gecko-dev/layout/generic/nsHTMLReflowState.cpp
Daniel Holbert a67160ebff Bug 1277703: Mark nsHTMLReflowState::ComputeContainingBlockRectangle as 'const'. r=mats
MozReview-Commit-ID: HuSDz3rgtQY

--HG--
extra : rebase_source : b5f8f14d71d62b0b56e4b4d5c6b6fc256f188ded
2016-06-02 15:24:00 -07:00

3017 lines
120 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/* struct containing the input to nsIFrame::Reflow */
#include "nsHTMLReflowState.h"
#include "LayoutLogging.h"
#include "nsStyleConsts.h"
#include "nsCSSAnonBoxes.h"
#include "nsFrame.h"
#include "nsIContent.h"
#include "nsGkAtoms.h"
#include "nsPresContext.h"
#include "nsIPresShell.h"
#include "nsFontMetrics.h"
#include "nsBlockFrame.h"
#include "nsLineBox.h"
#include "nsImageFrame.h"
#include "nsTableFrame.h"
#include "nsTableCellFrame.h"
#include "nsIPercentBSizeObserver.h"
#include "nsLayoutUtils.h"
#include "mozilla/Preferences.h"
#include "nsFontInflationData.h"
#include "StickyScrollContainer.h"
#include "nsIFrameInlines.h"
#include "CounterStyleManager.h"
#include <algorithm>
#include "mozilla/dom/HTMLInputElement.h"
#ifdef DEBUG
#undef NOISY_VERTICAL_ALIGN
#else
#undef NOISY_VERTICAL_ALIGN
#endif
using namespace mozilla;
using namespace mozilla::css;
using namespace mozilla::dom;
using namespace mozilla::layout;
enum eNormalLineHeightControl {
eUninitialized = -1,
eNoExternalLeading = 0, // does not include external leading
eIncludeExternalLeading, // use whatever value font vendor provides
eCompensateLeading // compensate leading if leading provided by font vendor is not enough
};
static eNormalLineHeightControl sNormalLineHeightControl = eUninitialized;
// Initialize a <b>root</b> reflow state with a rendering context to
// use for measuring things.
nsHTMLReflowState::nsHTMLReflowState(nsPresContext* aPresContext,
nsIFrame* aFrame,
nsRenderingContext* aRenderingContext,
const LogicalSize& aAvailableSpace,
uint32_t aFlags)
: nsCSSOffsetState(aFrame, aRenderingContext)
, mBlockDelta(0)
, mOrthogonalLimit(NS_UNCONSTRAINEDSIZE)
, mReflowDepth(0)
{
NS_PRECONDITION(aRenderingContext, "no rendering context");
MOZ_ASSERT(aPresContext, "no pres context");
MOZ_ASSERT(aFrame, "no frame");
MOZ_ASSERT(aPresContext == aFrame->PresContext(), "wrong pres context");
mParentReflowState = nullptr;
AvailableISize() = aAvailableSpace.ISize(mWritingMode);
AvailableBSize() = aAvailableSpace.BSize(mWritingMode);
mFloatManager = nullptr;
mLineLayout = nullptr;
mDiscoveredClearance = nullptr;
mPercentBSizeObserver = nullptr;
if (aFlags & DUMMY_PARENT_REFLOW_STATE) {
mFlags.mDummyParentReflowState = true;
}
if (aFlags & COMPUTE_SIZE_SHRINK_WRAP) {
mFlags.mShrinkWrap = true;
}
if (aFlags & COMPUTE_SIZE_USE_AUTO_BSIZE) {
mFlags.mUseAutoBSize = true;
}
if (aFlags & STATIC_POS_IS_CB_ORIGIN) {
mFlags.mStaticPosIsCBOrigin = true;
}
if (!(aFlags & CALLER_WILL_INIT)) {
Init(aPresContext);
}
}
static bool CheckNextInFlowParenthood(nsIFrame* aFrame, nsIFrame* aParent)
{
nsIFrame* frameNext = aFrame->GetNextInFlow();
nsIFrame* parentNext = aParent->GetNextInFlow();
return frameNext && parentNext && frameNext->GetParent() == parentNext;
}
/**
* Adjusts the margin for a list (ol, ul), if necessary, depending on
* font inflation settings. Unfortunately, because bullets from a list are
* placed in the margin area, we only have ~40px in which to place the
* bullets. When they are inflated, however, this causes problems, since
* the text takes up more space than is available in the margin.
*
* This method will return a small amount (in app units) by which the
* margin can be adjusted, so that the space is available for list
* bullets to be rendered with font inflation enabled.
*/
static nscoord
FontSizeInflationListMarginAdjustment(const nsIFrame* aFrame)
{
float inflation = nsLayoutUtils::FontSizeInflationFor(aFrame);
if (aFrame->IsFrameOfType(nsIFrame::eBlockFrame)) {
const nsBlockFrame* blockFrame = static_cast<const nsBlockFrame*>(aFrame);
// We only want to adjust the margins if we're dealing with an ordered
// list.
if (inflation > 1.0f &&
blockFrame->HasBullet() &&
inflation > 1.0f) {
auto listStyleType = aFrame->StyleList()->GetCounterStyle()->GetStyle();
if (listStyleType != NS_STYLE_LIST_STYLE_NONE &&
listStyleType != NS_STYLE_LIST_STYLE_DISC &&
listStyleType != NS_STYLE_LIST_STYLE_CIRCLE &&
listStyleType != NS_STYLE_LIST_STYLE_SQUARE &&
listStyleType != NS_STYLE_LIST_STYLE_DISCLOSURE_CLOSED &&
listStyleType != NS_STYLE_LIST_STYLE_DISCLOSURE_OPEN) {
// The HTML spec states that the default padding for ordered lists
// begins at 40px, indicating that we have 40px of space to place a
// bullet. When performing font inflation calculations, we add space
// equivalent to this, but simply inflated at the same amount as the
// text, in app units.
return nsPresContext::CSSPixelsToAppUnits(40) * (inflation - 1);
}
}
}
return 0;
}
// NOTE: If we ever want to use nsCSSOffsetState for a flex item or a
// grid item, we need to make it take the containing-block block-size as
// well as the inline-size, since flex items and grid items resolve
// block-direction percent margins and padding against the
// containing-block block-size, rather than its inline-size.
nsCSSOffsetState::nsCSSOffsetState(nsIFrame *aFrame,
nsRenderingContext *aRenderingContext,
WritingMode aContainingBlockWritingMode,
nscoord aContainingBlockISize)
: frame(aFrame)
, rendContext(aRenderingContext)
, mWritingMode(aFrame->GetWritingMode())
{
MOZ_ASSERT(!aFrame->IsFlexOrGridItem(),
"We're about to resolve percent margin & padding "
"values against CB inline size, which is incorrect for "
"flex/grid items. "
"Additionally for grid items, this path doesn't handle baseline "
"padding contribution - see nsCSSOffsetState::InitOffsets");
LogicalSize cbSize(aContainingBlockWritingMode, aContainingBlockISize,
aContainingBlockISize);
ReflowStateFlags flags;
InitOffsets(aContainingBlockWritingMode, cbSize, frame->GetType(), flags);
}
// Initialize a reflow state for a child frame's reflow. Some state
// is copied from the parent reflow state; the remaining state is
// computed.
nsHTMLReflowState::nsHTMLReflowState(
nsPresContext* aPresContext,
const nsHTMLReflowState& aParentReflowState,
nsIFrame* aFrame,
const LogicalSize& aAvailableSpace,
const LogicalSize* aContainingBlockSize,
uint32_t aFlags)
: nsCSSOffsetState(aFrame, aParentReflowState.rendContext)
, mBlockDelta(0)
, mOrthogonalLimit(NS_UNCONSTRAINEDSIZE)
, mReflowDepth(aParentReflowState.mReflowDepth + 1)
, mFlags(aParentReflowState.mFlags)
{
MOZ_ASSERT(aPresContext, "no pres context");
MOZ_ASSERT(aFrame, "no frame");
MOZ_ASSERT(aPresContext == aFrame->PresContext(), "wrong pres context");
NS_PRECONDITION(!mFlags.mSpecialBSizeReflow ||
!NS_SUBTREE_DIRTY(aFrame),
"frame should be clean when getting special bsize reflow");
mParentReflowState = &aParentReflowState;
// If the parent is dirty, then the child is as well.
// XXX Are the other cases where the parent reflows a child a second
// time, as a resize?
if (!mFlags.mSpecialBSizeReflow)
frame->AddStateBits(mParentReflowState->frame->GetStateBits() &
NS_FRAME_IS_DIRTY);
AvailableISize() = aAvailableSpace.ISize(mWritingMode);
AvailableBSize() = aAvailableSpace.BSize(mWritingMode);
if (mWritingMode.IsOrthogonalTo(aParentReflowState.GetWritingMode())) {
// If we're setting up for an orthogonal flow, and the parent reflow state
// had a constrained ComputedBSize, we can use that as our AvailableISize
// in preference to leaving it unconstrained.
if (AvailableISize() == NS_UNCONSTRAINEDSIZE &&
aParentReflowState.ComputedBSize() != NS_UNCONSTRAINEDSIZE) {
AvailableISize() = aParentReflowState.ComputedBSize();
}
}
mFloatManager = aParentReflowState.mFloatManager;
if (frame->IsFrameOfType(nsIFrame::eLineParticipant))
mLineLayout = aParentReflowState.mLineLayout;
else
mLineLayout = nullptr;
// Note: mFlags was initialized as a copy of aParentReflowState.mFlags up in
// this constructor's init list, so the only flags that we need to explicitly
// initialize here are those that may need a value other than our parent's.
mFlags.mNextInFlowUntouched = aParentReflowState.mFlags.mNextInFlowUntouched &&
CheckNextInFlowParenthood(aFrame, aParentReflowState.frame);
mFlags.mAssumingHScrollbar = mFlags.mAssumingVScrollbar = false;
mFlags.mIsColumnBalancing = false;
mFlags.mIsFlexContainerMeasuringHeight = false;
mFlags.mDummyParentReflowState = false;
mFlags.mShrinkWrap = !!(aFlags & COMPUTE_SIZE_SHRINK_WRAP);
mFlags.mUseAutoBSize = !!(aFlags & COMPUTE_SIZE_USE_AUTO_BSIZE);
mFlags.mStaticPosIsCBOrigin = !!(aFlags & STATIC_POS_IS_CB_ORIGIN);
mDiscoveredClearance = nullptr;
mPercentBSizeObserver = (aParentReflowState.mPercentBSizeObserver &&
aParentReflowState.mPercentBSizeObserver->NeedsToObserve(*this))
? aParentReflowState.mPercentBSizeObserver : nullptr;
if ((aFlags & DUMMY_PARENT_REFLOW_STATE) ||
(mParentReflowState->mFlags.mDummyParentReflowState &&
frame->GetType() == nsGkAtoms::tableFrame)) {
mFlags.mDummyParentReflowState = true;
}
if (!(aFlags & CALLER_WILL_INIT)) {
Init(aPresContext, aContainingBlockSize);
}
}
inline nscoord
nsCSSOffsetState::ComputeISizeValue(nscoord aContainingBlockISize,
nscoord aContentEdgeToBoxSizing,
nscoord aBoxSizingToMarginEdge,
const nsStyleCoord& aCoord) const
{
return nsLayoutUtils::ComputeISizeValue(rendContext, frame,
aContainingBlockISize,
aContentEdgeToBoxSizing,
aBoxSizingToMarginEdge,
aCoord);
}
nscoord
nsCSSOffsetState::ComputeISizeValue(nscoord aContainingBlockISize,
StyleBoxSizing aBoxSizing,
const nsStyleCoord& aCoord) const
{
WritingMode wm = GetWritingMode();
nscoord inside = 0, outside = ComputedLogicalBorderPadding().IStartEnd(wm) +
ComputedLogicalMargin().IStartEnd(wm);
switch (aBoxSizing) {
case StyleBoxSizing::Border:
inside = ComputedLogicalBorderPadding().IStartEnd(wm);
break;
case StyleBoxSizing::Padding:
inside = ComputedLogicalPadding().IStartEnd(wm);
break;
case StyleBoxSizing::Content:
// nothing
break;
}
outside -= inside;
return ComputeISizeValue(aContainingBlockISize, inside,
outside, aCoord);
}
nscoord
nsCSSOffsetState::ComputeBSizeValue(nscoord aContainingBlockBSize,
StyleBoxSizing aBoxSizing,
const nsStyleCoord& aCoord) const
{
WritingMode wm = GetWritingMode();
nscoord inside = 0;
switch (aBoxSizing) {
case StyleBoxSizing::Border:
inside = ComputedLogicalBorderPadding().BStartEnd(wm);
break;
case StyleBoxSizing::Padding:
inside = ComputedLogicalPadding().BStartEnd(wm);
break;
case StyleBoxSizing::Content:
// nothing
break;
}
return nsLayoutUtils::ComputeBSizeValue(aContainingBlockBSize,
inside, aCoord);
}
void
nsHTMLReflowState::SetComputedWidth(nscoord aComputedWidth)
{
NS_ASSERTION(frame, "Must have a frame!");
// It'd be nice to assert that |frame| is not in reflow, but this fails for
// two reasons:
//
// 1) Viewport frames reset the computed width on a copy of their reflow
// state when reflowing fixed-pos kids. In that case we actually don't
// want to mess with the resize flags, because comparing the frame's rect
// to the munged computed width is pointless.
// 2) nsFrame::BoxReflow creates a reflow state for its parent. This reflow
// state is not used to reflow the parent, but just as a parent for the
// frame's own reflow state. So given a nsBoxFrame inside some non-XUL
// (like a text control, for example), we'll end up creating a reflow
// state for the parent while the parent is reflowing.
NS_PRECONDITION(aComputedWidth >= 0, "Invalid computed width");
if (ComputedWidth() != aComputedWidth) {
ComputedWidth() = aComputedWidth;
nsIAtom* frameType = frame->GetType();
if (frameType != nsGkAtoms::viewportFrame || // Or check GetParent()?
mWritingMode.IsVertical()) {
InitResizeFlags(frame->PresContext(), frameType);
}
}
}
void
nsHTMLReflowState::SetComputedHeight(nscoord aComputedHeight)
{
NS_ASSERTION(frame, "Must have a frame!");
// It'd be nice to assert that |frame| is not in reflow, but this fails
// because:
//
// nsFrame::BoxReflow creates a reflow state for its parent. This reflow
// state is not used to reflow the parent, but just as a parent for the
// frame's own reflow state. So given a nsBoxFrame inside some non-XUL
// (like a text control, for example), we'll end up creating a reflow
// state for the parent while the parent is reflowing.
NS_PRECONDITION(aComputedHeight >= 0, "Invalid computed height");
if (ComputedHeight() != aComputedHeight) {
ComputedHeight() = aComputedHeight;
nsIAtom* frameType = frame->GetType();
if (frameType != nsGkAtoms::viewportFrame || !mWritingMode.IsVertical()) {
InitResizeFlags(frame->PresContext(), frameType);
}
}
}
void
nsHTMLReflowState::Init(nsPresContext* aPresContext,
const LogicalSize* aContainingBlockSize,
const nsMargin* aBorder,
const nsMargin* aPadding)
{
if (AvailableISize() == NS_UNCONSTRAINEDSIZE) {
// Look up the parent chain for an orthogonal inline limit,
// and reset AvailableISize() if found.
for (const nsHTMLReflowState *parent = mParentReflowState;
parent != nullptr; parent = parent->mParentReflowState) {
if (parent->GetWritingMode().IsOrthogonalTo(mWritingMode) &&
parent->mOrthogonalLimit != NS_UNCONSTRAINEDSIZE) {
AvailableISize() = parent->mOrthogonalLimit;
break;
}
}
}
LAYOUT_WARN_IF_FALSE(AvailableISize() != NS_UNCONSTRAINEDSIZE,
"have unconstrained inline-size; this should only "
"result from very large sizes, not attempts at "
"intrinsic inline-size calculation");
mStylePosition = frame->StylePosition();
mStyleDisplay = frame->StyleDisplay();
mStyleVisibility = frame->StyleVisibility();
mStyleBorder = frame->StyleBorder();
mStyleMargin = frame->StyleMargin();
mStylePadding = frame->StylePadding();
mStyleText = frame->StyleText();
nsIAtom* type = frame->GetType();
InitFrameType(type);
InitCBReflowState();
LogicalSize cbSize(mWritingMode, -1, -1);
if (aContainingBlockSize) {
cbSize = *aContainingBlockSize;
}
InitConstraints(aPresContext, cbSize, aBorder, aPadding, type);
InitResizeFlags(aPresContext, type);
nsIFrame *parent = frame->GetParent();
if (parent &&
(parent->GetStateBits() & NS_FRAME_IN_CONSTRAINED_BSIZE) &&
!(parent->GetType() == nsGkAtoms::scrollFrame &&
parent->StyleDisplay()->mOverflowY != NS_STYLE_OVERFLOW_HIDDEN)) {
frame->AddStateBits(NS_FRAME_IN_CONSTRAINED_BSIZE);
} else if (type == nsGkAtoms::svgForeignObjectFrame) {
// An SVG foreignObject frame is inherently constrained block-size.
frame->AddStateBits(NS_FRAME_IN_CONSTRAINED_BSIZE);
} else {
const nsStyleCoord& bSizeCoord = mStylePosition->BSize(mWritingMode);
const nsStyleCoord& maxBSizeCoord = mStylePosition->MaxBSize(mWritingMode);
if ((bSizeCoord.GetUnit() != eStyleUnit_Auto ||
maxBSizeCoord.GetUnit() != eStyleUnit_None) &&
// Don't set NS_FRAME_IN_CONSTRAINED_BSIZE on body or html elements.
(frame->GetContent() &&
!(frame->GetContent()->IsAnyOfHTMLElements(nsGkAtoms::body,
nsGkAtoms::html)))) {
// If our block-size was specified as a percentage, then this could
// actually resolve to 'auto', based on:
// http://www.w3.org/TR/CSS21/visudet.html#the-height-property
nsIFrame* containingBlk = frame;
while (containingBlk) {
const nsStylePosition* stylePos = containingBlk->StylePosition();
const nsStyleCoord& bSizeCoord = stylePos->BSize(mWritingMode);
const nsStyleCoord& maxBSizeCoord = stylePos->MaxBSize(mWritingMode);
if ((bSizeCoord.IsCoordPercentCalcUnit() &&
!bSizeCoord.HasPercent()) ||
(maxBSizeCoord.IsCoordPercentCalcUnit() &&
!maxBSizeCoord.HasPercent())) {
frame->AddStateBits(NS_FRAME_IN_CONSTRAINED_BSIZE);
break;
} else if ((bSizeCoord.IsCoordPercentCalcUnit() &&
bSizeCoord.HasPercent()) ||
(maxBSizeCoord.IsCoordPercentCalcUnit() &&
maxBSizeCoord.HasPercent())) {
if (!(containingBlk = containingBlk->GetContainingBlock())) {
// If we've reached the top of the tree, then we don't have
// a constrained block-size.
frame->RemoveStateBits(NS_FRAME_IN_CONSTRAINED_BSIZE);
break;
}
continue;
} else {
frame->RemoveStateBits(NS_FRAME_IN_CONSTRAINED_BSIZE);
break;
}
}
} else {
frame->RemoveStateBits(NS_FRAME_IN_CONSTRAINED_BSIZE);
}
}
if (mParentReflowState &&
mParentReflowState->GetWritingMode().IsOrthogonalTo(mWritingMode)) {
// Orthogonal frames are always reflowed with an unconstrained
// dimension to avoid incomplete reflow across an orthogonal
// boundary. Normally this is the block-size, but for column sets
// with auto-height it's the inline-size, so that they can add
// columns in the container's block direction
if (type == nsGkAtoms::columnSetFrame &&
eStyleUnit_Auto == mStylePosition->ISize(mWritingMode).GetUnit()) {
ComputedISize() = NS_UNCONSTRAINEDSIZE;
} else {
AvailableBSize() = NS_UNCONSTRAINEDSIZE;
}
}
LAYOUT_WARN_IF_FALSE((mFrameType == NS_CSS_FRAME_TYPE_INLINE &&
!frame->IsFrameOfType(nsIFrame::eReplaced)) ||
type == nsGkAtoms::textFrame ||
ComputedISize() != NS_UNCONSTRAINEDSIZE,
"have unconstrained inline-size; this should only "
"result from very large sizes, not attempts at "
"intrinsic inline-size calculation");
}
void nsHTMLReflowState::InitCBReflowState()
{
if (!mParentReflowState) {
mCBReflowState = nullptr;
return;
}
if (mParentReflowState->frame == frame->GetContainingBlock()) {
// Inner table frames need to use the containing block of the outer
// table frame.
if (frame->GetType() == nsGkAtoms::tableFrame) {
mCBReflowState = mParentReflowState->mCBReflowState;
} else {
mCBReflowState = mParentReflowState;
}
} else {
mCBReflowState = mParentReflowState->mCBReflowState;
}
}
/* Check whether CalcQuirkContainingBlockHeight would stop on the
* given reflow state, using its block as a height. (essentially
* returns false for any case in which CalcQuirkContainingBlockHeight
* has a "continue" in its main loop.)
*
* XXX Maybe refactor CalcQuirkContainingBlockHeight so it uses
* this function as well
*/
static bool
IsQuirkContainingBlockHeight(const nsHTMLReflowState* rs, nsIAtom* aFrameType)
{
if (nsGkAtoms::blockFrame == aFrameType ||
#ifdef MOZ_XUL
nsGkAtoms::XULLabelFrame == aFrameType ||
#endif
nsGkAtoms::scrollFrame == aFrameType) {
// Note: This next condition could change due to a style change,
// but that would cause a style reflow anyway, which means we're ok.
if (NS_AUTOHEIGHT == rs->ComputedHeight()) {
if (!rs->frame->IsAbsolutelyPositioned()) {
return false;
}
}
}
return true;
}
void
nsHTMLReflowState::InitResizeFlags(nsPresContext* aPresContext, nsIAtom* aFrameType)
{
const WritingMode wm = mWritingMode; // just a shorthand
bool isIResize =
frame->ISize(wm) !=
ComputedISize() + ComputedLogicalBorderPadding().IStartEnd(wm);
if ((frame->GetStateBits() & NS_FRAME_FONT_INFLATION_FLOW_ROOT) &&
nsLayoutUtils::FontSizeInflationEnabled(aPresContext)) {
// Create our font inflation data if we don't have it already, and
// give it our current width information.
bool dirty = nsFontInflationData::UpdateFontInflationDataISizeFor(*this) &&
// Avoid running this at the box-to-block interface
// (where we shouldn't be inflating anyway, and where
// reflow state construction is probably to construct a
// dummy parent reflow state anyway).
!mFlags.mDummyParentReflowState;
if (dirty || (!frame->GetParent() && isIResize)) {
// When font size inflation is enabled, a change in either:
// * the effective width of a font inflation flow root
// * the width of the frame
// needs to cause a dirty reflow since they change the font size
// inflation calculations, which in turn change the size of text,
// line-heights, etc. This is relatively similar to a classic
// case of style change reflow, except that because inflation
// doesn't affect the intrinsic sizing codepath, there's no need
// to invalidate intrinsic sizes.
//
// Note that this makes horizontal resizing a good bit more
// expensive. However, font size inflation is targeted at a set of
// devices (zoom-and-pan devices) where the main use case for
// horizontal resizing needing to be efficient (window resizing) is
// not present. It does still increase the cost of dynamic changes
// caused by script where a style or content change in one place
// causes a resize in another (e.g., rebalancing a table).
// FIXME: This isn't so great for the cases where
// nsHTMLReflowState::SetComputedWidth is called, if the first time
// we go through InitResizeFlags we set IsHResize() to true, and then
// the second time we'd set it to false even without the
// NS_FRAME_IS_DIRTY bit already set.
if (frame->GetType() == nsGkAtoms::svgForeignObjectFrame) {
// Foreign object frames use dirty bits in a special way.
frame->AddStateBits(NS_FRAME_HAS_DIRTY_CHILDREN);
nsIFrame *kid = frame->PrincipalChildList().FirstChild();
if (kid) {
kid->AddStateBits(NS_FRAME_IS_DIRTY);
}
} else {
frame->AddStateBits(NS_FRAME_IS_DIRTY);
}
// Mark intrinsic widths on all descendants dirty. We need to do
// this (1) since we're changing the size of text and need to
// clear text runs on text frames and (2) since we actually are
// changing some intrinsic widths, but only those that live inside
// of containers.
// It makes sense to do this for descendants but not ancestors
// (which is unusual) because we're only changing the unusual
// inflation-dependent intrinsic widths (i.e., ones computed with
// nsPresContext::mInflationDisabledForShrinkWrap set to false),
// which should never affect anything outside of their inflation
// flow root (or, for that matter, even their inflation
// container).
// This is also different from what PresShell::FrameNeedsReflow
// does because it doesn't go through placeholders. It doesn't
// need to because we're actually doing something that cares about
// frame tree geometry (the width on an ancestor) rather than
// style.
AutoTArray<nsIFrame*, 32> stack;
stack.AppendElement(frame);
do {
nsIFrame *f = stack.ElementAt(stack.Length() - 1);
stack.RemoveElementAt(stack.Length() - 1);
nsIFrame::ChildListIterator lists(f);
for (; !lists.IsDone(); lists.Next()) {
nsFrameList::Enumerator childFrames(lists.CurrentList());
for (; !childFrames.AtEnd(); childFrames.Next()) {
nsIFrame* kid = childFrames.get();
kid->MarkIntrinsicISizesDirty();
stack.AppendElement(kid);
}
}
} while (stack.Length() != 0);
}
}
SetIResize(!(frame->GetStateBits() & NS_FRAME_IS_DIRTY) &&
isIResize);
// XXX Should we really need to null check mCBReflowState? (We do for
// at least nsBoxFrame).
if (IS_TABLE_CELL(aFrameType) &&
(mFlags.mSpecialBSizeReflow ||
(frame->FirstInFlow()->GetStateBits() &
NS_TABLE_CELL_HAD_SPECIAL_REFLOW)) &&
(frame->GetStateBits() & NS_FRAME_CONTAINS_RELATIVE_BSIZE)) {
// Need to set the bit on the cell so that
// mCBReflowState->IsBResize() is set correctly below when
// reflowing descendant.
SetBResize(true);
} else if (mCBReflowState && frame->IsBlockWrapper()) {
// XXX Is this problematic for relatively positioned inlines acting
// as containing block for absolutely positioned elements?
// Possibly; in that case we should at least be checking
// NS_SUBTREE_DIRTY, I'd think.
SetBResize(mCBReflowState->IsBResizeForWM(wm));
} else if (mCBReflowState && !nsLayoutUtils::GetAsBlock(frame)) {
// Some non-block frames (e.g. table frames) aggressively optimize out their
// BSize recomputation when they don't have the BResize flag set. This
// means that if they go from having a computed non-auto height to having an
// auto height and don't have that flag set, they will not actually compute
// their auto height and will just remain at whatever size they already
// were. We can end up in that situation if the child has a percentage
// specified height and the parent changes from non-auto height to auto
// height. When that happens, the parent will typically have the BResize
// flag set, and we want to propagate that flag to the kid.
//
// Ideally it seems like we'd do this for blocks too, of course... but we'd
// really want to restrict it to the percentage height case or something, to
// avoid extra reflows in common cases. Maybe we should be examining
// mStylePosition->BSize(wm).GetUnit() for that purpose?
//
// Note that we _also_ need to set the BResize flag if we have auto
// ComputedBSize() and a dirty subtree, since that might require us to
// change BSize due to kids having been added or removed.
SetBResize(mCBReflowState->IsBResizeForWM(wm));
if (ComputedBSize() == NS_AUTOHEIGHT) {
SetBResize(IsBResize() || NS_SUBTREE_DIRTY(frame));
}
} else if (ComputedBSize() == NS_AUTOHEIGHT) {
if (eCompatibility_NavQuirks == aPresContext->CompatibilityMode() &&
mCBReflowState) {
SetBResize(mCBReflowState->IsBResizeForWM(wm));
} else {
SetBResize(IsIResize());
}
SetBResize(IsBResize() || NS_SUBTREE_DIRTY(frame));
} else {
// not 'auto' block-size
SetBResize(frame->BSize(wm) !=
ComputedBSize() + ComputedLogicalBorderPadding().BStartEnd(wm));
}
bool dependsOnCBBSize =
(mStylePosition->BSizeDependsOnContainer(wm) &&
// FIXME: condition this on not-abspos?
mStylePosition->BSize(wm).GetUnit() != eStyleUnit_Auto) ||
mStylePosition->MinBSizeDependsOnContainer(wm) ||
mStylePosition->MaxBSizeDependsOnContainer(wm) ||
mStylePosition->OffsetHasPercent(wm.PhysicalSide(eLogicalSideBStart)) ||
mStylePosition->mOffset.GetBEndUnit(wm) != eStyleUnit_Auto ||
frame->IsXULBoxFrame();
if (mStyleText->mLineHeight.GetUnit() == eStyleUnit_Enumerated) {
NS_ASSERTION(mStyleText->mLineHeight.GetIntValue() ==
NS_STYLE_LINE_HEIGHT_BLOCK_HEIGHT,
"bad line-height value");
// line-height depends on block bsize
frame->AddStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE);
// but only on containing blocks if this frame is not a suitable block
dependsOnCBBSize |= !nsLayoutUtils::IsNonWrapperBlock(frame);
}
// If we're the descendant of a table cell that performs special bsize
// reflows and we could be the child that requires them, always set
// the block-axis resize in case this is the first pass before the
// special bsize reflow. However, don't do this if it actually is
// the special bsize reflow, since in that case it will already be
// set correctly above if we need it set.
if (!IsBResize() && mCBReflowState &&
(IS_TABLE_CELL(mCBReflowState->frame->GetType()) ||
mCBReflowState->mFlags.mHeightDependsOnAncestorCell) &&
!mCBReflowState->mFlags.mSpecialBSizeReflow &&
dependsOnCBBSize) {
SetBResize(true);
mFlags.mHeightDependsOnAncestorCell = true;
}
// Set NS_FRAME_CONTAINS_RELATIVE_BSIZE if it's needed.
// It would be nice to check that |ComputedBSize != NS_AUTOHEIGHT|
// &&ed with the percentage bsize check. However, this doesn't get
// along with table special bsize reflows, since a special bsize
// reflow (a quirk that makes such percentage height work on children
// of table cells) can cause not just a single percentage height to
// become fixed, but an entire descendant chain of percentage height
// to become fixed.
if (dependsOnCBBSize && mCBReflowState) {
const nsHTMLReflowState *rs = this;
bool hitCBReflowState = false;
do {
rs = rs->mParentReflowState;
if (!rs) {
break;
}
if (rs->frame->GetStateBits() & NS_FRAME_CONTAINS_RELATIVE_BSIZE)
break; // no need to go further
rs->frame->AddStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE);
// Keep track of whether we've hit the containing block, because
// we need to go at least that far.
if (rs == mCBReflowState) {
hitCBReflowState = true;
}
// XXX What about orthogonal flows? It doesn't make sense to
// keep propagating this bit across an orthogonal boundary,
// where the meaning of BSize changes. Bug 1175517.
} while (!hitCBReflowState ||
(eCompatibility_NavQuirks == aPresContext->CompatibilityMode() &&
!IsQuirkContainingBlockHeight(rs, rs->frame->GetType())));
// Note: We actually don't need to set the
// NS_FRAME_CONTAINS_RELATIVE_BSIZE bit for the cases
// where we hit the early break statements in
// CalcQuirkContainingBlockHeight. But it doesn't hurt
// us to set the bit in these cases.
}
if (frame->GetStateBits() & NS_FRAME_IS_DIRTY) {
// If we're reflowing everything, then we'll find out if we need
// to re-set this.
frame->RemoveStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE);
}
}
nscoord
nsHTMLReflowState::GetContainingBlockContentISize(WritingMode aWritingMode) const
{
if (!mCBReflowState) {
return 0;
}
return mCBReflowState->GetWritingMode().IsOrthogonalTo(aWritingMode)
? mCBReflowState->ComputedBSize()
: mCBReflowState->ComputedISize();
}
void
nsHTMLReflowState::InitFrameType(nsIAtom* aFrameType)
{
const nsStyleDisplay *disp = mStyleDisplay;
nsCSSFrameType frameType;
// Section 9.7 of the CSS2 spec indicates that absolute position
// takes precedence over float which takes precedence over display.
// XXXldb nsRuleNode::ComputeDisplayData should take care of this, right?
// Make sure the frame was actually moved out of the flow, and don't
// just assume what the style says, because we might not have had a
// useful float/absolute containing block
DISPLAY_INIT_TYPE(frame, this);
if (aFrameType == nsGkAtoms::tableFrame) {
mFrameType = NS_CSS_FRAME_TYPE_BLOCK;
return;
}
NS_ASSERTION(frame->StyleDisplay()->IsAbsolutelyPositionedStyle() ==
disp->IsAbsolutelyPositionedStyle(),
"Unexpected position style");
NS_ASSERTION(frame->StyleDisplay()->IsFloatingStyle() ==
disp->IsFloatingStyle(), "Unexpected float style");
if (frame->GetStateBits() & NS_FRAME_OUT_OF_FLOW) {
if (disp->IsAbsolutelyPositioned(frame)) {
frameType = NS_CSS_FRAME_TYPE_ABSOLUTE;
//XXXfr hack for making frames behave properly when in overflow container lists
// see bug 154892; need to revisit later
if (frame->GetPrevInFlow())
frameType = NS_CSS_FRAME_TYPE_BLOCK;
}
else if (disp->IsFloating(frame)) {
frameType = NS_CSS_FRAME_TYPE_FLOATING;
} else {
NS_ASSERTION(disp->mDisplay == NS_STYLE_DISPLAY_POPUP,
"unknown out of flow frame type");
frameType = NS_CSS_FRAME_TYPE_UNKNOWN;
}
}
else {
switch (GetDisplay()) {
case NS_STYLE_DISPLAY_BLOCK:
case NS_STYLE_DISPLAY_LIST_ITEM:
case NS_STYLE_DISPLAY_TABLE:
case NS_STYLE_DISPLAY_TABLE_CAPTION:
case NS_STYLE_DISPLAY_FLEX:
case NS_STYLE_DISPLAY_WEBKIT_BOX:
case NS_STYLE_DISPLAY_GRID:
case NS_STYLE_DISPLAY_RUBY_TEXT_CONTAINER:
frameType = NS_CSS_FRAME_TYPE_BLOCK;
break;
case NS_STYLE_DISPLAY_INLINE:
case NS_STYLE_DISPLAY_INLINE_BLOCK:
case NS_STYLE_DISPLAY_INLINE_TABLE:
case NS_STYLE_DISPLAY_INLINE_BOX:
case NS_STYLE_DISPLAY_INLINE_XUL_GRID:
case NS_STYLE_DISPLAY_INLINE_STACK:
case NS_STYLE_DISPLAY_INLINE_FLEX:
case NS_STYLE_DISPLAY_WEBKIT_INLINE_BOX:
case NS_STYLE_DISPLAY_INLINE_GRID:
case NS_STYLE_DISPLAY_RUBY:
case NS_STYLE_DISPLAY_RUBY_BASE:
case NS_STYLE_DISPLAY_RUBY_TEXT:
case NS_STYLE_DISPLAY_RUBY_BASE_CONTAINER:
frameType = NS_CSS_FRAME_TYPE_INLINE;
break;
case NS_STYLE_DISPLAY_TABLE_CELL:
case NS_STYLE_DISPLAY_TABLE_ROW_GROUP:
case NS_STYLE_DISPLAY_TABLE_COLUMN:
case NS_STYLE_DISPLAY_TABLE_COLUMN_GROUP:
case NS_STYLE_DISPLAY_TABLE_HEADER_GROUP:
case NS_STYLE_DISPLAY_TABLE_FOOTER_GROUP:
case NS_STYLE_DISPLAY_TABLE_ROW:
frameType = NS_CSS_FRAME_TYPE_INTERNAL_TABLE;
break;
case NS_STYLE_DISPLAY_NONE:
default:
frameType = NS_CSS_FRAME_TYPE_UNKNOWN;
break;
}
}
// See if the frame is replaced
if (frame->IsFrameOfType(nsIFrame::eReplacedContainsBlock)) {
frameType = NS_FRAME_REPLACED_CONTAINS_BLOCK(frameType);
} else if (frame->IsFrameOfType(nsIFrame::eReplaced)) {
frameType = NS_FRAME_REPLACED(frameType);
}
mFrameType = frameType;
}
/* static */ void
nsHTMLReflowState::ComputeRelativeOffsets(WritingMode aWM,
nsIFrame* aFrame,
const LogicalSize& aCBSize,
nsMargin& aComputedOffsets)
{
LogicalMargin offsets(aWM);
mozilla::css::Side inlineStart = aWM.PhysicalSide(eLogicalSideIStart);
mozilla::css::Side inlineEnd = aWM.PhysicalSide(eLogicalSideIEnd);
mozilla::css::Side blockStart = aWM.PhysicalSide(eLogicalSideBStart);
mozilla::css::Side blockEnd = aWM.PhysicalSide(eLogicalSideBEnd);
const nsStylePosition* position = aFrame->StylePosition();
// Compute the 'inlineStart' and 'inlineEnd' values. 'inlineStart'
// moves the boxes to the end of the line, and 'inlineEnd' moves the
// boxes to the start of the line. The computed values are always:
// inlineStart=-inlineEnd
bool inlineStartIsAuto =
eStyleUnit_Auto == position->mOffset.GetUnit(inlineStart);
bool inlineEndIsAuto =
eStyleUnit_Auto == position->mOffset.GetUnit(inlineEnd);
// If neither 'inlineStart' nor 'inlineEnd' is auto, then we're
// over-constrained and we ignore one of them
if (!inlineStartIsAuto && !inlineEndIsAuto) {
inlineEndIsAuto = true;
}
if (inlineStartIsAuto) {
if (inlineEndIsAuto) {
// If both are 'auto' (their initial values), the computed values are 0
offsets.IStart(aWM) = offsets.IEnd(aWM) = 0;
} else {
// 'inlineEnd' isn't 'auto' so compute its value
offsets.IEnd(aWM) = nsLayoutUtils::
ComputeCBDependentValue(aCBSize.ISize(aWM),
position->mOffset.Get(inlineEnd));
// Computed value for 'inlineStart' is minus the value of 'inlineEnd'
offsets.IStart(aWM) = -offsets.IEnd(aWM);
}
} else {
NS_ASSERTION(inlineEndIsAuto, "unexpected specified constraint");
// 'InlineStart' isn't 'auto' so compute its value
offsets.IStart(aWM) = nsLayoutUtils::
ComputeCBDependentValue(aCBSize.ISize(aWM),
position->mOffset.Get(inlineStart));
// Computed value for 'inlineEnd' is minus the value of 'inlineStart'
offsets.IEnd(aWM) = -offsets.IStart(aWM);
}
// Compute the 'blockStart' and 'blockEnd' values. The 'blockStart'
// and 'blockEnd' properties move relatively positioned elements in
// the block progression direction. They also must be each other's
// negative
bool blockStartIsAuto =
eStyleUnit_Auto == position->mOffset.GetUnit(blockStart);
bool blockEndIsAuto =
eStyleUnit_Auto == position->mOffset.GetUnit(blockEnd);
// Check for percentage based values and a containing block block-size
// that depends on the content block-size. Treat them like 'auto'
if (NS_AUTOHEIGHT == aCBSize.BSize(aWM)) {
if (position->OffsetHasPercent(blockStart)) {
blockStartIsAuto = true;
}
if (position->OffsetHasPercent(blockEnd)) {
blockEndIsAuto = true;
}
}
// If neither is 'auto', 'block-end' is ignored
if (!blockStartIsAuto && !blockEndIsAuto) {
blockEndIsAuto = true;
}
if (blockStartIsAuto) {
if (blockEndIsAuto) {
// If both are 'auto' (their initial values), the computed values are 0
offsets.BStart(aWM) = offsets.BEnd(aWM) = 0;
} else {
// 'blockEnd' isn't 'auto' so compute its value
offsets.BEnd(aWM) = nsLayoutUtils::
ComputeBSizeDependentValue(aCBSize.BSize(aWM),
position->mOffset.Get(blockEnd));
// Computed value for 'blockStart' is minus the value of 'blockEnd'
offsets.BStart(aWM) = -offsets.BEnd(aWM);
}
} else {
NS_ASSERTION(blockEndIsAuto, "unexpected specified constraint");
// 'blockStart' isn't 'auto' so compute its value
offsets.BStart(aWM) = nsLayoutUtils::
ComputeBSizeDependentValue(aCBSize.BSize(aWM),
position->mOffset.Get(blockStart));
// Computed value for 'blockEnd' is minus the value of 'blockStart'
offsets.BEnd(aWM) = -offsets.BStart(aWM);
}
// Convert the offsets to physical coordinates and store them on the frame
aComputedOffsets = offsets.GetPhysicalMargin(aWM);
FrameProperties props = aFrame->Properties();
nsMargin* physicalOffsets = static_cast<nsMargin*>
(props.Get(nsIFrame::ComputedOffsetProperty()));
if (physicalOffsets) {
*physicalOffsets = aComputedOffsets;
} else {
props.Set(nsIFrame::ComputedOffsetProperty(),
new nsMargin(aComputedOffsets));
}
}
/* static */ void
nsHTMLReflowState::ApplyRelativePositioning(nsIFrame* aFrame,
const nsMargin& aComputedOffsets,
nsPoint* aPosition)
{
if (!aFrame->IsRelativelyPositioned()) {
NS_ASSERTION(!aFrame->Properties().Get(nsIFrame::NormalPositionProperty()),
"We assume that changing the 'position' property causes "
"frame reconstruction. If that ever changes, this code "
"should call "
"props.Delete(nsIFrame::NormalPositionProperty())");
return;
}
// Store the normal position
FrameProperties props = aFrame->Properties();
nsPoint* normalPosition = static_cast<nsPoint*>
(props.Get(nsIFrame::NormalPositionProperty()));
if (normalPosition) {
*normalPosition = *aPosition;
} else {
props.Set(nsIFrame::NormalPositionProperty(), new nsPoint(*aPosition));
}
const nsStyleDisplay* display = aFrame->StyleDisplay();
if (NS_STYLE_POSITION_RELATIVE == display->mPosition) {
*aPosition += nsPoint(aComputedOffsets.left, aComputedOffsets.top);
} else if (NS_STYLE_POSITION_STICKY == display->mPosition &&
!aFrame->GetNextContinuation() &&
!aFrame->GetPrevContinuation() &&
!(aFrame->GetStateBits() & NS_FRAME_PART_OF_IBSPLIT)) {
// Sticky positioning for elements with multiple frames needs to be
// computed all at once. We can't safely do that here because we might be
// partway through (re)positioning the frames, so leave it until the scroll
// container reflows and calls StickyScrollContainer::UpdatePositions.
// For single-frame sticky positioned elements, though, go ahead and apply
// it now to avoid unnecessary overflow updates later.
StickyScrollContainer* ssc =
StickyScrollContainer::GetStickyScrollContainerForFrame(aFrame);
if (ssc) {
*aPosition = ssc->ComputePosition(aFrame);
}
}
}
nsIFrame*
nsHTMLReflowState::GetHypotheticalBoxContainer(nsIFrame* aFrame,
nscoord& aCBIStartEdge,
LogicalSize& aCBSize) const
{
aFrame = aFrame->GetContainingBlock();
NS_ASSERTION(aFrame != frame, "How did that happen?");
/* Now aFrame is the containing block we want */
/* Check whether the containing block is currently being reflowed.
If so, use the info from the reflow state. */
const nsHTMLReflowState* state;
if (aFrame->GetStateBits() & NS_FRAME_IN_REFLOW) {
for (state = mParentReflowState; state && state->frame != aFrame;
state = state->mParentReflowState) {
/* do nothing */
}
} else {
state = nullptr;
}
if (state) {
WritingMode wm = state->GetWritingMode();
NS_ASSERTION(wm == aFrame->GetWritingMode(), "unexpected writing mode");
aCBIStartEdge = state->ComputedLogicalBorderPadding().IStart(wm);
aCBSize = state->ComputedSize(wm);
} else {
/* Didn't find a reflow state for aFrame. Just compute the information we
want, on the assumption that aFrame already knows its size. This really
ought to be true by now. */
NS_ASSERTION(!(aFrame->GetStateBits() & NS_FRAME_IN_REFLOW),
"aFrame shouldn't be in reflow; we'll lie if it is");
WritingMode wm = aFrame->GetWritingMode();
LogicalMargin borderPadding = aFrame->GetLogicalUsedBorderAndPadding(wm);
aCBIStartEdge = borderPadding.IStart(wm);
aCBSize = aFrame->GetLogicalSize(wm) - borderPadding.Size(wm);
}
return aFrame;
}
struct nsHypotheticalPosition {
// offset from inline-start edge of containing block (which is a padding edge)
nscoord mIStart;
// offset from block-start edge of containing block (which is a padding edge)
nscoord mBStart;
WritingMode mWritingMode;
};
static bool
GetIntrinsicSizeFor(nsIFrame* aFrame, nsSize& aIntrinsicSize, nsIAtom* aFrameType)
{
// See if it is an image frame
bool success = false;
// Currently the only type of replaced frame that we can get the intrinsic
// size for is an image frame
// XXX We should add back the GetReflowMetrics() function and one of the
// things should be the intrinsic size...
if (aFrameType == nsGkAtoms::imageFrame) {
nsImageFrame* imageFrame = (nsImageFrame*)aFrame;
if (NS_SUCCEEDED(imageFrame->GetIntrinsicImageSize(aIntrinsicSize))) {
success = (aIntrinsicSize != nsSize(0, 0));
}
}
return success;
}
/**
* aInsideBoxSizing returns the part of the padding, border, and margin
* in the aAxis dimension that goes inside the edge given by box-sizing;
* aOutsideBoxSizing returns the rest.
*/
void
nsHTMLReflowState::CalculateBorderPaddingMargin(
LogicalAxis aAxis,
nscoord aContainingBlockSize,
nscoord* aInsideBoxSizing,
nscoord* aOutsideBoxSizing) const
{
WritingMode wm = GetWritingMode();
mozilla::css::Side startSide =
wm.PhysicalSide(MakeLogicalSide(aAxis, eLogicalEdgeStart));
mozilla::css::Side endSide =
wm.PhysicalSide(MakeLogicalSide(aAxis, eLogicalEdgeEnd));
nsMargin styleBorder = mStyleBorder->GetComputedBorder();
nscoord borderStartEnd =
styleBorder.Side(startSide) + styleBorder.Side(endSide);
nscoord paddingStartEnd, marginStartEnd;
// See if the style system can provide us the padding directly
nsMargin stylePadding;
if (mStylePadding->GetPadding(stylePadding)) {
paddingStartEnd =
stylePadding.Side(startSide) + stylePadding.Side(endSide);
} else {
// We have to compute the start and end values
nscoord start, end;
start = nsLayoutUtils::
ComputeCBDependentValue(aContainingBlockSize,
mStylePadding->mPadding.Get(startSide));
end = nsLayoutUtils::
ComputeCBDependentValue(aContainingBlockSize,
mStylePadding->mPadding.Get(endSide));
paddingStartEnd = start + end;
}
// See if the style system can provide us the margin directly
nsMargin styleMargin;
if (mStyleMargin->GetMargin(styleMargin)) {
marginStartEnd =
styleMargin.Side(startSide) + styleMargin.Side(endSide);
} else {
nscoord start, end;
// We have to compute the start and end values
if (eStyleUnit_Auto == mStyleMargin->mMargin.GetUnit(startSide)) {
// XXX FIXME (or does CalculateBlockSideMargins do this?)
start = 0; // just ignore
} else {
start = nsLayoutUtils::
ComputeCBDependentValue(aContainingBlockSize,
mStyleMargin->mMargin.Get(startSide));
}
if (eStyleUnit_Auto == mStyleMargin->mMargin.GetUnit(endSide)) {
// XXX FIXME (or does CalculateBlockSideMargins do this?)
end = 0; // just ignore
} else {
end = nsLayoutUtils::
ComputeCBDependentValue(aContainingBlockSize,
mStyleMargin->mMargin.Get(endSide));
}
marginStartEnd = start + end;
}
nscoord outside = paddingStartEnd + borderStartEnd + marginStartEnd;
nscoord inside = 0;
switch (mStylePosition->mBoxSizing) {
case StyleBoxSizing::Border:
inside += borderStartEnd;
MOZ_FALLTHROUGH;
case StyleBoxSizing::Padding:
inside += paddingStartEnd;
MOZ_FALLTHROUGH;
case StyleBoxSizing::Content:
// nothing
break;
}
outside -= inside;
*aInsideBoxSizing = inside;
*aOutsideBoxSizing = outside;
return;
}
/**
* Returns true iff a pre-order traversal of the normal child
* frames rooted at aFrame finds no non-empty frame before aDescendant.
*/
static bool AreAllEarlierInFlowFramesEmpty(nsIFrame* aFrame,
nsIFrame* aDescendant, bool* aFound) {
if (aFrame == aDescendant) {
*aFound = true;
return true;
}
if (!aFrame->IsSelfEmpty()) {
*aFound = false;
return false;
}
for (nsIFrame* f : aFrame->PrincipalChildList()) {
bool allEmpty = AreAllEarlierInFlowFramesEmpty(f, aDescendant, aFound);
if (*aFound || !allEmpty) {
return allEmpty;
}
}
*aFound = false;
return true;
}
// Calculate the position of the hypothetical box that the element would have
// if it were in the flow.
// The values returned are relative to the padding edge of the absolute
// containing block. The writing-mode of the hypothetical box position will
// have the same block direction as the absolute containing block, but may
// differ in inline-bidi direction.
// In the code below, |cbrs->frame| is the absolute containing block, while
// |containingBlock| is the nearest block container of the placeholder frame,
// which may be different from the absolute containing block.
void
nsHTMLReflowState::CalculateHypotheticalPosition
(nsPresContext* aPresContext,
nsIFrame* aPlaceholderFrame,
const nsHTMLReflowState* cbrs,
nsHypotheticalPosition& aHypotheticalPos,
nsIAtom* aFrameType) const
{
NS_ASSERTION(mStyleDisplay->mOriginalDisplay != NS_STYLE_DISPLAY_NONE,
"mOriginalDisplay has not been properly initialized");
// Find the nearest containing block frame to the placeholder frame,
// and its inline-start edge and width.
nscoord blockIStartContentEdge;
// Dummy writing mode for blockContentSize, will be changed as needed by
// GetHypotheticalBoxContainer.
WritingMode cbwm = cbrs->GetWritingMode();
LogicalSize blockContentSize(cbwm);
nsIFrame* containingBlock =
GetHypotheticalBoxContainer(aPlaceholderFrame, blockIStartContentEdge,
blockContentSize);
// Now blockContentSize is in containingBlock's writing mode.
// If it's a replaced element and it has a 'auto' value for
//'inline size', see if we can get the intrinsic size. This will allow
// us to exactly determine both the inline edges
WritingMode wm = containingBlock->GetWritingMode();
nsStyleCoord styleISize = mStylePosition->ISize(wm);
bool isAutoISize = styleISize.GetUnit() == eStyleUnit_Auto;
nsSize intrinsicSize;
bool knowIntrinsicSize = false;
if (NS_FRAME_IS_REPLACED(mFrameType) && isAutoISize) {
// See if we can get the intrinsic size of the element
knowIntrinsicSize = GetIntrinsicSizeFor(frame, intrinsicSize, aFrameType);
}
// See if we can calculate what the box inline size would have been if
// the element had been in the flow
nscoord boxISize;
bool knowBoxISize = false;
if ((NS_STYLE_DISPLAY_INLINE == mStyleDisplay->mOriginalDisplay) &&
!NS_FRAME_IS_REPLACED(mFrameType)) {
// For non-replaced inline-level elements the 'inline size' property
// doesn't apply, so we don't know what the inline size would have
// been without reflowing it
} else {
// It's either a replaced inline-level element or a block-level element
// Determine the total amount of inline direction
// border/padding/margin that the element would have had if it had
// been in the flow. Note that we ignore any 'auto' and 'inherit'
// values
nscoord insideBoxSizing, outsideBoxSizing;
CalculateBorderPaddingMargin(eLogicalAxisInline,
blockContentSize.ISize(wm),
&insideBoxSizing, &outsideBoxSizing);
if (NS_FRAME_IS_REPLACED(mFrameType) && isAutoISize) {
// It's a replaced element with an 'auto' inline size so the box
// inline size is its intrinsic size plus any border/padding/margin
if (knowIntrinsicSize) {
boxISize = LogicalSize(wm, intrinsicSize).ISize(wm) +
outsideBoxSizing + insideBoxSizing;
knowBoxISize = true;
}
} else if (isAutoISize) {
// The box inline size is the containing block inline size
boxISize = blockContentSize.ISize(wm);
knowBoxISize = true;
} else {
// We need to compute it. It's important we do this, because if it's
// percentage based this computed value may be different from the computed
// value calculated using the absolute containing block width
boxISize = ComputeISizeValue(blockContentSize.ISize(wm),
insideBoxSizing, outsideBoxSizing,
styleISize) +
insideBoxSizing + outsideBoxSizing;
knowBoxISize = true;
}
}
// Get the placeholder x-offset and y-offset in the coordinate
// space of its containing block
// XXXbz the placeholder is not fully reflowed yet if our containing block is
// relatively positioned...
nsSize containerSize = containingBlock->GetStateBits() & NS_FRAME_IN_REFLOW
? cbrs->ComputedSizeAsContainerIfConstrained()
: containingBlock->GetSize();
LogicalPoint
placeholderOffset(wm, aPlaceholderFrame->GetOffsetTo(containingBlock),
containerSize);
// First, determine the hypothetical box's mBStart. We want to check the
// content insertion frame of containingBlock for block-ness, but make
// sure to compute all coordinates in the coordinate system of
// containingBlock.
nsBlockFrame* blockFrame =
nsLayoutUtils::GetAsBlock(containingBlock->GetContentInsertionFrame());
if (blockFrame) {
// Use a null containerSize to convert a LogicalPoint functioning as a
// vector into a physical nsPoint vector.
const nsSize nullContainerSize;
LogicalPoint blockOffset(wm, blockFrame->GetOffsetTo(containingBlock),
nullContainerSize);
bool isValid;
nsBlockInFlowLineIterator iter(blockFrame, aPlaceholderFrame, &isValid);
if (!isValid) {
// Give up. We're probably dealing with somebody using
// position:absolute inside native-anonymous content anyway.
aHypotheticalPos.mBStart = placeholderOffset.B(wm);
} else {
NS_ASSERTION(iter.GetContainer() == blockFrame,
"Found placeholder in wrong block!");
nsBlockFrame::line_iterator lineBox = iter.GetLine();
// How we determine the hypothetical box depends on whether the element
// would have been inline-level or block-level
LogicalRect lineBounds =
lineBox->GetBounds().ConvertTo(wm, lineBox->mWritingMode,
lineBox->mContainerSize);
if (mStyleDisplay->IsOriginalDisplayInlineOutsideStyle()) {
// Use the block-start of the inline box which the placeholder lives in
// as the hypothetical box's block-start.
aHypotheticalPos.mBStart = lineBounds.BStart(wm) + blockOffset.B(wm);
} else {
// The element would have been block-level which means it would
// be below the line containing the placeholder frame, unless
// all the frames before it are empty. In that case, it would
// have been just before this line.
// XXXbz the line box is not fully reflowed yet if our
// containing block is relatively positioned...
if (lineBox != iter.End()) {
nsIFrame * firstFrame = lineBox->mFirstChild;
bool found = false;
bool allEmpty = true;
while (firstFrame) { // See bug 223064
allEmpty = AreAllEarlierInFlowFramesEmpty(firstFrame,
aPlaceholderFrame, &found);
if (found || !allEmpty)
break;
firstFrame = firstFrame->GetNextSibling();
}
NS_ASSERTION(firstFrame, "Couldn't find placeholder!");
if (allEmpty) {
// The top of the hypothetical box is the top of the line
// containing the placeholder, since there is nothing in the
// line before our placeholder except empty frames.
aHypotheticalPos.mBStart =
lineBounds.BStart(wm) + blockOffset.B(wm);
} else {
// The top of the hypothetical box is just below the line
// containing the placeholder.
aHypotheticalPos.mBStart =
lineBounds.BEnd(wm) + blockOffset.B(wm);
}
} else {
// Just use the placeholder's block-offset wrt the containing block
aHypotheticalPos.mBStart = placeholderOffset.B(wm);
}
}
}
} else {
// The containing block is not a block, so it's probably something
// like a XUL box, etc.
// Just use the placeholder's block-offset
aHypotheticalPos.mBStart = placeholderOffset.B(wm);
}
// Second, determine the hypothetical box's mIStart.
// How we determine the hypothetical box depends on whether the element
// would have been inline-level or block-level
if (mStyleDisplay->IsOriginalDisplayInlineOutsideStyle()) {
// The placeholder represents the left edge of the hypothetical box
aHypotheticalPos.mIStart = placeholderOffset.I(wm);
} else {
aHypotheticalPos.mIStart = blockIStartContentEdge;
}
// The current coordinate space is that of the nearest block to the placeholder.
// Convert to the coordinate space of the absolute containing block
// One weird thing here is that for fixed-positioned elements we want to do
// the conversion incorrectly; specifically we want to ignore any scrolling
// that may have happened;
nsPoint cbOffset;
if (mStyleDisplay->mPosition == NS_STYLE_POSITION_FIXED &&
// Exclude cases inside -moz-transform where fixed is like absolute.
nsLayoutUtils::IsReallyFixedPos(frame)) {
// In this case, cbrs->frame will likely be an ancestor of
// containingBlock, so can just walk our way up the frame tree.
// Make sure to not add positions of frames whose parent is a
// scrollFrame, since we're doing fixed positioning, which assumes
// everything is scrolled to (0,0).
cbOffset.MoveTo(0, 0);
do {
cbOffset += containingBlock->GetPositionIgnoringScrolling();
nsContainerFrame* parent = containingBlock->GetParent();
if (!parent) {
// Oops, our absolute containing block isn't an ancestor of the
// placeholder's containing block. This can happen if the placeholder
// is pushed to a different page in a printing context. 'cbOffset' is
// currently relative to the root frame (containingBlock) - so just
// subtract the offset to the absolute containing block to make it
// relative to that.
cbOffset -= containingBlock->GetOffsetTo(cbrs->frame);
break;
}
containingBlock = parent;
} while (containingBlock != cbrs->frame);
} else {
// XXXldb We need to either ignore scrolling for the absolute
// positioning case too (and take the incompatibility) or figure out
// how to make these positioned elements actually *move* when we
// scroll, and thus avoid the resulting incremental reflow bugs.
cbOffset = containingBlock->GetOffsetTo(cbrs->frame);
}
nsSize cbrsSize = cbrs->ComputedSizeAsContainerIfConstrained();
LogicalPoint logCBOffs(wm, cbOffset, cbrsSize - containerSize);
aHypotheticalPos.mIStart += logCBOffs.I(wm);
aHypotheticalPos.mBStart += logCBOffs.B(wm);
// The specified offsets are relative to the absolute containing block's
// padding edge and our current values are relative to the border edge, so
// translate.
LogicalMargin border =
cbrs->ComputedLogicalBorderPadding() - cbrs->ComputedLogicalPadding();
border = border.ConvertTo(wm, cbrs->GetWritingMode());
aHypotheticalPos.mIStart -= border.IStart(wm);
aHypotheticalPos.mBStart -= border.BStart(wm);
// At this point, we have computed aHypotheticalPos using the writing mode
// of the placeholder's containing block.
if (cbwm.GetBlockDir() != wm.GetBlockDir()) {
// If the block direction we used in calculating aHypotheticalPos does not
// match the absolute containing block's, we need to convert here so that
// aHypotheticalPos is usable in relation to the absolute containing block.
// This requires computing or measuring the abspos frame's block-size,
// which is not otherwise required/used here (as aHypotheticalPos
// records only the block-start coordinate).
// This is similar to the inline-size calculation for a replaced
// inline-level element or a block-level element (above), except that
// 'auto' sizing is handled differently in the block direction for non-
// replaced elements and replaced elements lacking an intrinsic size.
// Determine the total amount of block direction
// border/padding/margin that the element would have had if it had
// been in the flow. Note that we ignore any 'auto' and 'inherit'
// values.
nscoord insideBoxSizing, outsideBoxSizing;
CalculateBorderPaddingMargin(eLogicalAxisBlock,
blockContentSize.BSize(wm),
&insideBoxSizing, &outsideBoxSizing);
nscoord boxBSize;
nsStyleCoord styleBSize = mStylePosition->BSize(wm);
bool isAutoBSize = styleBSize.GetUnit() == eStyleUnit_Auto;
if (isAutoBSize) {
if (NS_FRAME_IS_REPLACED(mFrameType) && knowIntrinsicSize) {
// It's a replaced element with an 'auto' block size so the box
// block size is its intrinsic size plus any border/padding/margin
boxBSize = LogicalSize(wm, intrinsicSize).BSize(wm) +
outsideBoxSizing + insideBoxSizing;
} else {
// XXX Bug 1191801
// Figure out how to get the correct boxBSize here (need to reflow the
// positioned frame?)
boxBSize = 0;
}
} else {
// We need to compute it. It's important we do this, because if it's
// percentage-based this computed value may be different from the
// computed value calculated using the absolute containing block height.
boxBSize = nsLayoutUtils::ComputeBSizeValue(blockContentSize.BSize(wm),
insideBoxSizing, styleBSize) +
insideBoxSizing + outsideBoxSizing;
}
LogicalSize boxSize(wm, knowBoxISize ? boxISize : 0, boxBSize);
LogicalPoint origin(wm, aHypotheticalPos.mIStart,
aHypotheticalPos.mBStart);
origin = origin.ConvertTo(cbwm, wm, cbrsSize -
boxSize.GetPhysicalSize(wm));
aHypotheticalPos.mIStart = origin.I(cbwm);
aHypotheticalPos.mBStart = origin.B(cbwm);
aHypotheticalPos.mWritingMode = cbwm;
} else {
aHypotheticalPos.mWritingMode = wm;
}
}
void
nsHTMLReflowState::InitAbsoluteConstraints(nsPresContext* aPresContext,
const nsHTMLReflowState* cbrs,
const LogicalSize& aCBSize,
nsIAtom* aFrameType)
{
WritingMode wm = GetWritingMode();
WritingMode cbwm = cbrs->GetWritingMode();
NS_PRECONDITION(aCBSize.BSize(cbwm) != NS_AUTOHEIGHT,
"containing block bsize must be constrained");
NS_ASSERTION(aFrameType != nsGkAtoms::tableFrame,
"InitAbsoluteConstraints should not be called on table frames");
NS_ASSERTION(frame->GetStateBits() & NS_FRAME_OUT_OF_FLOW,
"Why are we here?");
const auto& styleOffset = mStylePosition->mOffset;
bool iStartIsAuto = styleOffset.GetIStartUnit(cbwm) == eStyleUnit_Auto;
bool iEndIsAuto = styleOffset.GetIEndUnit(cbwm) == eStyleUnit_Auto;
bool bStartIsAuto = styleOffset.GetBStartUnit(cbwm) == eStyleUnit_Auto;
bool bEndIsAuto = styleOffset.GetBEndUnit(cbwm) == eStyleUnit_Auto;
// If both 'left' and 'right' are 'auto' or both 'top' and 'bottom' are
// 'auto', then compute the hypothetical box position where the element would
// have been if it had been in the flow
nsHypotheticalPosition hypotheticalPos;
if ((iStartIsAuto && iEndIsAuto) || (bStartIsAuto && bEndIsAuto)) {
if (mFlags.mStaticPosIsCBOrigin) {
hypotheticalPos.mWritingMode = cbwm;
hypotheticalPos.mIStart = nscoord(0);
hypotheticalPos.mBStart = nscoord(0);
} else {
nsIFrame* placeholderFrame =
aPresContext->PresShell()->GetPlaceholderFrameFor(frame);
NS_ASSERTION(placeholderFrame, "no placeholder frame");
CalculateHypotheticalPosition(aPresContext, placeholderFrame, cbrs,
hypotheticalPos, aFrameType);
}
}
// Initialize the 'left' and 'right' computed offsets
// XXX Handle new 'static-position' value...
// Size of the containing block in its writing mode
LogicalSize cbSize = aCBSize;
LogicalMargin offsets = ComputedLogicalOffsets().ConvertTo(cbwm, wm);
if (iStartIsAuto) {
offsets.IStart(cbwm) = 0;
} else {
offsets.IStart(cbwm) = nsLayoutUtils::
ComputeCBDependentValue(cbSize.ISize(cbwm), styleOffset.GetIStart(cbwm));
}
if (iEndIsAuto) {
offsets.IEnd(cbwm) = 0;
} else {
offsets.IEnd(cbwm) = nsLayoutUtils::
ComputeCBDependentValue(cbSize.ISize(cbwm), styleOffset.GetIEnd(cbwm));
}
if (iStartIsAuto && iEndIsAuto) {
if (cbwm.IsBidiLTR() != hypotheticalPos.mWritingMode.IsBidiLTR()) {
offsets.IEnd(cbwm) = hypotheticalPos.mIStart;
iEndIsAuto = false;
} else {
offsets.IStart(cbwm) = hypotheticalPos.mIStart;
iStartIsAuto = false;
}
}
if (bStartIsAuto) {
offsets.BStart(cbwm) = 0;
} else {
offsets.BStart(cbwm) = nsLayoutUtils::
ComputeBSizeDependentValue(cbSize.BSize(cbwm),
styleOffset.GetBStart(cbwm));
}
if (bEndIsAuto) {
offsets.BEnd(cbwm) = 0;
} else {
offsets.BEnd(cbwm) = nsLayoutUtils::
ComputeBSizeDependentValue(cbSize.BSize(cbwm),
styleOffset.GetBEnd(cbwm));
}
if (bStartIsAuto && bEndIsAuto) {
// Treat 'top' like 'static-position'
offsets.BStart(cbwm) = hypotheticalPos.mBStart;
bStartIsAuto = false;
}
SetComputedLogicalOffsets(offsets.ConvertTo(wm, cbwm));
typedef nsIFrame::ComputeSizeFlags ComputeSizeFlags;
ComputeSizeFlags computeSizeFlags = ComputeSizeFlags::eDefault;
if (mFlags.mShrinkWrap) {
computeSizeFlags =
ComputeSizeFlags(computeSizeFlags | ComputeSizeFlags::eShrinkWrap);
}
if (mFlags.mUseAutoBSize) {
computeSizeFlags =
ComputeSizeFlags(computeSizeFlags | ComputeSizeFlags::eUseAutoBSize);
}
if (wm.IsOrthogonalTo(cbwm)) {
if (bStartIsAuto || bEndIsAuto) {
computeSizeFlags =
ComputeSizeFlags(computeSizeFlags | ComputeSizeFlags::eShrinkWrap);
}
} else {
if (iStartIsAuto || iEndIsAuto) {
computeSizeFlags =
ComputeSizeFlags(computeSizeFlags | ComputeSizeFlags::eShrinkWrap);
}
}
LogicalSize computedSize(wm);
{
AutoMaybeDisableFontInflation an(frame);
computedSize =
frame->ComputeSize(rendContext, wm, cbSize.ConvertTo(wm, cbwm),
cbSize.ConvertTo(wm, cbwm).ISize(wm), // XXX or AvailableISize()?
ComputedLogicalMargin().Size(wm) +
ComputedLogicalOffsets().Size(wm),
ComputedLogicalBorderPadding().Size(wm) -
ComputedLogicalPadding().Size(wm),
ComputedLogicalPadding().Size(wm),
computeSizeFlags);
ComputedISize() = computedSize.ISize(wm);
ComputedBSize() = computedSize.BSize(wm);
NS_ASSERTION(ComputedISize() >= 0, "Bogus inline-size");
NS_ASSERTION(ComputedBSize() == NS_UNCONSTRAINEDSIZE ||
ComputedBSize() >= 0, "Bogus block-size");
}
computedSize = computedSize.ConvertTo(cbwm, wm);
// XXX Now that we have ComputeSize, can we condense many of the
// branches off of widthIsAuto?
LogicalMargin margin = ComputedLogicalMargin().ConvertTo(cbwm, wm);
const LogicalMargin borderPadding =
ComputedLogicalBorderPadding().ConvertTo(cbwm, wm);
bool iSizeIsAuto = eStyleUnit_Auto == mStylePosition->ISize(cbwm).GetUnit();
if (iStartIsAuto) {
// We know 'right' is not 'auto' anymore thanks to the hypothetical
// box code above.
// Solve for 'left'.
if (iSizeIsAuto) {
// XXXldb This, and the corresponding code in
// nsAbsoluteContainingBlock.cpp, could probably go away now that
// we always compute widths.
offsets.IStart(cbwm) = NS_AUTOOFFSET;
} else {
offsets.IStart(cbwm) =
cbSize.ISize(cbwm) - offsets.IEnd(cbwm) -
computedSize.ISize(cbwm) - margin.IStartEnd(cbwm) -
borderPadding.IStartEnd(cbwm);
}
} else if (iEndIsAuto) {
// We know 'left' is not 'auto' anymore thanks to the hypothetical
// box code above.
// Solve for 'right'.
if (iSizeIsAuto) {
// XXXldb This, and the corresponding code in
// nsAbsoluteContainingBlock.cpp, could probably go away now that
// we always compute widths.
offsets.IEnd(cbwm) = NS_AUTOOFFSET;
} else {
offsets.IEnd(cbwm) =
cbSize.ISize(cbwm) - offsets.IStart(cbwm) -
computedSize.ISize(cbwm) - margin.IStartEnd(cbwm) -
borderPadding.IStartEnd(cbwm);
}
} else {
// Neither 'inline-start' nor 'inline-end' is 'auto'.
if (wm.IsOrthogonalTo(cbwm)) {
// For orthogonal blocks, we need to handle the case where the block had
// unconstrained block-size, which mapped to unconstrained inline-size
// in the containing block's writing mode.
nscoord autoISize = cbSize.ISize(cbwm) - margin.IStartEnd(cbwm) -
borderPadding.IStartEnd(cbwm) - offsets.IStartEnd(cbwm);
if (autoISize < 0) {
autoISize = 0;
}
if (computedSize.ISize(cbwm) == NS_UNCONSTRAINEDSIZE) {
// For non-replaced elements with block-size auto, the block-size
// fills the remaining space.
computedSize.ISize(cbwm) = autoISize;
// XXX Do these need box-sizing adjustments?
LogicalSize maxSize = ComputedMaxSize(cbwm);
LogicalSize minSize = ComputedMinSize(cbwm);
if (computedSize.ISize(cbwm) > maxSize.ISize(cbwm)) {
computedSize.ISize(cbwm) = maxSize.ISize(cbwm);
}
if (computedSize.ISize(cbwm) < minSize.ISize(cbwm)) {
computedSize.ISize(cbwm) = minSize.ISize(cbwm);
}
}
}
// However, the inline-size might
// still not fill all the available space (even though we didn't
// shrink-wrap) in case:
// * inline-size was specified
// * we're dealing with a replaced element
// * width was constrained by min- or max-inline-size.
nscoord availMarginSpace =
aCBSize.ISize(cbwm) - offsets.IStartEnd(cbwm) - margin.IStartEnd(cbwm) -
borderPadding.IStartEnd(cbwm) - computedSize.ISize(cbwm);
bool marginIStartIsAuto =
eStyleUnit_Auto == mStyleMargin->mMargin.GetIStartUnit(cbwm);
bool marginIEndIsAuto =
eStyleUnit_Auto == mStyleMargin->mMargin.GetIEndUnit(cbwm);
if (marginIStartIsAuto) {
if (marginIEndIsAuto) {
if (availMarginSpace < 0) {
// Note that this case is different from the neither-'auto'
// case below, where the spec says to ignore 'left'/'right'.
// Ignore the specified value for 'margin-right'.
margin.IEnd(cbwm) = availMarginSpace;
} else {
// Both 'margin-left' and 'margin-right' are 'auto', so they get
// equal values
margin.IStart(cbwm) = availMarginSpace / 2;
margin.IEnd(cbwm) = availMarginSpace - margin.IStart(cbwm);
}
} else {
// Just 'margin-left' is 'auto'
margin.IStart(cbwm) = availMarginSpace;
}
} else {
if (marginIEndIsAuto) {
// Just 'margin-right' is 'auto'
margin.IEnd(cbwm) = availMarginSpace;
} else {
// We're over-constrained so use the direction of the containing
// block to dictate which value to ignore. (And note that the
// spec says to ignore 'left' or 'right' rather than
// 'margin-left' or 'margin-right'.)
// Note that this case is different from the both-'auto' case
// above, where the spec says to ignore
// 'margin-left'/'margin-right'.
// Ignore the specified value for 'right'.
offsets.IEnd(cbwm) += availMarginSpace;
}
}
}
bool bSizeIsAuto = eStyleUnit_Auto == mStylePosition->BSize(cbwm).GetUnit();
if (bStartIsAuto) {
// solve for block-start
if (bSizeIsAuto) {
offsets.BStart(cbwm) = NS_AUTOOFFSET;
} else {
offsets.BStart(cbwm) = cbSize.BSize(cbwm) - margin.BStartEnd(cbwm) -
borderPadding.BStartEnd(cbwm) - computedSize.BSize(cbwm) -
offsets.BEnd(cbwm);
}
} else if (bEndIsAuto) {
// solve for block-end
if (bSizeIsAuto) {
offsets.BEnd(cbwm) = NS_AUTOOFFSET;
} else {
offsets.BEnd(cbwm) = cbSize.BSize(cbwm) - margin.BStartEnd(cbwm) -
borderPadding.BStartEnd(cbwm) - computedSize.BSize(cbwm) -
offsets.BStart(cbwm);
}
} else {
// Neither block-start nor -end is 'auto'.
nscoord autoBSize = cbSize.BSize(cbwm) - margin.BStartEnd(cbwm) -
borderPadding.BStartEnd(cbwm) - offsets.BStartEnd(cbwm);
if (autoBSize < 0) {
autoBSize = 0;
}
if (computedSize.BSize(cbwm) == NS_UNCONSTRAINEDSIZE) {
// For non-replaced elements with block-size auto, the block-size
// fills the remaining space.
computedSize.BSize(cbwm) = autoBSize;
// XXX Do these need box-sizing adjustments?
LogicalSize maxSize = ComputedMaxSize(cbwm);
LogicalSize minSize = ComputedMinSize(cbwm);
if (computedSize.BSize(cbwm) > maxSize.BSize(cbwm)) {
computedSize.BSize(cbwm) = maxSize.BSize(cbwm);
}
if (computedSize.BSize(cbwm) < minSize.BSize(cbwm)) {
computedSize.BSize(cbwm) = minSize.BSize(cbwm);
}
}
// The block-size might still not fill all the available space in case:
// * bsize was specified
// * we're dealing with a replaced element
// * bsize was constrained by min- or max-bsize.
nscoord availMarginSpace = autoBSize - computedSize.BSize(cbwm);
bool marginBStartIsAuto =
eStyleUnit_Auto == mStyleMargin->mMargin.GetBStartUnit(cbwm);
bool marginBEndIsAuto =
eStyleUnit_Auto == mStyleMargin->mMargin.GetBEndUnit(cbwm);
if (marginBStartIsAuto) {
if (marginBEndIsAuto) {
// Both 'margin-top' and 'margin-bottom' are 'auto', so they get
// equal values
margin.BStart(cbwm) = availMarginSpace / 2;
margin.BEnd(cbwm) = availMarginSpace - margin.BStart(cbwm);
} else {
// Just margin-block-start is 'auto'
margin.BStart(cbwm) = availMarginSpace;
}
} else {
if (marginBEndIsAuto) {
// Just margin-block-end is 'auto'
margin.BEnd(cbwm) = availMarginSpace;
} else {
// We're over-constrained so ignore the specified value for
// block-end. (And note that the spec says to ignore 'bottom'
// rather than 'margin-bottom'.)
offsets.BEnd(cbwm) += availMarginSpace;
}
}
}
ComputedBSize() = computedSize.ConvertTo(wm, cbwm).BSize(wm);
ComputedISize() = computedSize.ConvertTo(wm, cbwm).ISize(wm);
SetComputedLogicalOffsets(offsets.ConvertTo(wm, cbwm));
SetComputedLogicalMargin(margin.ConvertTo(wm, cbwm));
}
// This will not be converted to abstract coordinates because it's only
// used in CalcQuirkContainingBlockHeight
nscoord
GetBlockMarginBorderPadding(const nsHTMLReflowState* aReflowState)
{
nscoord result = 0;
if (!aReflowState) return result;
// zero auto margins
nsMargin margin = aReflowState->ComputedPhysicalMargin();
if (NS_AUTOMARGIN == margin.top)
margin.top = 0;
if (NS_AUTOMARGIN == margin.bottom)
margin.bottom = 0;
result += margin.top + margin.bottom;
result += aReflowState->ComputedPhysicalBorderPadding().top +
aReflowState->ComputedPhysicalBorderPadding().bottom;
return result;
}
/* Get the height based on the viewport of the containing block specified
* in aReflowState when the containing block has mComputedHeight == NS_AUTOHEIGHT
* This will walk up the chain of containing blocks looking for a computed height
* until it finds the canvas frame, or it encounters a frame that is not a block,
* area, or scroll frame. This handles compatibility with IE (see bug 85016 and bug 219693)
*
* When we encounter scrolledContent block frames, we skip over them,
* since they are guaranteed to not be useful for computing the containing block.
*
* See also IsQuirkContainingBlockHeight.
*/
static nscoord
CalcQuirkContainingBlockHeight(const nsHTMLReflowState* aCBReflowState)
{
const nsHTMLReflowState* firstAncestorRS = nullptr; // a candidate for html frame
const nsHTMLReflowState* secondAncestorRS = nullptr; // a candidate for body frame
// initialize the default to NS_AUTOHEIGHT as this is the containings block
// computed height when this function is called. It is possible that we
// don't alter this height especially if we are restricted to one level
nscoord result = NS_AUTOHEIGHT;
const nsHTMLReflowState* rs = aCBReflowState;
for (; rs; rs = rs->mParentReflowState) {
nsIAtom* frameType = rs->frame->GetType();
// if the ancestor is auto height then skip it and continue up if it
// is the first block frame and possibly the body/html
if (nsGkAtoms::blockFrame == frameType ||
#ifdef MOZ_XUL
nsGkAtoms::XULLabelFrame == frameType ||
#endif
nsGkAtoms::scrollFrame == frameType) {
secondAncestorRS = firstAncestorRS;
firstAncestorRS = rs;
// If the current frame we're looking at is positioned, we don't want to
// go any further (see bug 221784). The behavior we want here is: 1) If
// not auto-height, use this as the percentage base. 2) If auto-height,
// keep looking, unless the frame is positioned.
if (NS_AUTOHEIGHT == rs->ComputedHeight()) {
if (rs->frame->IsAbsolutelyPositioned()) {
break;
} else {
continue;
}
}
}
else if (nsGkAtoms::canvasFrame == frameType) {
// Always continue on to the height calculation
}
else if (nsGkAtoms::pageContentFrame == frameType) {
nsIFrame* prevInFlow = rs->frame->GetPrevInFlow();
// only use the page content frame for a height basis if it is the first in flow
if (prevInFlow)
break;
}
else {
break;
}
// if the ancestor is the page content frame then the percent base is
// the avail height, otherwise it is the computed height
result = (nsGkAtoms::pageContentFrame == frameType)
? rs->AvailableHeight() : rs->ComputedHeight();
// if unconstrained - don't sutract borders - would result in huge height
if (NS_AUTOHEIGHT == result) return result;
// if we got to the canvas or page content frame, then subtract out
// margin/border/padding for the BODY and HTML elements
if ((nsGkAtoms::canvasFrame == frameType) ||
(nsGkAtoms::pageContentFrame == frameType)) {
result -= GetBlockMarginBorderPadding(firstAncestorRS);
result -= GetBlockMarginBorderPadding(secondAncestorRS);
#ifdef DEBUG
// make sure the first ancestor is the HTML and the second is the BODY
if (firstAncestorRS) {
nsIContent* frameContent = firstAncestorRS->frame->GetContent();
if (frameContent) {
NS_ASSERTION(frameContent->IsHTMLElement(nsGkAtoms::html),
"First ancestor is not HTML");
}
}
if (secondAncestorRS) {
nsIContent* frameContent = secondAncestorRS->frame->GetContent();
if (frameContent) {
NS_ASSERTION(frameContent->IsHTMLElement(nsGkAtoms::body),
"Second ancestor is not BODY");
}
}
#endif
}
// if we got to the html frame (a block child of the canvas) ...
else if (nsGkAtoms::blockFrame == frameType &&
rs->mParentReflowState &&
nsGkAtoms::canvasFrame ==
rs->mParentReflowState->frame->GetType()) {
// ... then subtract out margin/border/padding for the BODY element
result -= GetBlockMarginBorderPadding(secondAncestorRS);
}
break;
}
// Make sure not to return a negative height here!
return std::max(result, 0);
}
// Called by InitConstraints() to compute the containing block rectangle for
// the element. Handles the special logic for absolutely positioned elements
LogicalSize
nsHTMLReflowState::ComputeContainingBlockRectangle(
nsPresContext* aPresContext,
const nsHTMLReflowState* aContainingBlockRS) const
{
// Unless the element is absolutely positioned, the containing block is
// formed by the content edge of the nearest block-level ancestor
LogicalSize cbSize = aContainingBlockRS->ComputedSize();
WritingMode wm = aContainingBlockRS->GetWritingMode();
// mFrameType for abs-pos tables is NS_CSS_FRAME_TYPE_BLOCK, so we need to
// special case them here.
if (NS_FRAME_GET_TYPE(mFrameType) == NS_CSS_FRAME_TYPE_ABSOLUTE ||
(frame->GetType() == nsGkAtoms::tableFrame &&
frame->IsAbsolutelyPositioned() &&
(frame->GetParent()->GetStateBits() & NS_FRAME_OUT_OF_FLOW))) {
// See if the ancestor is block-level or inline-level
if (NS_FRAME_GET_TYPE(aContainingBlockRS->mFrameType) == NS_CSS_FRAME_TYPE_INLINE) {
// Base our size on the actual size of the frame. In cases when this is
// completely bogus (eg initial reflow), this code shouldn't even be
// called, since the code in nsInlineFrame::Reflow will pass in
// the containing block dimensions to our constructor.
// XXXbz we should be taking the in-flows into account too, but
// that's very hard.
LogicalMargin computedBorder =
aContainingBlockRS->ComputedLogicalBorderPadding() -
aContainingBlockRS->ComputedLogicalPadding();
cbSize.ISize(wm) = aContainingBlockRS->frame->ISize(wm) -
computedBorder.IStartEnd(wm);
NS_ASSERTION(cbSize.ISize(wm) >= 0,
"Negative containing block isize!");
cbSize.BSize(wm) = aContainingBlockRS->frame->BSize(wm) -
computedBorder.BStartEnd(wm);
NS_ASSERTION(cbSize.BSize(wm) >= 0,
"Negative containing block bsize!");
} else {
// If the ancestor is block-level, the containing block is formed by the
// padding edge of the ancestor
cbSize.ISize(wm) +=
aContainingBlockRS->ComputedLogicalPadding().IStartEnd(wm);
cbSize.BSize(wm) +=
aContainingBlockRS->ComputedLogicalPadding().BStartEnd(wm);
}
} else {
// an element in quirks mode gets a containing block based on looking for a
// parent with a non-auto height if the element has a percent height
// Note: We don't emulate this quirk for percents in calc() or in
// vertical writing modes.
if (!wm.IsVertical() &&
NS_AUTOHEIGHT == cbSize.BSize(wm)) {
if (eCompatibility_NavQuirks == aPresContext->CompatibilityMode() &&
mStylePosition->mHeight.GetUnit() == eStyleUnit_Percent) {
cbSize.BSize(wm) = CalcQuirkContainingBlockHeight(aContainingBlockRS);
}
}
}
return cbSize.ConvertTo(GetWritingMode(), wm);
}
static eNormalLineHeightControl GetNormalLineHeightCalcControl(void)
{
if (sNormalLineHeightControl == eUninitialized) {
// browser.display.normal_lineheight_calc_control is not user
// changeable, so no need to register callback for it.
int32_t val =
Preferences::GetInt("browser.display.normal_lineheight_calc_control",
eNoExternalLeading);
sNormalLineHeightControl = static_cast<eNormalLineHeightControl>(val);
}
return sNormalLineHeightControl;
}
static inline bool
IsSideCaption(nsIFrame* aFrame, const nsStyleDisplay* aStyleDisplay,
WritingMode aWM)
{
if (aStyleDisplay->mDisplay != NS_STYLE_DISPLAY_TABLE_CAPTION) {
return false;
}
uint8_t captionSide = aFrame->StyleTableBorder()->mCaptionSide;
return captionSide == NS_STYLE_CAPTION_SIDE_LEFT ||
captionSide == NS_STYLE_CAPTION_SIDE_RIGHT;
}
// Flex/grid items resolve block-axis percentage margin & padding against the
// containing block block-size (also for abs/fixed-pos child frames).
// For everything else: the CSS21 spec requires that margin and padding
// percentage values are calculated with respect to the inline-size of the
// containing block, even for margin & padding in the block axis.
static LogicalSize
OffsetPercentBasis(const nsIFrame* aFrame,
WritingMode aWM,
const LogicalSize& aContainingBlockSize)
{
LogicalSize offsetPercentBasis = aContainingBlockSize;
if (MOZ_LIKELY(!aFrame->GetParent() ||
!aFrame->GetParent()->IsFlexOrGridContainer())) {
offsetPercentBasis.BSize(aWM) = offsetPercentBasis.ISize(aWM);
} else if (offsetPercentBasis.BSize(aWM) == NS_AUTOHEIGHT) {
offsetPercentBasis.BSize(aWM) = 0;
}
return offsetPercentBasis;
}
// XXX refactor this code to have methods for each set of properties
// we are computing: width,height,line-height; margin; offsets
void
nsHTMLReflowState::InitConstraints(nsPresContext* aPresContext,
const LogicalSize& aContainingBlockSize,
const nsMargin* aBorder,
const nsMargin* aPadding,
nsIAtom* aFrameType)
{
WritingMode wm = GetWritingMode();
DISPLAY_INIT_CONSTRAINTS(frame, this,
aContainingBlockSize.ISize(wm),
aContainingBlockSize.BSize(wm),
aBorder, aPadding);
// If this is a reflow root, then set the computed width and
// height equal to the available space
if (nullptr == mParentReflowState || mFlags.mDummyParentReflowState) {
// XXXldb This doesn't mean what it used to!
InitOffsets(wm, OffsetPercentBasis(frame, wm, aContainingBlockSize),
aFrameType, mFlags, aBorder, aPadding);
// Override mComputedMargin since reflow roots start from the
// frame's boundary, which is inside the margin.
ComputedPhysicalMargin().SizeTo(0, 0, 0, 0);
ComputedPhysicalOffsets().SizeTo(0, 0, 0, 0);
ComputedISize() =
AvailableISize() - ComputedLogicalBorderPadding().IStartEnd(wm);
if (ComputedISize() < 0) {
ComputedISize() = 0;
}
if (AvailableBSize() != NS_UNCONSTRAINEDSIZE) {
ComputedBSize() =
AvailableBSize() - ComputedLogicalBorderPadding().BStartEnd(wm);
if (ComputedBSize() < 0) {
ComputedBSize() = 0;
}
} else {
ComputedBSize() = NS_UNCONSTRAINEDSIZE;
}
ComputedMinWidth() = ComputedMinHeight() = 0;
ComputedMaxWidth() = ComputedMaxHeight() = NS_UNCONSTRAINEDSIZE;
} else {
// Get the containing block reflow state
const nsHTMLReflowState* cbrs = mCBReflowState;
NS_ASSERTION(nullptr != cbrs, "no containing block");
// If we weren't given a containing block width and height, then
// compute one
LogicalSize cbSize = (aContainingBlockSize == LogicalSize(wm, -1, -1))
? ComputeContainingBlockRectangle(aPresContext, cbrs)
: aContainingBlockSize;
// See if the containing block height is based on the size of its
// content
nsIAtom* fType;
if (NS_AUTOHEIGHT == cbSize.BSize(wm)) {
// See if the containing block is a cell frame which needs
// to use the mComputedHeight of the cell instead of what the cell block passed in.
// XXX It seems like this could lead to bugs with min-height and friends
if (cbrs->mParentReflowState) {
fType = cbrs->frame->GetType();
if (IS_TABLE_CELL(fType)) {
// use the cell's computed block size
cbSize.BSize(wm) = cbrs->ComputedSize(wm).BSize(wm);
}
}
}
// XXX Might need to also pass the CB height (not width) for page boxes,
// too, if we implement them.
// For calculating positioning offsets, margins, borders and
// padding, we use the writing mode of the containing block
WritingMode cbwm = cbrs->GetWritingMode();
InitOffsets(cbwm, OffsetPercentBasis(frame, cbwm,
cbSize.ConvertTo(cbwm, wm)),
aFrameType, mFlags, aBorder, aPadding);
// For calculating the size of this box, we use its own writing mode
const nsStyleCoord &blockSize = mStylePosition->BSize(wm);
nsStyleUnit blockSizeUnit = blockSize.GetUnit();
// Check for a percentage based block size and a containing block
// block size that depends on the content block size
// XXX twiddling blockSizeUnit doesn't help anymore
// FIXME Shouldn't we fix that?
if (blockSize.HasPercent()) {
if (NS_AUTOHEIGHT == cbSize.BSize(wm)) {
// this if clause enables %-blockSize on replaced inline frames,
// such as images. See bug 54119. The else clause "blockSizeUnit = eStyleUnit_Auto;"
// used to be called exclusively.
if (NS_FRAME_REPLACED(NS_CSS_FRAME_TYPE_INLINE) == mFrameType ||
NS_FRAME_REPLACED_CONTAINS_BLOCK(
NS_CSS_FRAME_TYPE_INLINE) == mFrameType) {
// Get the containing block reflow state
NS_ASSERTION(nullptr != cbrs, "no containing block");
// in quirks mode, get the cb height using the special quirk method
if (!wm.IsVertical() &&
eCompatibility_NavQuirks == aPresContext->CompatibilityMode()) {
if (!IS_TABLE_CELL(fType)) {
cbSize.BSize(wm) = CalcQuirkContainingBlockHeight(cbrs);
if (cbSize.BSize(wm) == NS_AUTOHEIGHT) {
blockSizeUnit = eStyleUnit_Auto;
}
}
else {
blockSizeUnit = eStyleUnit_Auto;
}
}
// in standard mode, use the cb block size. if it's "auto",
// as will be the case by default in BODY, use auto block size
// as per CSS2 spec.
else
{
nscoord computedBSize = cbrs->ComputedSize(wm).BSize(wm);
if (NS_AUTOHEIGHT != computedBSize) {
cbSize.BSize(wm) = computedBSize;
}
else {
blockSizeUnit = eStyleUnit_Auto;
}
}
}
else {
// default to interpreting the blockSize like 'auto'
blockSizeUnit = eStyleUnit_Auto;
}
}
}
// Compute our offsets if the element is relatively positioned. We
// need the correct containing block inline-size and block-size
// here, which is why we need to do it after all the quirks-n-such
// above. (If the element is sticky positioned, we need to wait
// until the scroll container knows its size, so we compute offsets
// from StickyScrollContainer::UpdatePositions.)
if (mStyleDisplay->IsRelativelyPositioned(frame) &&
NS_STYLE_POSITION_RELATIVE == mStyleDisplay->mPosition) {
ComputeRelativeOffsets(cbwm, frame, cbSize.ConvertTo(cbwm, wm),
ComputedPhysicalOffsets());
} else {
// Initialize offsets to 0
ComputedPhysicalOffsets().SizeTo(0, 0, 0, 0);
}
// Calculate the computed values for min and max properties. Note that
// this MUST come after we've computed our border and padding.
ComputeMinMaxValues(cbSize);
// Calculate the computed inlineSize and blockSize.
// This varies by frame type.
if (NS_CSS_FRAME_TYPE_INTERNAL_TABLE == mFrameType) {
// Internal table elements. The rules vary depending on the type.
// Calculate the computed isize
bool rowOrRowGroup = false;
const nsStyleCoord &inlineSize = mStylePosition->ISize(wm);
nsStyleUnit inlineSizeUnit = inlineSize.GetUnit();
if ((NS_STYLE_DISPLAY_TABLE_ROW == mStyleDisplay->mDisplay) ||
(NS_STYLE_DISPLAY_TABLE_ROW_GROUP == mStyleDisplay->mDisplay)) {
// 'inlineSize' property doesn't apply to table rows and row groups
inlineSizeUnit = eStyleUnit_Auto;
rowOrRowGroup = true;
}
// calc() with percentages acts like auto on internal table elements
if (eStyleUnit_Auto == inlineSizeUnit ||
(inlineSize.IsCalcUnit() && inlineSize.CalcHasPercent())) {
ComputedISize() = AvailableISize();
if ((ComputedISize() != NS_UNCONSTRAINEDSIZE) && !rowOrRowGroup){
// Internal table elements don't have margins. Only tables and
// cells have border and padding
ComputedISize() -= ComputedLogicalBorderPadding().IStartEnd(wm);
if (ComputedISize() < 0)
ComputedISize() = 0;
}
NS_ASSERTION(ComputedISize() >= 0, "Bogus computed isize");
} else {
NS_ASSERTION(inlineSizeUnit == inlineSize.GetUnit(),
"unexpected inline size unit change");
ComputedISize() = ComputeISizeValue(cbSize.ISize(wm),
mStylePosition->mBoxSizing,
inlineSize);
}
// Calculate the computed block size
if ((NS_STYLE_DISPLAY_TABLE_COLUMN == mStyleDisplay->mDisplay) ||
(NS_STYLE_DISPLAY_TABLE_COLUMN_GROUP == mStyleDisplay->mDisplay)) {
// 'blockSize' property doesn't apply to table columns and column groups
blockSizeUnit = eStyleUnit_Auto;
}
// calc() with percentages acts like 'auto' on internal table elements
if (eStyleUnit_Auto == blockSizeUnit ||
(blockSize.IsCalcUnit() && blockSize.CalcHasPercent())) {
ComputedBSize() = NS_AUTOHEIGHT;
} else {
NS_ASSERTION(blockSizeUnit == blockSize.GetUnit(),
"unexpected block size unit change");
ComputedBSize() = ComputeBSizeValue(cbSize.BSize(wm),
mStylePosition->mBoxSizing,
blockSize);
}
// Doesn't apply to table elements
ComputedMinWidth() = ComputedMinHeight() = 0;
ComputedMaxWidth() = ComputedMaxHeight() = NS_UNCONSTRAINEDSIZE;
} else if (NS_FRAME_GET_TYPE(mFrameType) == NS_CSS_FRAME_TYPE_ABSOLUTE) {
// XXX not sure if this belongs here or somewhere else - cwk
InitAbsoluteConstraints(aPresContext, cbrs, cbSize.ConvertTo(cbrs->GetWritingMode(), wm), aFrameType);
} else {
AutoMaybeDisableFontInflation an(frame);
bool isBlock = NS_CSS_FRAME_TYPE_BLOCK == NS_FRAME_GET_TYPE(mFrameType);
typedef nsIFrame::ComputeSizeFlags ComputeSizeFlags;
ComputeSizeFlags computeSizeFlags =
isBlock ? ComputeSizeFlags::eDefault : ComputeSizeFlags::eShrinkWrap;
if (mFlags.mShrinkWrap) {
computeSizeFlags =
ComputeSizeFlags(computeSizeFlags | ComputeSizeFlags::eShrinkWrap);
}
if (mFlags.mUseAutoBSize) {
computeSizeFlags =
ComputeSizeFlags(computeSizeFlags | ComputeSizeFlags::eUseAutoBSize);
}
nsIFrame* parent = frame->GetParent();
nsIAtom* parentFrameType = parent ? parent->GetType() : nullptr;
if (parentFrameType == nsGkAtoms::gridContainerFrame) {
// Shrink-wrap grid items that will be aligned (rather than stretched)
// in its inline axis.
auto inlineAxisAlignment = wm.IsOrthogonalTo(cbwm) ?
mStylePosition->ComputedAlignSelf(frame->StyleContext()->GetParent()) :
mStylePosition->ComputedJustifySelf(frame->StyleContext()->GetParent());
if ((inlineAxisAlignment != NS_STYLE_ALIGN_STRETCH &&
inlineAxisAlignment != NS_STYLE_ALIGN_NORMAL) ||
mStyleMargin->mMargin.GetIStartUnit(wm) == eStyleUnit_Auto ||
mStyleMargin->mMargin.GetIEndUnit(wm) == eStyleUnit_Auto) {
computeSizeFlags =
ComputeSizeFlags(computeSizeFlags | ComputeSizeFlags::eShrinkWrap);
}
} else {
// Make sure legend frames with display:block and width:auto still
// shrink-wrap.
// Also shrink-wrap blocks that are orthogonal to their container.
if (isBlock &&
((aFrameType == nsGkAtoms::legendFrame &&
frame->StyleContext()->GetPseudo() != nsCSSAnonBoxes::scrolledContent) ||
(aFrameType == nsGkAtoms::scrollFrame &&
frame->GetContentInsertionFrame()->GetType() == nsGkAtoms::legendFrame) ||
(mCBReflowState &&
mCBReflowState->GetWritingMode().IsOrthogonalTo(mWritingMode)))) {
computeSizeFlags =
ComputeSizeFlags(computeSizeFlags | ComputeSizeFlags::eShrinkWrap);
}
if (parentFrameType == nsGkAtoms::flexContainerFrame) {
computeSizeFlags =
ComputeSizeFlags(computeSizeFlags | ComputeSizeFlags::eShrinkWrap);
// If we're inside of a flex container that needs to measure our
// auto height, pass that information along to ComputeSize().
if (mFlags.mIsFlexContainerMeasuringHeight) {
computeSizeFlags =
ComputeSizeFlags(computeSizeFlags | ComputeSizeFlags::eUseAutoBSize);
}
} else {
MOZ_ASSERT(!mFlags.mIsFlexContainerMeasuringHeight,
"We're not in a flex container, so the flag "
"'mIsFlexContainerMeasuringHeight' shouldn't be set");
}
}
if (cbSize.ISize(wm) == NS_UNCONSTRAINEDSIZE) {
// For orthogonal flows, where we found a parent orthogonal-limit
// for AvailableISize() in Init(), we'll use the same here as well.
cbSize.ISize(wm) = AvailableISize();
}
LogicalSize size =
frame->ComputeSize(rendContext, wm, cbSize, AvailableISize(),
ComputedLogicalMargin().Size(wm),
ComputedLogicalBorderPadding().Size(wm) -
ComputedLogicalPadding().Size(wm),
ComputedLogicalPadding().Size(wm),
computeSizeFlags);
ComputedISize() = size.ISize(wm);
ComputedBSize() = size.BSize(wm);
NS_ASSERTION(ComputedISize() >= 0, "Bogus inline-size");
NS_ASSERTION(ComputedBSize() == NS_UNCONSTRAINEDSIZE ||
ComputedBSize() >= 0, "Bogus block-size");
// Exclude inline tables, side captions, flex and grid items from block
// margin calculations.
if (isBlock &&
!IsSideCaption(frame, mStyleDisplay, cbwm) &&
mStyleDisplay->mDisplay != NS_STYLE_DISPLAY_INLINE_TABLE &&
parentFrameType != nsGkAtoms::flexContainerFrame &&
parentFrameType != nsGkAtoms::gridContainerFrame) {
CalculateBlockSideMargins(aFrameType);
}
}
}
}
static void
UpdateProp(FrameProperties& aProps,
const FramePropertyDescriptor<nsMargin>* aProperty,
bool aNeeded,
nsMargin& aNewValue)
{
if (aNeeded) {
nsMargin* propValue = aProps.Get(aProperty);
if (propValue) {
*propValue = aNewValue;
} else {
aProps.Set(aProperty, new nsMargin(aNewValue));
}
} else {
aProps.Delete(aProperty);
}
}
void
nsCSSOffsetState::InitOffsets(WritingMode aWM,
const LogicalSize& aPercentBasis,
nsIAtom* aFrameType,
ReflowStateFlags aFlags,
const nsMargin* aBorder,
const nsMargin* aPadding)
{
DISPLAY_INIT_OFFSETS(frame, this, aPercentBasis, aBorder, aPadding);
// Since we are in reflow, we don't need to store these properties anymore
// unless they are dependent on width, in which case we store the new value.
nsPresContext *presContext = frame->PresContext();
FrameProperties props(presContext->PropertyTable(), frame);
props.Delete(nsIFrame::UsedBorderProperty());
// Compute margins from the specified margin style information. These
// become the default computed values, and may be adjusted below
// XXX fix to provide 0,0 for the top&bottom margins for
// inline-non-replaced elements
bool needMarginProp = ComputeMargin(aWM, aPercentBasis);
// XXX We need to include 'auto' horizontal margins in this too!
// ... but if we did that, we'd need to fix nsFrame::GetUsedMargin
// to use it even when the margins are all zero (since sometimes
// they get treated as auto)
::UpdateProp(props, nsIFrame::UsedMarginProperty(), needMarginProp,
ComputedPhysicalMargin());
const nsStyleDisplay *disp = frame->StyleDisplay();
bool isThemed = frame->IsThemed(disp);
bool needPaddingProp;
nsIntMargin widget;
if (isThemed &&
presContext->GetTheme()->GetWidgetPadding(presContext->DeviceContext(),
frame, disp->mAppearance,
&widget)) {
ComputedPhysicalPadding().top = presContext->DevPixelsToAppUnits(widget.top);
ComputedPhysicalPadding().right = presContext->DevPixelsToAppUnits(widget.right);
ComputedPhysicalPadding().bottom = presContext->DevPixelsToAppUnits(widget.bottom);
ComputedPhysicalPadding().left = presContext->DevPixelsToAppUnits(widget.left);
needPaddingProp = false;
}
else if (frame->IsSVGText()) {
ComputedPhysicalPadding().SizeTo(0, 0, 0, 0);
needPaddingProp = false;
}
else if (aPadding) { // padding is an input arg
ComputedPhysicalPadding() = *aPadding;
needPaddingProp = frame->StylePadding()->IsWidthDependent() ||
(frame->GetStateBits() & NS_FRAME_REFLOW_ROOT);
}
else {
needPaddingProp = ComputePadding(aWM, aPercentBasis, aFrameType);
}
// Add [align|justify]-content:baseline padding contribution.
typedef const FramePropertyDescriptor<SmallValueHolder<nscoord>>* Prop;
auto ApplyBaselinePadding = [this, &needPaddingProp]
(LogicalAxis aAxis, Prop aProp) {
bool found;
nscoord val = frame->Properties().Get(aProp, &found);
if (found) {
NS_ASSERTION(val != nscoord(0), "zero in this property is useless");
WritingMode wm = GetWritingMode();
LogicalSide side;
if (val > 0) {
side = MakeLogicalSide(aAxis, eLogicalEdgeStart);
} else {
side = MakeLogicalSide(aAxis, eLogicalEdgeEnd);
val = -val;
}
mComputedPadding.Side(wm.PhysicalSide(side)) += val;
needPaddingProp = true;
}
};
if (!aFlags.mUseAutoBSize) {
ApplyBaselinePadding(eLogicalAxisBlock, nsIFrame::BBaselinePadProperty());
}
if (!aFlags.mShrinkWrap) {
ApplyBaselinePadding(eLogicalAxisInline, nsIFrame::IBaselinePadProperty());
}
if (isThemed) {
nsIntMargin widget;
presContext->GetTheme()->GetWidgetBorder(presContext->DeviceContext(),
frame, disp->mAppearance,
&widget);
ComputedPhysicalBorderPadding().top =
presContext->DevPixelsToAppUnits(widget.top);
ComputedPhysicalBorderPadding().right =
presContext->DevPixelsToAppUnits(widget.right);
ComputedPhysicalBorderPadding().bottom =
presContext->DevPixelsToAppUnits(widget.bottom);
ComputedPhysicalBorderPadding().left =
presContext->DevPixelsToAppUnits(widget.left);
}
else if (frame->IsSVGText()) {
ComputedPhysicalBorderPadding().SizeTo(0, 0, 0, 0);
}
else if (aBorder) { // border is an input arg
ComputedPhysicalBorderPadding() = *aBorder;
}
else {
ComputedPhysicalBorderPadding() = frame->StyleBorder()->GetComputedBorder();
}
ComputedPhysicalBorderPadding() += ComputedPhysicalPadding();
if (aFrameType == nsGkAtoms::tableFrame) {
nsTableFrame *tableFrame = static_cast<nsTableFrame*>(frame);
if (tableFrame->IsBorderCollapse()) {
// border-collapsed tables don't use any of their padding, and
// only part of their border. We need to do this here before we
// try to do anything like handling 'auto' widths,
// 'box-sizing', or 'auto' margins.
ComputedPhysicalPadding().SizeTo(0,0,0,0);
SetComputedLogicalBorderPadding(
tableFrame->GetIncludedOuterBCBorder(mWritingMode));
}
// The margin is inherited to the outer table frame via
// the ::-moz-table-outer rule in ua.css.
ComputedPhysicalMargin().SizeTo(0, 0, 0, 0);
} else if (aFrameType == nsGkAtoms::scrollbarFrame) {
// scrollbars may have had their width or height smashed to zero
// by the associated scrollframe, in which case we must not report
// any padding or border.
nsSize size(frame->GetSize());
if (size.width == 0 || size.height == 0) {
ComputedPhysicalPadding().SizeTo(0,0,0,0);
ComputedPhysicalBorderPadding().SizeTo(0,0,0,0);
}
}
::UpdateProp(props, nsIFrame::UsedPaddingProperty(), needPaddingProp,
ComputedPhysicalPadding());
}
// This code enforces section 10.3.3 of the CSS2 spec for this formula:
//
// 'margin-left' + 'border-left-width' + 'padding-left' + 'width' +
// 'padding-right' + 'border-right-width' + 'margin-right'
// = width of containing block
//
// Note: the width unit is not auto when this is called
void
nsHTMLReflowState::CalculateBlockSideMargins(nsIAtom* aFrameType)
{
// Calculations here are done in the containing block's writing mode,
// which is where margins will eventually be applied: we're calculating
// margins that will be used by the container in its inline direction,
// which in the case of an orthogonal contained block will correspond to
// the block direction of this reflow state. So in the orthogonal-flow
// case, "CalculateBlock*Side*Margins" will actually end up adjusting
// the BStart/BEnd margins; those are the "sides" of the block from its
// container's point of view.
WritingMode cbWM =
mCBReflowState ? mCBReflowState->GetWritingMode(): GetWritingMode();
nscoord availISizeCBWM = AvailableSize(cbWM).ISize(cbWM);
nscoord computedISizeCBWM = ComputedSize(cbWM).ISize(cbWM);
if (computedISizeCBWM == NS_UNCONSTRAINEDSIZE) {
// For orthogonal flows, where we found a parent orthogonal-limit
// for AvailableISize() in Init(), we'll use the same here as well.
computedISizeCBWM = availISizeCBWM;
}
LAYOUT_WARN_IF_FALSE(NS_UNCONSTRAINEDSIZE != computedISizeCBWM &&
NS_UNCONSTRAINEDSIZE != availISizeCBWM,
"have unconstrained inline-size; this should only "
"result from very large sizes, not attempts at "
"intrinsic inline-size calculation");
LogicalMargin margin =
ComputedLogicalMargin().ConvertTo(cbWM, mWritingMode);
LogicalMargin borderPadding =
ComputedLogicalBorderPadding().ConvertTo(cbWM, mWritingMode);
nscoord sum = margin.IStartEnd(cbWM) +
borderPadding.IStartEnd(cbWM) + computedISizeCBWM;
if (sum == availISizeCBWM) {
// The sum is already correct
return;
}
// Determine the start and end margin values. The isize value
// remains constant while we do this.
// Calculate how much space is available for margins
nscoord availMarginSpace = availISizeCBWM - sum;
// If the available margin space is negative, then don't follow the
// usual overconstraint rules.
if (availMarginSpace < 0) {
margin.IEnd(cbWM) += availMarginSpace;
SetComputedLogicalMargin(margin.ConvertTo(mWritingMode, cbWM));
return;
}
// The css2 spec clearly defines how block elements should behave
// in section 10.3.3.
const nsStyleSides& styleSides = mStyleMargin->mMargin;
bool isAutoStartMargin = eStyleUnit_Auto == styleSides.GetIStartUnit(cbWM);
bool isAutoEndMargin = eStyleUnit_Auto == styleSides.GetIEndUnit(cbWM);
if (!isAutoStartMargin && !isAutoEndMargin) {
// Neither margin is 'auto' so we're over constrained. Use the
// 'direction' property of the parent to tell which margin to
// ignore
// First check if there is an HTML alignment that we should honor
const nsHTMLReflowState* prs = mParentReflowState;
if (aFrameType == nsGkAtoms::tableFrame) {
NS_ASSERTION(prs->frame->GetType() == nsGkAtoms::tableOuterFrame,
"table not inside outer table");
// Center the table within the outer table based on the alignment
// of the outer table's parent.
prs = prs->mParentReflowState;
}
if (prs &&
(prs->mStyleText->mTextAlign == NS_STYLE_TEXT_ALIGN_MOZ_LEFT ||
prs->mStyleText->mTextAlign == NS_STYLE_TEXT_ALIGN_MOZ_CENTER ||
prs->mStyleText->mTextAlign == NS_STYLE_TEXT_ALIGN_MOZ_RIGHT)) {
if (prs->mWritingMode.IsBidiLTR()) {
isAutoStartMargin =
prs->mStyleText->mTextAlign != NS_STYLE_TEXT_ALIGN_MOZ_LEFT;
isAutoEndMargin =
prs->mStyleText->mTextAlign != NS_STYLE_TEXT_ALIGN_MOZ_RIGHT;
} else {
isAutoStartMargin =
prs->mStyleText->mTextAlign != NS_STYLE_TEXT_ALIGN_MOZ_RIGHT;
isAutoEndMargin =
prs->mStyleText->mTextAlign != NS_STYLE_TEXT_ALIGN_MOZ_LEFT;
}
}
// Otherwise apply the CSS rules, and ignore one margin by forcing
// it to 'auto', depending on 'direction'.
else {
isAutoEndMargin = true;
}
}
// Logic which is common to blocks and tables
// The computed margins need not be zero because the 'auto' could come from
// overconstraint or from HTML alignment so values need to be accumulated
if (isAutoStartMargin) {
if (isAutoEndMargin) {
// Both margins are 'auto' so the computed addition should be equal
nscoord forStart = availMarginSpace / 2;
margin.IStart(cbWM) += forStart;
margin.IEnd(cbWM) += availMarginSpace - forStart;
} else {
margin.IStart(cbWM) += availMarginSpace;
}
} else if (isAutoEndMargin) {
margin.IEnd(cbWM) += availMarginSpace;
}
SetComputedLogicalMargin(margin.ConvertTo(mWritingMode, cbWM));
}
#define NORMAL_LINE_HEIGHT_FACTOR 1.2f // in term of emHeight
// For "normal" we use the font's normal line height (em height + leading).
// If both internal leading and external leading specified by font itself
// are zeros, we should compensate this by creating extra (external) leading
// in eCompensateLeading mode. This is necessary because without this
// compensation, normal line height might looks too tight.
// For risk management, we use preference to control the behavior, and
// eNoExternalLeading is the old behavior.
static nscoord
GetNormalLineHeight(nsFontMetrics* aFontMetrics)
{
NS_PRECONDITION(nullptr != aFontMetrics, "no font metrics");
nscoord normalLineHeight;
nscoord externalLeading = aFontMetrics->ExternalLeading();
nscoord internalLeading = aFontMetrics->InternalLeading();
nscoord emHeight = aFontMetrics->EmHeight();
switch (GetNormalLineHeightCalcControl()) {
case eIncludeExternalLeading:
normalLineHeight = emHeight+ internalLeading + externalLeading;
break;
case eCompensateLeading:
if (!internalLeading && !externalLeading)
normalLineHeight = NSToCoordRound(emHeight * NORMAL_LINE_HEIGHT_FACTOR);
else
normalLineHeight = emHeight+ internalLeading + externalLeading;
break;
default:
//case eNoExternalLeading:
normalLineHeight = emHeight + internalLeading;
}
return normalLineHeight;
}
static inline nscoord
ComputeLineHeight(nsStyleContext* aStyleContext,
nscoord aBlockBSize,
float aFontSizeInflation)
{
const nsStyleCoord& lhCoord = aStyleContext->StyleText()->mLineHeight;
if (lhCoord.GetUnit() == eStyleUnit_Coord) {
nscoord result = lhCoord.GetCoordValue();
if (aFontSizeInflation != 1.0f) {
result = NSToCoordRound(result * aFontSizeInflation);
}
return result;
}
if (lhCoord.GetUnit() == eStyleUnit_Factor)
// For factor units the computed value of the line-height property
// is found by multiplying the factor by the font's computed size
// (adjusted for min-size prefs and text zoom).
return NSToCoordRound(lhCoord.GetFactorValue() * aFontSizeInflation *
aStyleContext->StyleFont()->mFont.size);
NS_ASSERTION(lhCoord.GetUnit() == eStyleUnit_Normal ||
lhCoord.GetUnit() == eStyleUnit_Enumerated,
"bad line-height unit");
if (lhCoord.GetUnit() == eStyleUnit_Enumerated) {
NS_ASSERTION(lhCoord.GetIntValue() == NS_STYLE_LINE_HEIGHT_BLOCK_HEIGHT,
"bad line-height value");
if (aBlockBSize != NS_AUTOHEIGHT) {
return aBlockBSize;
}
}
RefPtr<nsFontMetrics> fm = nsLayoutUtils::
GetFontMetricsForStyleContext(aStyleContext, aFontSizeInflation);
return GetNormalLineHeight(fm);
}
nscoord
nsHTMLReflowState::CalcLineHeight() const
{
nscoord blockBSize =
nsLayoutUtils::IsNonWrapperBlock(frame) ? ComputedBSize() :
(mCBReflowState ? mCBReflowState->ComputedBSize() : NS_AUTOHEIGHT);
return CalcLineHeight(frame->GetContent(), frame->StyleContext(), blockBSize,
nsLayoutUtils::FontSizeInflationFor(frame));
}
/* static */ nscoord
nsHTMLReflowState::CalcLineHeight(nsIContent* aContent,
nsStyleContext* aStyleContext,
nscoord aBlockBSize,
float aFontSizeInflation)
{
NS_PRECONDITION(aStyleContext, "Must have a style context");
nscoord lineHeight =
ComputeLineHeight(aStyleContext, aBlockBSize, aFontSizeInflation);
NS_ASSERTION(lineHeight >= 0, "ComputeLineHeight screwed up");
HTMLInputElement* input = HTMLInputElement::FromContentOrNull(aContent);
if (input && input->IsSingleLineTextControl()) {
// For Web-compatibility, single-line text input elements cannot
// have a line-height smaller than one.
nscoord lineHeightOne =
aFontSizeInflation * aStyleContext->StyleFont()->mFont.size;
if (lineHeight < lineHeightOne) {
lineHeight = lineHeightOne;
}
}
return lineHeight;
}
bool
nsCSSOffsetState::ComputeMargin(WritingMode aWM,
const LogicalSize& aPercentBasis)
{
// SVG text frames have no margin.
if (frame->IsSVGText()) {
return false;
}
// If style style can provide us the margin directly, then use it.
const nsStyleMargin *styleMargin = frame->StyleMargin();
bool isCBDependent = !styleMargin->GetMargin(ComputedPhysicalMargin());
if (isCBDependent) {
// We have to compute the value. Note that this calculation is
// performed according to the writing mode of the containing block
// (http://dev.w3.org/csswg/css-writing-modes-3/#orthogonal-flows)
LogicalMargin m(aWM);
m.IStart(aWM) = nsLayoutUtils::
ComputeCBDependentValue(aPercentBasis.ISize(aWM),
styleMargin->mMargin.GetIStart(aWM));
m.IEnd(aWM) = nsLayoutUtils::
ComputeCBDependentValue(aPercentBasis.ISize(aWM),
styleMargin->mMargin.GetIEnd(aWM));
m.BStart(aWM) = nsLayoutUtils::
ComputeCBDependentValue(aPercentBasis.BSize(aWM),
styleMargin->mMargin.GetBStart(aWM));
m.BEnd(aWM) = nsLayoutUtils::
ComputeCBDependentValue(aPercentBasis.BSize(aWM),
styleMargin->mMargin.GetBEnd(aWM));
SetComputedLogicalMargin(aWM, m);
}
// ... but font-size-inflation-based margin adjustment uses the
// frame's writing mode
nscoord marginAdjustment = FontSizeInflationListMarginAdjustment(frame);
if (marginAdjustment > 0) {
LogicalMargin m = ComputedLogicalMargin();
m.IStart(mWritingMode) += marginAdjustment;
SetComputedLogicalMargin(m);
}
return isCBDependent;
}
bool
nsCSSOffsetState::ComputePadding(WritingMode aWM,
const LogicalSize& aPercentBasis,
nsIAtom* aFrameType)
{
// If style can provide us the padding directly, then use it.
const nsStylePadding *stylePadding = frame->StylePadding();
bool isCBDependent = !stylePadding->GetPadding(ComputedPhysicalPadding());
// a table row/col group, row/col doesn't have padding
// XXXldb Neither do border-collapse tables.
if (nsGkAtoms::tableRowGroupFrame == aFrameType ||
nsGkAtoms::tableColGroupFrame == aFrameType ||
nsGkAtoms::tableRowFrame == aFrameType ||
nsGkAtoms::tableColFrame == aFrameType) {
ComputedPhysicalPadding().SizeTo(0,0,0,0);
}
else if (isCBDependent) {
// We have to compute the value. This calculation is performed
// according to the writing mode of the containing block
// (http://dev.w3.org/csswg/css-writing-modes-3/#orthogonal-flows)
// clamp negative calc() results to 0
LogicalMargin p(aWM);
p.IStart(aWM) = std::max(0, nsLayoutUtils::
ComputeCBDependentValue(aPercentBasis.ISize(aWM),
stylePadding->mPadding.GetIStart(aWM)));
p.IEnd(aWM) = std::max(0, nsLayoutUtils::
ComputeCBDependentValue(aPercentBasis.ISize(aWM),
stylePadding->mPadding.GetIEnd(aWM)));
p.BStart(aWM) = std::max(0, nsLayoutUtils::
ComputeCBDependentValue(aPercentBasis.BSize(aWM),
stylePadding->mPadding.GetBStart(aWM)));
p.BEnd(aWM) = std::max(0, nsLayoutUtils::
ComputeCBDependentValue(aPercentBasis.BSize(aWM),
stylePadding->mPadding.GetBEnd(aWM)));
SetComputedLogicalPadding(aWM, p);
}
return isCBDependent;
}
void
nsHTMLReflowState::ComputeMinMaxValues(const LogicalSize&aCBSize)
{
WritingMode wm = GetWritingMode();
const nsStyleCoord& minISize = mStylePosition->MinISize(wm);
const nsStyleCoord& maxISize = mStylePosition->MaxISize(wm);
const nsStyleCoord& minBSize = mStylePosition->MinBSize(wm);
const nsStyleCoord& maxBSize = mStylePosition->MaxBSize(wm);
// NOTE: min-width:auto resolves to 0, except on a flex item. (But
// even there, it's supposed to be ignored (i.e. treated as 0) until
// the flex container explicitly resolves & considers it.)
if (eStyleUnit_Auto == minISize.GetUnit()) {
ComputedMinISize() = 0;
} else {
ComputedMinISize() = ComputeISizeValue(aCBSize.ISize(wm),
mStylePosition->mBoxSizing,
minISize);
}
if (eStyleUnit_None == maxISize.GetUnit()) {
// Specified value of 'none'
ComputedMaxISize() = NS_UNCONSTRAINEDSIZE; // no limit
} else {
ComputedMaxISize() = ComputeISizeValue(aCBSize.ISize(wm),
mStylePosition->mBoxSizing,
maxISize);
}
// If the computed value of 'min-width' is greater than the value of
// 'max-width', 'max-width' is set to the value of 'min-width'
if (ComputedMinISize() > ComputedMaxISize()) {
ComputedMaxISize() = ComputedMinISize();
}
// Check for percentage based values and a containing block height that
// depends on the content height. Treat them like 'auto'
// Likewise, check for calc() with percentages on internal table elements;
// that's treated as 'auto' too.
// Likewise, if we're a child of a flex container who's measuring our
// intrinsic height, then we want to disregard our min-height.
// NOTE: min-height:auto resolves to 0, except on a flex item. (But
// even there, it's supposed to be ignored (i.e. treated as 0) until
// the flex container explicitly resolves & considers it.)
if (eStyleUnit_Auto == minBSize.GetUnit() ||
(NS_AUTOHEIGHT == aCBSize.BSize(wm) &&
minBSize.HasPercent()) ||
(mFrameType == NS_CSS_FRAME_TYPE_INTERNAL_TABLE &&
minBSize.IsCalcUnit() && minBSize.CalcHasPercent()) ||
mFlags.mIsFlexContainerMeasuringHeight) {
ComputedMinBSize() = 0;
} else {
ComputedMinBSize() = ComputeBSizeValue(aCBSize.BSize(wm),
mStylePosition->mBoxSizing,
minBSize);
}
nsStyleUnit maxBSizeUnit = maxBSize.GetUnit();
if (eStyleUnit_None == maxBSizeUnit) {
// Specified value of 'none'
ComputedMaxBSize() = NS_UNCONSTRAINEDSIZE; // no limit
} else {
// Check for percentage based values and a containing block height that
// depends on the content height. Treat them like 'none'
// Likewise, check for calc() with percentages on internal table elements;
// that's treated as 'auto' too.
// Likewise, if we're a child of a flex container who's measuring our
// intrinsic height, then we want to disregard our max-height.
if ((NS_AUTOHEIGHT == aCBSize.BSize(wm) &&
maxBSize.HasPercent()) ||
(mFrameType == NS_CSS_FRAME_TYPE_INTERNAL_TABLE &&
maxBSize.IsCalcUnit() && maxBSize.CalcHasPercent()) ||
mFlags.mIsFlexContainerMeasuringHeight) {
ComputedMaxBSize() = NS_UNCONSTRAINEDSIZE;
} else {
ComputedMaxBSize() = ComputeBSizeValue(aCBSize.BSize(wm),
mStylePosition->mBoxSizing,
maxBSize);
}
}
// If the computed value of 'min-height' is greater than the value of
// 'max-height', 'max-height' is set to the value of 'min-height'
if (ComputedMinBSize() > ComputedMaxBSize()) {
ComputedMaxBSize() = ComputedMinBSize();
}
}
void
nsHTMLReflowState::SetTruncated(const nsHTMLReflowMetrics& aMetrics,
nsReflowStatus* aStatus) const
{
const WritingMode containerWM = aMetrics.GetWritingMode();
if (GetWritingMode().IsOrthogonalTo(containerWM)) {
// Orthogonal flows are always reflowed with an unconstrained dimension,
// so should never end up truncated (see nsHTMLReflowState::Init()).
*aStatus &= ~NS_FRAME_TRUNCATED;
} else if (AvailableBSize() != NS_UNCONSTRAINEDSIZE &&
AvailableBSize() < aMetrics.BSize(containerWM) &&
!mFlags.mIsTopOfPage) {
*aStatus |= NS_FRAME_TRUNCATED;
} else {
*aStatus &= ~NS_FRAME_TRUNCATED;
}
}
bool
nsHTMLReflowState::IsFloating() const
{
return mStyleDisplay->IsFloating(frame);
}
uint8_t
nsHTMLReflowState::GetDisplay() const
{
return mStyleDisplay->GetDisplay(frame);
}