv[0], &x))
return JS_FALSE;
z = acos(x);
return js_NewNumberValue(cx, z, rval);
}
static JSBool
math_asin(JSContext *cx, JSObject *obj, uintN argc, jsval *argv, jsval *rval)
{
jsdouble x, z;
if (!js_ValueToNumber(cx, argv[0], &x))
return JS_FALSE;
z = asin(x);
return js_NewNumberValue(cx, z, rval);
}
static JSBool
math_atan(JSContext *cx, JSObject *obj, uintN argc, jsval *argv, jsval *rval)
{
jsdouble x, z;
if (!js_ValueToNumber(cx, argv[0], &x))
return JS_FALSE;
z = atan(x);
return js_NewNumberValue(cx, z, rval);
}
static JSBool
math_atan2(JSContext *cx, JSObject *obj, uintN argc, jsval *argv, jsval *rval)
{
jsdouble x, y, z;
if (!js_ValueToNumber(cx, argv[0], &x))
return JS_FALSE;
if (!js_ValueToNumber(cx, argv[1], &y))
return JS_FALSE;
z = atan2(x, y);
return js_NewNumberValue(cx, z, rval);
}
static JSBool
math_ceil(JSContext *cx, JSObject *obj, uintN argc, jsval *argv, jsval *rval)
{
jsdouble x, z;
if (!js_ValueToNumber(cx, argv[0], &x))
return JS_FALSE;
z = ceil(x);
return js_NewNumberValue(cx, z, rval);
}
static JSBool
math_cos(JSContext *cx, JSObject *obj, uintN argc, jsval *argv, jsval *rval)
{
jsdouble x, z;
if (!js_ValueToNumber(cx, argv[0], &x))
return JS_FALSE;
z = cos(x);
return js_NewNumberValue(cx, z, rval);
}
static JSBool
math_exp(JSContext *cx, JSObject *obj, uintN argc, jsval *argv, jsval *rval)
{
jsdouble x, z;
if (!js_ValueToNumber(cx, argv[0], &x))
return JS_FALSE;
z = exp(x);
return js_NewNumberValue(cx, z, rval);
}
static JSBool
math_floor(JSContext *cx, JSObject *obj, uintN argc, jsval *argv, jsval *rval)
{
jsdouble x, z;
if (!js_ValueToNumber(cx, argv[0], &x))
return JS_FALSE;
z = floor(x);
return js_NewNumberValue(cx, z, rval);
}
static JSBool
math_log(JSContext *cx, JSObject *obj, uintN argc, jsval *argv, jsval *rval)
{
jsdouble x, z;
if (!js_ValueToNumber(cx, argv[0], &x))
return JS_FALSE;
z = log(x);
return js_NewNumberValue(cx, z, rval);
}
static JSBool
math_max(JSContext *cx, JSObject *obj, uintN argc, jsval *argv, jsval *rval)
{
jsdouble x, y, z;
if (!js_ValueToNumber(cx, argv[0], &x))
return JS_FALSE;
if (!js_ValueToNumber(cx, argv[1], &y))
return JS_FALSE;
z = (x > y) ? x : y;
return js_NewNumberValue(cx, z, rval);
}
static JSBool
math_min(JSContext *cx, JSObject *obj, uintN argc, jsval *argv, jsval *rval)
{
jsdouble x, y, z;
if (!js_ValueToNumber(cx, argv[0], &x))
return JS_FALSE;
if (!js_ValueToNumber(cx, argv[1], &y))
return JS_FALSE;
z = (x < y) ? x : y;
return js_NewNumberValue(cx, z, rval);
}
static JSBool
math_pow(JSContext *cx, JSObject *obj, uintN argc, jsval *argv, jsval *rval)
{
jsdouble x, y, z;
if (!js_ValueToNumber(cx, argv[0], &x))
return JS_FALSE;
if (!js_ValueToNumber(cx, argv[1], &y))
return JS_FALSE;
z = pow(x, y);
return js_NewNumberValue(cx, z, rval);
}
/*
* Math.random() support, lifted from java.util.Random.java.
*/
static void
random_setSeed(JSRuntime *rt, int64 seed)
{
int64 tmp;
LL_I2L(tmp, 1000);
LL_DIV(seed, seed, tmp);
LL_XOR(tmp, seed, rt->rngMultiplier);
LL_AND(rt->rngSeed, tmp, rt->rngMask);
}
static void
random_init(JSRuntime *rt)
{
int64 tmp, tmp2;
/* Do at most once. */
if (rt->rngInitialized)
return;
rt->rngInitialized = JS_TRUE;
/* rt->rngMultiplier = 0x5DEECE66DL */
LL_ISHL(tmp, 0x5D, 32);
LL_UI2L(tmp2, 0xEECE66DL);
LL_OR(rt->rngMultiplier, tmp, tmp2);
/* rt->rngAddend = 0xBL */
LL_I2L(rt->rngAddend, 0xBL);
/* rt->rngMask = (1L << 48) - 1 */
LL_I2L(tmp, 1);
LL_SHL(tmp2, tmp, 48);
LL_SUB(rt->rngMask, tmp2, tmp);
/* rt->rngDscale = (jsdouble)(1L << 54) */
LL_SHL(tmp2, tmp, 54);
LL_L2D(rt->rngDscale, tmp2);
/* Finally, set the seed from current time. */
random_setSeed(rt, PR_Now());
}
static uint32
random_next(JSRuntime *rt, int bits)
{
int64 nextseed, tmp;
uint32 retval;
LL_MUL(nextseed, rt->rngSeed, rt->rngMultiplier);
LL_ADD(nextseed, nextseed, rt->rngAddend);
LL_AND(nextseed, nextseed, rt->rngMask);
rt->rngSeed = nextseed;
LL_USHR(tmp, nextseed, 48 - bits);
LL_L2I(retval, tmp);
return retval;
}
static jsdouble
random_nextDouble(JSRuntime *rt)
{
int64 tmp, tmp2;
jsdouble d;
LL_ISHL(tmp, random_next(rt, 27), 27);
LL_UI2L(tmp2, random_next(rt, 27));
LL_ADD(tmp, tmp, tmp2);
LL_L2D(d, tmp);
return d / rt->rngDscale;
}
static JSBool
math_random(JSContext *cx, JSObject *obj, uintN argc, jsval *argv, jsval *rval)
{
JSRuntime *rt;
jsdouble z;
rt = cx->runtime;
JS_LOCK_RUNTIME(rt);
random_init(rt);
z = random_nextDouble(rt);
JS_UNLOCK_RUNTIME(rt);
return js_NewNumberValue(cx, z, rval);
}
static JSBool
math_round(JSContext *cx, JSObject *obj, uintN argc, jsval *argv, jsval *rval)
{
jsdouble x, z;
if (!js_ValueToNumber(cx, argv[0], &x))
return JS_FALSE;
z = floor(x + 0.5);
return js_NewNumberValue(cx, z, rval);
}
static JSBool
math_sin(JSContext *cx, JSObject *obj, uintN argc, jsval *argv, jsval *rval)
{
jsdouble x, z;
if (!js_ValueToNumber(cx, argv[0], &x))
return JS_FALSE;
z = sin(x);
return js_NewNumberValue(cx, z, rval);
}
static JSBool
math_sqrt(JSContext *cx, JSObject *obj, uintN argc, jsval *argv, jsval *rval)
{
jsdouble x, z;
if (!js_ValueToNumber(cx, argv[0], &x))
return JS_FALSE;
z = sqrt(x);
return js_NewNumberValue(cx, z, rval);
}
static JSBool
math_tan(JSContext *cx, JSObject *obj, uintN argc, jsval *argv, jsval *rval)
{
jsdouble x, z;
if (!js_ValueToNumber(cx, argv[0], &x))
return JS_FALSE;
z = tan(x);
return js_NewNumberValue(cx, z, rval);
}
static JSFunctionSpec math_static_methods[] = {
{"abs", math_abs, 1},
{"acos", math_acos, 1},
{"asin", math_asin, 1},
{"atan", math_atan, 1},
{"atan2", math_atan2, 2},
{"ceil", math_ceil, 1},
{"cos", math_cos, 1},
{"exp", math_exp, 1},
{"floor", math_floor, 1},
{"log", math_log, 1},
{"max", math_max, 2},
{"min", math_min, 2},
{"pow", math_pow, 2},
{"random", math_random, 0},
{"round", math_round, 1},
{"sin", math_sin, 1},
{"sqrt", math_sqrt, 1},
{"tan", math_tan, 1},
{0}
};
#if JS_HAS_TOSOURCE
static JSBool
math_toSource(JSContext *cx, JSObject *obj, uintN argc, jsval *argv,
jsval *rval)
{
*rval = ATOM_KEY(cx->runtime->atomState.MathAtom);
return JS_TRUE;
}
static JSFunctionSpec math_methods[] = {
{js_toSource_str, math_toSource, 0},
{0}
};
#else
#define math_methods NULL
#endif
JSObject *
js_InitMathClass(JSContext *cx, JSObject *obj)
{
JSObject *proto;
proto = JS_InitClass(cx, obj, NULL, &math_class, NULL, 0,
NULL, math_methods, NULL, math_static_methods);
if (!proto)
return NULL;
if (!JS_DefineConstDoubles(cx, proto, math_constants))
return NULL;
return proto;
}