gecko-dev/xpcom/glue/nsTArray.h
Ryan VanderMeulen d2482ea688 Backed out 5 changesets (bug 882543) for crashtest orange on a CLOSED TREE.
Backed out changeset b36516aab389 (bug 882543)
Backed out changeset 07550003a24a (bug 882543)
Backed out changeset f4045c40afb4 (bug 882543)
Backed out changeset 1b87e0bd2858 (bug 882543)
Backed out changeset 8d76a3440800 (bug 882543)
2013-07-19 12:00:48 -04:00

1781 lines
60 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef nsTArray_h__
#define nsTArray_h__
#include "nsTArrayForwardDeclare.h"
#include "mozilla/Assertions.h"
#include "mozilla/MemoryReporting.h"
#include "mozilla/TypeTraits.h"
#include "mozilla/Util.h"
#include <string.h>
#include "nsCycleCollectionNoteChild.h"
#include "nsAlgorithm.h"
#include "nscore.h"
#include "nsQuickSort.h"
#include "nsDebug.h"
#include "nsTraceRefcnt.h"
#include <new>
namespace JS {
template <class T>
class Heap;
} /* namespace JS */
//
// nsTArray is a resizable array class, like std::vector.
//
// Unlike std::vector, which follows C++'s construction/destruction rules,
// nsTArray assumes that your "T" can be memmoved()'ed safely.
//
// The public classes defined in this header are
//
// nsTArray<T>,
// FallibleTArray<T>,
// nsAutoTArray<T, N>, and
// AutoFallibleTArray<T, N>.
//
// nsTArray and nsAutoTArray are infallible; if one tries to make an allocation
// which fails, it crashes the program. In contrast, FallibleTArray and
// AutoFallibleTArray are fallible; if you use one of these classes, you must
// check the return values of methods such as Append() which may allocate. If
// in doubt, choose an infallible type.
//
// InfallibleTArray and AutoInfallibleTArray are aliases for nsTArray and
// nsAutoTArray.
//
// If you just want to declare the nsTArray types (e.g., if you're in a header
// file and don't need the full nsTArray definitions) consider including
// nsTArrayForwardDeclare.h instead of nsTArray.h.
//
// The template parameter (i.e., T in nsTArray<T>) specifies the type of the
// elements and has the following requirements:
//
// T MUST be safely memmove()'able.
// T MUST define a copy-constructor.
// T MAY define operator< for sorting.
// T MAY define operator== for searching.
//
// (Note that the memmove requirement may be relaxed for certain types - see
// nsTArray_CopyElements below.)
//
// For methods taking a Comparator instance, the Comparator must be a class
// defining the following methods:
//
// class Comparator {
// public:
// /** @return True if the elements are equals; false otherwise. */
// bool Equals(const elem_type& a, const Item& b) const;
//
// /** @return True if (a < b); false otherwise. */
// bool LessThan(const elem_type& a, const Item& b) const;
// };
//
// The Equals method is used for searching, and the LessThan method is used for
// searching and sorting. The |Item| type above can be arbitrary, but must
// match the Item type passed to the sort or search function.
//
//
// nsTArrayFallibleResult and nsTArrayInfallibleResult types are proxy types
// which are used because you cannot use a templated type which is bound to
// void as an argument to a void function. In order to work around that, we
// encode either a void or a boolean inside these proxy objects, and pass them
// to the aforementioned function instead, and then use the type information to
// decide what to do in the function.
//
// Note that public nsTArray methods should never return a proxy type. Such
// types are only meant to be used in the internal nsTArray helper methods.
// Public methods returning non-proxy types cannot be called from other
// nsTArray members.
//
struct nsTArrayFallibleResult
{
// Note: allows implicit conversions from and to bool
nsTArrayFallibleResult(bool result)
: mResult(result)
{}
operator bool() {
return mResult;
}
private:
bool mResult;
};
struct nsTArrayInfallibleResult
{
};
//
// nsTArray*Allocators must all use the same |free()|, to allow swap()'ing
// between fallible and infallible variants.
//
struct nsTArrayFallibleAllocatorBase
{
typedef bool ResultType;
typedef nsTArrayFallibleResult ResultTypeProxy;
static ResultType Result(ResultTypeProxy result) {
return result;
}
static bool Successful(ResultTypeProxy result) {
return result;
}
static ResultTypeProxy SuccessResult() {
return true;
}
static ResultTypeProxy FailureResult() {
return false;
}
static ResultType ConvertBoolToResultType(bool aValue) {
return aValue;
}
};
struct nsTArrayInfallibleAllocatorBase
{
typedef void ResultType;
typedef nsTArrayInfallibleResult ResultTypeProxy;
static ResultType Result(ResultTypeProxy result) {
}
static bool Successful(ResultTypeProxy) {
return true;
}
static ResultTypeProxy SuccessResult() {
return ResultTypeProxy();
}
static ResultTypeProxy FailureResult() {
NS_RUNTIMEABORT("Infallible nsTArray should never fail");
return ResultTypeProxy();
}
static ResultType ConvertBoolToResultType(bool aValue) {
if (!aValue) {
NS_RUNTIMEABORT("infallible nsTArray should never convert false to ResultType");
}
}
};
#if defined(MOZALLOC_HAVE_XMALLOC)
#include "mozilla/mozalloc_abort.h"
struct nsTArrayFallibleAllocator : nsTArrayFallibleAllocatorBase
{
static void* Malloc(size_t size) {
return moz_malloc(size);
}
static void* Realloc(void* ptr, size_t size) {
return moz_realloc(ptr, size);
}
static void Free(void* ptr) {
moz_free(ptr);
}
static void SizeTooBig() {
}
};
struct nsTArrayInfallibleAllocator : nsTArrayInfallibleAllocatorBase
{
static void* Malloc(size_t size) {
return moz_xmalloc(size);
}
static void* Realloc(void* ptr, size_t size) {
return moz_xrealloc(ptr, size);
}
static void Free(void* ptr) {
moz_free(ptr);
}
static void SizeTooBig() {
mozalloc_abort("Trying to allocate an infallible array that's too big");
}
};
#else
#include <stdlib.h>
struct nsTArrayFallibleAllocator : nsTArrayFallibleAllocatorBase
{
static void* Malloc(size_t size) {
return malloc(size);
}
static void* Realloc(void* ptr, size_t size) {
return realloc(ptr, size);
}
static void Free(void* ptr) {
free(ptr);
}
static void SizeTooBig() {
}
};
struct nsTArrayInfallibleAllocator : nsTArrayInfallibleAllocatorBase
{
static void* Malloc(size_t size) {
void* ptr = malloc(size);
if (MOZ_UNLIKELY(!ptr)) {
HandleOOM();
}
return ptr;
}
static void* Realloc(void* ptr, size_t size) {
void* newptr = realloc(ptr, size);
if (MOZ_UNLIKELY(!ptr && size)) {
HandleOOM();
}
return newptr;
}
static void Free(void* ptr) {
free(ptr);
}
static void SizeTooBig() {
HandleOOM();
}
private:
static void HandleOOM() {
fputs("Out of memory allocating nsTArray buffer.\n", stderr);
MOZ_CRASH();
}
};
#endif
// nsTArray_base stores elements into the space allocated beyond
// sizeof(*this). This is done to minimize the size of the nsTArray
// object when it is empty.
struct NS_COM_GLUE nsTArrayHeader
{
static nsTArrayHeader sEmptyHdr;
uint32_t mLength;
uint32_t mCapacity : 31;
uint32_t mIsAutoArray : 1;
};
// This class provides a SafeElementAt method to nsTArray<T*> which does
// not take a second default value parameter.
template <class E, class Derived>
struct nsTArray_SafeElementAtHelper
{
typedef E* elem_type;
typedef uint32_t index_type;
// No implementation is provided for these two methods, and that is on
// purpose, since we don't support these functions on non-pointer type
// instantiations.
elem_type& SafeElementAt(index_type i);
const elem_type& SafeElementAt(index_type i) const;
};
template <class E, class Derived>
struct nsTArray_SafeElementAtHelper<E*, Derived>
{
typedef E* elem_type;
typedef uint32_t index_type;
elem_type SafeElementAt(index_type i) {
return static_cast<Derived*> (this)->SafeElementAt(i, nullptr);
}
const elem_type SafeElementAt(index_type i) const {
return static_cast<const Derived*> (this)->SafeElementAt(i, nullptr);
}
};
// E is the base type that the smart pointer is templated over; the
// smart pointer can act as E*.
template <class E, class Derived>
struct nsTArray_SafeElementAtSmartPtrHelper
{
typedef E* elem_type;
typedef uint32_t index_type;
elem_type SafeElementAt(index_type i) {
return static_cast<Derived*> (this)->SafeElementAt(i, nullptr);
}
const elem_type SafeElementAt(index_type i) const {
return static_cast<const Derived*> (this)->SafeElementAt(i, nullptr);
}
};
template <class T> class nsCOMPtr;
template <class E, class Derived>
struct nsTArray_SafeElementAtHelper<nsCOMPtr<E>, Derived> :
public nsTArray_SafeElementAtSmartPtrHelper<E, Derived>
{
};
template <class T> class nsRefPtr;
template <class E, class Derived>
struct nsTArray_SafeElementAtHelper<nsRefPtr<E>, Derived> :
public nsTArray_SafeElementAtSmartPtrHelper<E, Derived>
{
};
//
// This class serves as a base class for nsTArray. It shouldn't be used
// directly. It holds common implementation code that does not depend on the
// element type of the nsTArray.
//
template<class Alloc, class Copy>
class nsTArray_base
{
// Allow swapping elements with |nsTArray_base|s created using a
// different allocator. This is kosher because all allocators use
// the same free().
template<class Allocator, class Copier>
friend class nsTArray_base;
protected:
typedef nsTArrayHeader Header;
public:
typedef uint32_t size_type;
typedef uint32_t index_type;
// @return The number of elements in the array.
size_type Length() const {
return mHdr->mLength;
}
// @return True if the array is empty or false otherwise.
bool IsEmpty() const {
return Length() == 0;
}
// @return The number of elements that can fit in the array without forcing
// the array to be re-allocated. The length of an array is always less
// than or equal to its capacity.
size_type Capacity() const {
return mHdr->mCapacity;
}
#ifdef DEBUG
void* DebugGetHeader() const {
return mHdr;
}
#endif
protected:
nsTArray_base();
~nsTArray_base();
// Resize the storage if necessary to achieve the requested capacity.
// @param capacity The requested number of array elements.
// @param elemSize The size of an array element.
// @return False if insufficient memory is available; true otherwise.
typename Alloc::ResultTypeProxy EnsureCapacity(size_type capacity, size_type elemSize);
// Resize the storage to the minimum required amount.
// @param elemSize The size of an array element.
// @param elemAlign The alignment in bytes of an array element.
void ShrinkCapacity(size_type elemSize, size_t elemAlign);
// This method may be called to resize a "gap" in the array by shifting
// elements around. It updates mLength appropriately. If the resulting
// array has zero elements, then the array's memory is free'd.
// @param start The starting index of the gap.
// @param oldLen The current length of the gap.
// @param newLen The desired length of the gap.
// @param elemSize The size of an array element.
// @param elemAlign The alignment in bytes of an array element.
void ShiftData(index_type start, size_type oldLen, size_type newLen,
size_type elemSize, size_t elemAlign);
// This method increments the length member of the array's header.
// Note that mHdr may actually be sEmptyHdr in the case where a
// zero-length array is inserted into our array. But then n should
// always be 0.
void IncrementLength(uint32_t n) {
if (mHdr == EmptyHdr()) {
if (MOZ_UNLIKELY(n != 0)) {
// Writing a non-zero length to the empty header would be extremely bad.
MOZ_CRASH();
}
} else {
mHdr->mLength += n;
}
}
// This method inserts blank slots into the array.
// @param index the place to insert the new elements. This must be no
// greater than the current length of the array.
// @param count the number of slots to insert
// @param elementSize the size of an array element.
// @param elemAlign the alignment in bytes of an array element.
bool InsertSlotsAt(index_type index, size_type count,
size_type elementSize, size_t elemAlign);
protected:
template<class Allocator>
typename Alloc::ResultTypeProxy
SwapArrayElements(nsTArray_base<Allocator, Copy>& other,
size_type elemSize,
size_t elemAlign);
// This is an RAII class used in SwapArrayElements.
class IsAutoArrayRestorer {
public:
IsAutoArrayRestorer(nsTArray_base<Alloc, Copy> &array, size_t elemAlign);
~IsAutoArrayRestorer();
private:
nsTArray_base<Alloc, Copy> &mArray;
size_t mElemAlign;
bool mIsAuto;
};
// Helper function for SwapArrayElements. Ensures that if the array
// is an nsAutoTArray that it doesn't use the built-in buffer.
bool EnsureNotUsingAutoArrayBuffer(size_type elemSize);
// Returns true if this nsTArray is an nsAutoTArray with a built-in buffer.
bool IsAutoArray() const {
return mHdr->mIsAutoArray;
}
// Returns a Header for the built-in buffer of this nsAutoTArray.
Header* GetAutoArrayBuffer(size_t elemAlign) {
MOZ_ASSERT(IsAutoArray(), "Should be an auto array to call this");
return GetAutoArrayBufferUnsafe(elemAlign);
}
const Header* GetAutoArrayBuffer(size_t elemAlign) const {
MOZ_ASSERT(IsAutoArray(), "Should be an auto array to call this");
return GetAutoArrayBufferUnsafe(elemAlign);
}
// Returns a Header for the built-in buffer of this nsAutoTArray, but doesn't
// assert that we are an nsAutoTArray.
Header* GetAutoArrayBufferUnsafe(size_t elemAlign) {
return const_cast<Header*>(static_cast<const nsTArray_base<Alloc, Copy>*>(this)->
GetAutoArrayBufferUnsafe(elemAlign));
}
const Header* GetAutoArrayBufferUnsafe(size_t elemAlign) const;
// Returns true if this is an nsAutoTArray and it currently uses the
// built-in buffer to store its elements.
bool UsesAutoArrayBuffer() const;
// The array's elements (prefixed with a Header). This pointer is never
// null. If the array is empty, then this will point to sEmptyHdr.
Header *mHdr;
Header* Hdr() const {
return mHdr;
}
Header** PtrToHdr() {
return &mHdr;
}
static Header* EmptyHdr() {
return &Header::sEmptyHdr;
}
};
//
// This class defines convenience functions for element specific operations.
// Specialize this template if necessary.
//
template<class E>
class nsTArrayElementTraits
{
public:
// Invoke the default constructor in place.
static inline void Construct(E *e) {
// Do NOT call "E()"! That triggers C++ "default initialization"
// which zeroes out POD ("plain old data") types such as regular
// ints. We don't want that because it can be a performance issue
// and people don't expect it; nsTArray should work like a regular
// C/C++ array in this respect.
new (static_cast<void *>(e)) E;
}
// Invoke the copy-constructor in place.
template<class A>
static inline void Construct(E *e, const A &arg) {
new (static_cast<void *>(e)) E(arg);
}
// Invoke the destructor in place.
static inline void Destruct(E *e) {
e->~E();
}
};
// The default comparator used by nsTArray
template<class A, class B>
class nsDefaultComparator
{
public:
bool Equals(const A& a, const B& b) const {
return a == b;
}
bool LessThan(const A& a, const B& b) const {
return a < b;
}
};
template <class E> class InfallibleTArray;
template <class E> class FallibleTArray;
template<bool IsPod, bool IsSameType>
struct AssignRangeAlgorithm {
template<class Item, class ElemType, class IndexType, class SizeType>
static void implementation(ElemType* elements, IndexType start,
SizeType count, const Item *values) {
ElemType *iter = elements + start, *end = iter + count;
for (; iter != end; ++iter, ++values)
nsTArrayElementTraits<ElemType>::Construct(iter, *values);
}
};
template<>
struct AssignRangeAlgorithm<true, true> {
template<class Item, class ElemType, class IndexType, class SizeType>
static void implementation(ElemType* elements, IndexType start,
SizeType count, const Item *values) {
memcpy(elements + start, values, count * sizeof(ElemType));
}
};
//
// Normally elements are copied with memcpy and memmove, but for some element
// types that is problematic. The nsTArray_CopyElements template class can be
// specialized to ensure that copying calls constructors and destructors
// instead, as is done below for JS::Heap<E> elements.
//
//
// A class that defines how to copy elements using memcpy/memmove.
//
struct nsTArray_CopyWithMemutils
{
const static bool allowRealloc = true;
static void CopyElements(void* dest, const void* src, size_t count, size_t elemSize) {
memcpy(dest, src, count * elemSize);
}
static void CopyHeaderAndElements(void* dest, const void* src, size_t count, size_t elemSize) {
memcpy(dest, src, sizeof(nsTArrayHeader) + count * elemSize);
}
static void MoveElements(void* dest, const void* src, size_t count, size_t elemSize) {
memmove(dest, src, count * elemSize);
}
};
//
// A template class that defines how to copy elements calling their constructors
// and destructors appropriately.
//
template <class ElemType>
struct nsTArray_CopyWithConstructors
{
typedef nsTArrayElementTraits<ElemType> traits;
const static bool allowRealloc = false;
static void CopyElements(void* dest, void* src, size_t count, size_t elemSize) {
ElemType* destElem = static_cast<ElemType*>(dest);
ElemType* srcElem = static_cast<ElemType*>(src);
ElemType* destElemEnd = destElem + count;
#ifdef DEBUG
ElemType* srcElemEnd = srcElem + count;
MOZ_ASSERT(srcElemEnd <= destElem || srcElemEnd > destElemEnd);
#endif
while (destElem != destElemEnd) {
traits::Construct(destElem, *srcElem);
traits::Destruct(srcElem);
++destElem;
++srcElem;
}
}
static void CopyHeaderAndElements(void* dest, void* src, size_t count, size_t elemSize) {
nsTArrayHeader* destHeader = static_cast<nsTArrayHeader*>(dest);
nsTArrayHeader* srcHeader = static_cast<nsTArrayHeader*>(src);
*destHeader = *srcHeader;
CopyElements(static_cast<uint8_t*>(dest) + sizeof(nsTArrayHeader),
static_cast<uint8_t*>(src) + sizeof(nsTArrayHeader),
count, elemSize);
}
static void MoveElements(void* dest, void* src, size_t count, size_t elemSize) {
ElemType* destElem = static_cast<ElemType*>(dest);
ElemType* srcElem = static_cast<ElemType*>(src);
ElemType* destElemEnd = destElem + count;
ElemType* srcElemEnd = srcElem + count;
if (destElem == srcElem) {
return; // In practice, we don't do this.
} else if (srcElemEnd > destElem && srcElemEnd < destElemEnd) {
while (destElemEnd != destElem) {
--destElemEnd;
--srcElemEnd;
traits::Construct(destElemEnd, *srcElemEnd);
traits::Destruct(srcElem);
}
} else {
CopyElements(dest, src, count, elemSize);
}
}
};
//
// The default behaviour is to use memcpy/memmove for everything.
//
template <class E>
struct nsTArray_CopyElements : public nsTArray_CopyWithMemutils {};
//
// JS::Heap<E> elements require constructors/destructors to be called and so is
// specialized here.
//
template <class E>
struct nsTArray_CopyElements<JS::Heap<E> > : public nsTArray_CopyWithConstructors<E> {};
//
// Base class for nsTArray_Impl that is templated on element type and derived
// nsTArray_Impl class, to allow extra conversions to be added for specific
// types.
//
template <class E, class Derived>
struct nsTArray_TypedBase : public nsTArray_SafeElementAtHelper<E, Derived> {};
//
// Specialization of nsTArray_TypedBase for arrays containing JS::Heap<E>
// elements.
//
// These conversions are safe because JS::Heap<E> and E share the same
// representation, and since the result of the conversions are const references
// we won't miss any barriers.
//
// The static_cast is necessary to obtain the correct address for the derived
// class since we are a base class used in multiple inheritance.
//
template <class E, class Derived>
struct nsTArray_TypedBase<JS::Heap<E>, Derived>
: public nsTArray_SafeElementAtHelper<JS::Heap<E>, Derived>
{
operator const nsTArray<E>& () {
MOZ_STATIC_ASSERT(sizeof(E) == sizeof(JS::Heap<E>),
"JS::Heap<E> must be binary compatible with E.");
Derived* self = static_cast<Derived*>(this);
return *reinterpret_cast<nsTArray<E> *>(self);
}
operator const FallibleTArray<E>& () {
Derived* self = static_cast<Derived*>(this);
return *reinterpret_cast<FallibleTArray<E> *>(self);
}
};
//
// nsTArray_Impl contains most of the guts supporting nsTArray, FallibleTArray,
// nsAutoTArray, and AutoFallibleTArray.
//
// The only situation in which you might need to use nsTArray_Impl in your code
// is if you're writing code which mutates a TArray which may or may not be
// infallible.
//
// Code which merely reads from a TArray which may or may not be infallible can
// simply cast the TArray to |const nsTArray&|; both fallible and infallible
// TArrays can be cast to |const nsTArray&|.
//
template<class E, class Alloc>
class nsTArray_Impl : public nsTArray_base<Alloc, nsTArray_CopyElements<E> >,
public nsTArray_TypedBase<E, nsTArray_Impl<E, Alloc> >
{
public:
typedef nsTArray_CopyElements<E> copy_type;
typedef nsTArray_base<Alloc, copy_type> base_type;
typedef typename base_type::size_type size_type;
typedef typename base_type::index_type index_type;
typedef E elem_type;
typedef nsTArray_Impl<E, Alloc> self_type;
typedef nsTArrayElementTraits<E> elem_traits;
typedef nsTArray_SafeElementAtHelper<E, self_type> safeelementat_helper_type;
using safeelementat_helper_type::SafeElementAt;
using base_type::EmptyHdr;
// A special value that is used to indicate an invalid or unknown index
// into the array.
enum {
NoIndex = index_type(-1)
};
using base_type::Length;
//
// Finalization method
//
~nsTArray_Impl() { Clear(); }
//
// Initialization methods
//
nsTArray_Impl() {}
// Initialize this array and pre-allocate some number of elements.
explicit nsTArray_Impl(size_type capacity) {
SetCapacity(capacity);
}
// The array's copy-constructor performs a 'deep' copy of the given array.
// @param other The array object to copy.
//
// It's very important that we declare this method as taking |const
// self_type&| as opposed to taking |const nsTArray_Impl<E, OtherAlloc>| for
// an arbitrary OtherAlloc.
//
// If we don't declare a constructor taking |const self_type&|, C++ generates
// a copy-constructor for this class which merely copies the object's
// members, which is obviously wrong.
//
// You can pass an nsTArray_Impl<E, OtherAlloc> to this method because
// nsTArray_Impl<E, X> can be cast to const nsTArray_Impl<E, Y>&. So the
// effect on the API is the same as if we'd declared this method as taking
// |const nsTArray_Impl<E, OtherAlloc>&|.
explicit nsTArray_Impl(const self_type& other) {
AppendElements(other);
}
// Allow converting to a const array with a different kind of allocator,
// Since the allocator doesn't matter for const arrays
template<typename Allocator>
operator const nsTArray_Impl<E, Allocator>&() const {
return *reinterpret_cast<const nsTArray_Impl<E, Allocator>*>(this);
}
// And we have to do this for our subclasses too
operator const nsTArray<E>&() const {
return *reinterpret_cast<const InfallibleTArray<E>*>(this);
}
operator const FallibleTArray<E>&() const {
return *reinterpret_cast<const FallibleTArray<E>*>(this);
}
// The array's assignment operator performs a 'deep' copy of the given
// array. It is optimized to reuse existing storage if possible.
// @param other The array object to copy.
self_type& operator=(const self_type& other) {
ReplaceElementsAt(0, Length(), other.Elements(), other.Length());
return *this;
}
// Return true if this array has the same length and the same
// elements as |other|.
template<typename Allocator>
bool operator==(const nsTArray_Impl<E, Allocator>& other) const {
size_type len = Length();
if (len != other.Length())
return false;
// XXX std::equal would be as fast or faster here
for (index_type i = 0; i < len; ++i)
if (!(operator[](i) == other[i]))
return false;
return true;
}
// Return true if this array does not have the same length and the same
// elements as |other|.
bool operator!=(const self_type& other) const {
return !operator==(other);
}
template<typename Allocator>
self_type& operator=(const nsTArray_Impl<E, Allocator>& other) {
ReplaceElementsAt(0, Length(), other.Elements(), other.Length());
return *this;
}
// @return The amount of memory used by this nsTArray_Impl, excluding
// sizeof(*this).
size_t SizeOfExcludingThis(mozilla::MallocSizeOf mallocSizeOf) const {
if (this->UsesAutoArrayBuffer() || Hdr() == EmptyHdr())
return 0;
return mallocSizeOf(this->Hdr());
}
// @return The amount of memory used by this nsTArray_Impl, including
// sizeof(*this).
size_t SizeOfIncludingThis(mozilla::MallocSizeOf mallocSizeOf) const {
return mallocSizeOf(this) + SizeOfExcludingThis(mallocSizeOf);
}
//
// Accessor methods
//
// This method provides direct access to the array elements.
// @return A pointer to the first element of the array. If the array is
// empty, then this pointer must not be dereferenced.
elem_type* Elements() {
return reinterpret_cast<elem_type *>(Hdr() + 1);
}
// This method provides direct, readonly access to the array elements.
// @return A pointer to the first element of the array. If the array is
// empty, then this pointer must not be dereferenced.
const elem_type* Elements() const {
return reinterpret_cast<const elem_type *>(Hdr() + 1);
}
// This method provides direct access to the i'th element of the array.
// The given index must be within the array bounds.
// @param i The index of an element in the array.
// @return A reference to the i'th element of the array.
elem_type& ElementAt(index_type i) {
MOZ_ASSERT(i < Length(), "invalid array index");
return Elements()[i];
}
// This method provides direct, readonly access to the i'th element of the
// array. The given index must be within the array bounds.
// @param i The index of an element in the array.
// @return A const reference to the i'th element of the array.
const elem_type& ElementAt(index_type i) const {
MOZ_ASSERT(i < Length(), "invalid array index");
return Elements()[i];
}
// This method provides direct access to the i'th element of the array in
// a bounds safe manner. If the requested index is out of bounds the
// provided default value is returned.
// @param i The index of an element in the array.
// @param def The value to return if the index is out of bounds.
elem_type& SafeElementAt(index_type i, elem_type& def) {
return i < Length() ? Elements()[i] : def;
}
// This method provides direct access to the i'th element of the array in
// a bounds safe manner. If the requested index is out of bounds the
// provided default value is returned.
// @param i The index of an element in the array.
// @param def The value to return if the index is out of bounds.
const elem_type& SafeElementAt(index_type i, const elem_type& def) const {
return i < Length() ? Elements()[i] : def;
}
// Shorthand for ElementAt(i)
elem_type& operator[](index_type i) {
return ElementAt(i);
}
// Shorthand for ElementAt(i)
const elem_type& operator[](index_type i) const {
return ElementAt(i);
}
// Shorthand for ElementAt(length - 1)
elem_type& LastElement() {
return ElementAt(Length() - 1);
}
// Shorthand for ElementAt(length - 1)
const elem_type& LastElement() const {
return ElementAt(Length() - 1);
}
// Shorthand for SafeElementAt(length - 1, def)
elem_type& SafeLastElement(elem_type& def) {
return SafeElementAt(Length() - 1, def);
}
// Shorthand for SafeElementAt(length - 1, def)
const elem_type& SafeLastElement(const elem_type& def) const {
return SafeElementAt(Length() - 1, def);
}
//
// Search methods
//
// This method searches for the first element in this array that is equal
// to the given element.
// @param item The item to search for.
// @param comp The Comparator used to determine element equality.
// @return true if the element was found.
template<class Item, class Comparator>
bool Contains(const Item& item, const Comparator& comp) const {
return IndexOf(item, 0, comp) != NoIndex;
}
// This method searches for the first element in this array that is equal
// to the given element. This method assumes that 'operator==' is defined
// for elem_type.
// @param item The item to search for.
// @return true if the element was found.
template<class Item>
bool Contains(const Item& item) const {
return IndexOf(item) != NoIndex;
}
// This method searches for the offset of the first element in this
// array that is equal to the given element.
// @param item The item to search for.
// @param start The index to start from.
// @param comp The Comparator used to determine element equality.
// @return The index of the found element or NoIndex if not found.
template<class Item, class Comparator>
index_type IndexOf(const Item& item, index_type start,
const Comparator& comp) const {
const elem_type* iter = Elements() + start, *end = Elements() + Length();
for (; iter != end; ++iter) {
if (comp.Equals(*iter, item))
return index_type(iter - Elements());
}
return NoIndex;
}
// This method searches for the offset of the first element in this
// array that is equal to the given element. This method assumes
// that 'operator==' is defined for elem_type.
// @param item The item to search for.
// @param start The index to start from.
// @return The index of the found element or NoIndex if not found.
template<class Item>
index_type IndexOf(const Item& item, index_type start = 0) const {
return IndexOf(item, start, nsDefaultComparator<elem_type, Item>());
}
// This method searches for the offset of the last element in this
// array that is equal to the given element.
// @param item The item to search for.
// @param start The index to start from. If greater than or equal to the
// length of the array, then the entire array is searched.
// @param comp The Comparator used to determine element equality.
// @return The index of the found element or NoIndex if not found.
template<class Item, class Comparator>
index_type LastIndexOf(const Item& item, index_type start,
const Comparator& comp) const {
size_type endOffset = start >= Length() ? Length() : start + 1;
const elem_type* end = Elements() - 1, *iter = end + endOffset;
for (; iter != end; --iter) {
if (comp.Equals(*iter, item))
return index_type(iter - Elements());
}
return NoIndex;
}
// This method searches for the offset of the last element in this
// array that is equal to the given element. This method assumes
// that 'operator==' is defined for elem_type.
// @param item The item to search for.
// @param start The index to start from. If greater than or equal to the
// length of the array, then the entire array is searched.
// @return The index of the found element or NoIndex if not found.
template<class Item>
index_type LastIndexOf(const Item& item,
index_type start = NoIndex) const {
return LastIndexOf(item, start, nsDefaultComparator<elem_type, Item>());
}
// This method searches for the offset for the element in this array
// that is equal to the given element. The array is assumed to be sorted.
// @param item The item to search for.
// @param comp The Comparator used.
// @return The index of the found element or NoIndex if not found.
template<class Item, class Comparator>
index_type BinaryIndexOf(const Item& item, const Comparator& comp) const {
index_type low = 0, high = Length();
while (high > low) {
index_type mid = (high + low) >> 1;
if (comp.Equals(ElementAt(mid), item))
return mid;
if (comp.LessThan(ElementAt(mid), item))
low = mid + 1;
else
high = mid;
}
return NoIndex;
}
// This method searches for the offset for the element in this array
// that is equal to the given element. The array is assumed to be sorted.
// This method assumes that 'operator==' and 'operator<' are defined.
// @param item The item to search for.
// @return The index of the found element or NoIndex if not found.
template<class Item>
index_type BinaryIndexOf(const Item& item) const {
return BinaryIndexOf(item, nsDefaultComparator<elem_type, Item>());
}
//
// Mutation methods
//
// This method replaces a range of elements in this array.
// @param start The starting index of the elements to replace.
// @param count The number of elements to replace. This may be zero to
// insert elements without removing any existing elements.
// @param array The values to copy into this array. Must be non-null,
// and these elements must not already exist in the array
// being modified.
// @param arrayLen The number of values to copy into this array.
// @return A pointer to the new elements in the array, or null if
// the operation failed due to insufficient memory.
template<class Item>
elem_type *ReplaceElementsAt(index_type start, size_type count,
const Item* array, size_type arrayLen) {
// Adjust memory allocation up-front to catch errors.
if (!Alloc::Successful(this->EnsureCapacity(Length() + arrayLen - count, sizeof(elem_type))))
return nullptr;
DestructRange(start, count);
this->ShiftData(start, count, arrayLen, sizeof(elem_type), MOZ_ALIGNOF(elem_type));
AssignRange(start, arrayLen, array);
return Elements() + start;
}
// A variation on the ReplaceElementsAt method defined above.
template<class Item>
elem_type *ReplaceElementsAt(index_type start, size_type count,
const nsTArray<Item>& array) {
return ReplaceElementsAt(start, count, array.Elements(), array.Length());
}
// A variation on the ReplaceElementsAt method defined above.
template<class Item>
elem_type *ReplaceElementsAt(index_type start, size_type count,
const Item& item) {
return ReplaceElementsAt(start, count, &item, 1);
}
// A variation on the ReplaceElementsAt method defined above.
template<class Item>
elem_type *ReplaceElementAt(index_type index, const Item& item) {
return ReplaceElementsAt(index, 1, &item, 1);
}
// A variation on the ReplaceElementsAt method defined above.
template<class Item>
elem_type *InsertElementsAt(index_type index, const Item* array,
size_type arrayLen) {
return ReplaceElementsAt(index, 0, array, arrayLen);
}
// A variation on the ReplaceElementsAt method defined above.
template<class Item, class Allocator>
elem_type *InsertElementsAt(index_type index, const nsTArray_Impl<Item, Allocator>& array) {
return ReplaceElementsAt(index, 0, array.Elements(), array.Length());
}
// A variation on the ReplaceElementsAt method defined above.
template<class Item>
elem_type *InsertElementAt(index_type index, const Item& item) {
return ReplaceElementsAt(index, 0, &item, 1);
}
// Insert a new element without copy-constructing. This is useful to avoid
// temporaries.
// @return A pointer to the newly inserted element, or null on OOM.
elem_type* InsertElementAt(index_type index) {
if (!Alloc::Successful(this->EnsureCapacity(Length() + 1, sizeof(elem_type))))
return nullptr;
this->ShiftData(index, 0, 1, sizeof(elem_type), MOZ_ALIGNOF(elem_type));
elem_type *elem = Elements() + index;
elem_traits::Construct(elem);
return elem;
}
// This method searches for the smallest index of an element that is strictly
// greater than |item|. If |item| is inserted at this index, the array will
// remain sorted and |item| would come after all elements that are equal to
// it. If |item| is greater than or equal to all elements in the array, the
// array length is returned.
//
// Note that consumers who want to know whether there are existing items equal
// to |item| in the array can just check that the return value here is > 0 and
// indexing into the previous slot gives something equal to |item|.
//
//
// @param item The item to search for.
// @param comp The Comparator used.
// @return The index of greatest element <= to |item|
// @precondition The array is sorted
template<class Item, class Comparator>
index_type
IndexOfFirstElementGt(const Item& item,
const Comparator& comp) const {
// invariant: low <= [idx] <= high
index_type low = 0, high = Length();
while (high > low) {
index_type mid = (high + low) >> 1;
// Comparators are not required to provide a LessThan(Item&, elem_type),
// so we can't do comp.LessThan(item, ElementAt(mid)).
if (comp.LessThan(ElementAt(mid), item) ||
comp.Equals(ElementAt(mid), item)) {
// item >= ElementAt(mid), so our desired index is at least mid+1.
low = mid + 1;
} else {
// item < ElementAt(mid). Our desired index is therefore at most mid.
high = mid;
}
}
MOZ_ASSERT(high == low);
return low;
}
// A variation on the IndexOfFirstElementGt method defined above.
template<class Item>
index_type
IndexOfFirstElementGt(const Item& item) const {
return IndexOfFirstElementGt(item, nsDefaultComparator<elem_type, Item>());
}
// Inserts |item| at such an index to guarantee that if the array
// was previously sorted, it will remain sorted after this
// insertion.
template<class Item, class Comparator>
elem_type *InsertElementSorted(const Item& item, const Comparator& comp) {
index_type index = IndexOfFirstElementGt(item, comp);
return InsertElementAt(index, item);
}
// A variation on the InsertElementSorted method defined above.
template<class Item>
elem_type *InsertElementSorted(const Item& item) {
return InsertElementSorted(item, nsDefaultComparator<elem_type, Item>());
}
// This method appends elements to the end of this array.
// @param array The elements to append to this array.
// @param arrayLen The number of elements to append to this array.
// @return A pointer to the new elements in the array, or null if
// the operation failed due to insufficient memory.
template<class Item>
elem_type *AppendElements(const Item* array, size_type arrayLen) {
if (!Alloc::Successful(this->EnsureCapacity(Length() + arrayLen, sizeof(elem_type))))
return nullptr;
index_type len = Length();
AssignRange(len, arrayLen, array);
this->IncrementLength(arrayLen);
return Elements() + len;
}
// A variation on the AppendElements method defined above.
template<class Item, class Allocator>
elem_type *AppendElements(const nsTArray_Impl<Item, Allocator>& array) {
return AppendElements(array.Elements(), array.Length());
}
// A variation on the AppendElements method defined above.
template<class Item>
elem_type *AppendElement(const Item& item) {
return AppendElements(&item, 1);
}
// Append new elements without copy-constructing. This is useful to avoid
// temporaries.
// @return A pointer to the newly appended elements, or null on OOM.
elem_type *AppendElements(size_type count) {
if (!Alloc::Successful(this->EnsureCapacity(Length() + count, sizeof(elem_type))))
return nullptr;
elem_type *elems = Elements() + Length();
size_type i;
for (i = 0; i < count; ++i) {
elem_traits::Construct(elems + i);
}
this->IncrementLength(count);
return elems;
}
// Append a new element without copy-constructing. This is useful to avoid
// temporaries.
// @return A pointer to the newly appended element, or null on OOM.
elem_type *AppendElement() {
return AppendElements(1);
}
// Move all elements from another array to the end of this array without
// calling copy constructors or destructors.
// @return A pointer to the newly appended elements, or null on OOM.
template<class Item, class Allocator>
elem_type *MoveElementsFrom(nsTArray_Impl<Item, Allocator>& array) {
MOZ_ASSERT(&array != this, "argument must be different array");
index_type len = Length();
index_type otherLen = array.Length();
if (!Alloc::Successful(this->EnsureCapacity(len + otherLen, sizeof(elem_type))))
return nullptr;
copy_type::CopyElements(Elements() + len, array.Elements(), otherLen, sizeof(elem_type));
this->IncrementLength(otherLen);
array.ShiftData(0, otherLen, 0, sizeof(elem_type), MOZ_ALIGNOF(elem_type));
return Elements() + len;
}
// This method removes a range of elements from this array.
// @param start The starting index of the elements to remove.
// @param count The number of elements to remove.
void RemoveElementsAt(index_type start, size_type count) {
MOZ_ASSERT(count == 0 || start < Length(), "Invalid start index");
MOZ_ASSERT(start + count <= Length(), "Invalid length");
// Check that the previous assert didn't overflow
MOZ_ASSERT(start <= start + count, "Start index plus length overflows");
DestructRange(start, count);
this->ShiftData(start, count, 0, sizeof(elem_type), MOZ_ALIGNOF(elem_type));
}
// A variation on the RemoveElementsAt method defined above.
void RemoveElementAt(index_type index) {
RemoveElementsAt(index, 1);
}
// A variation on the RemoveElementsAt method defined above.
void Clear() {
RemoveElementsAt(0, Length());
}
// This helper function combines IndexOf with RemoveElementAt to "search
// and destroy" the first element that is equal to the given element.
// @param item The item to search for.
// @param comp The Comparator used to determine element equality.
// @return true if the element was found
template<class Item, class Comparator>
bool RemoveElement(const Item& item, const Comparator& comp) {
index_type i = IndexOf(item, 0, comp);
if (i == NoIndex)
return false;
RemoveElementAt(i);
return true;
}
// A variation on the RemoveElement method defined above that assumes
// that 'operator==' is defined for elem_type.
template<class Item>
bool RemoveElement(const Item& item) {
return RemoveElement(item, nsDefaultComparator<elem_type, Item>());
}
// This helper function combines IndexOfFirstElementGt with
// RemoveElementAt to "search and destroy" the last element that
// is equal to the given element.
// @param item The item to search for.
// @param comp The Comparator used to determine element equality.
// @return true if the element was found
template<class Item, class Comparator>
bool RemoveElementSorted(const Item& item, const Comparator& comp) {
index_type index = IndexOfFirstElementGt(item, comp);
if (index > 0 && comp.Equals(ElementAt(index - 1), item)) {
RemoveElementAt(index - 1);
return true;
}
return false;
}
// A variation on the RemoveElementSorted method defined above.
template<class Item>
bool RemoveElementSorted(const Item& item) {
return RemoveElementSorted(item, nsDefaultComparator<elem_type, Item>());
}
// This method causes the elements contained in this array and the given
// array to be swapped.
template<class Allocator>
typename Alloc::ResultType
SwapElements(nsTArray_Impl<E, Allocator>& other) {
return Alloc::Result(this->SwapArrayElements(other, sizeof(elem_type),
MOZ_ALIGNOF(elem_type)));
}
//
// Allocation
//
// This method may increase the capacity of this array object by the
// specified amount. This method may be called in advance of several
// AppendElement operations to minimize heap re-allocations. This method
// will not reduce the number of elements in this array.
// @param capacity The desired capacity of this array.
// @return True if the operation succeeded; false if we ran out of memory
typename Alloc::ResultType SetCapacity(size_type capacity) {
return Alloc::Result(this->EnsureCapacity(capacity, sizeof(elem_type)));
}
// This method modifies the length of the array. If the new length is
// larger than the existing length of the array, then new elements will be
// constructed using elem_type's default constructor. Otherwise, this call
// removes elements from the array (see also RemoveElementsAt).
// @param newLen The desired length of this array.
// @return True if the operation succeeded; false otherwise.
// See also TruncateLength if the new length is guaranteed to be
// smaller than the old.
bool SetLength(size_type newLen) {
size_type oldLen = Length();
if (newLen > oldLen) {
return InsertElementsAt(oldLen, newLen - oldLen) != nullptr;
}
TruncateLength(newLen);
return true;
}
// This method modifies the length of the array, but may only be
// called when the new length is shorter than the old. It can
// therefore be called when elem_type has no default constructor,
// unlike SetLength. It removes elements from the array (see also
// RemoveElementsAt).
// @param newLen The desired length of this array.
void TruncateLength(size_type newLen) {
size_type oldLen = Length();
NS_ABORT_IF_FALSE(newLen <= oldLen,
"caller should use SetLength instead");
RemoveElementsAt(newLen, oldLen - newLen);
}
// This method ensures that the array has length at least the given
// length. If the current length is shorter than the given length,
// then new elements will be constructed using elem_type's default
// constructor.
// @param minLen The desired minimum length of this array.
// @return True if the operation succeeded; false otherwise.
typename Alloc::ResultType EnsureLengthAtLeast(size_type minLen) {
size_type oldLen = Length();
if (minLen > oldLen) {
return Alloc::ConvertBoolToResultType(!!InsertElementsAt(oldLen, minLen - oldLen));
}
return Alloc::ConvertBoolToResultType(true);
}
// This method inserts elements into the array, constructing
// them using elem_type's default constructor.
// @param index the place to insert the new elements. This must be no
// greater than the current length of the array.
// @param count the number of elements to insert
elem_type *InsertElementsAt(index_type index, size_type count) {
if (!base_type::InsertSlotsAt(index, count, sizeof(elem_type), MOZ_ALIGNOF(elem_type))) {
return nullptr;
}
// Initialize the extra array elements
elem_type *iter = Elements() + index, *end = iter + count;
for (; iter != end; ++iter) {
elem_traits::Construct(iter);
}
return Elements() + index;
}
// This method inserts elements into the array, constructing them
// elem_type's copy constructor (or whatever one-arg constructor
// happens to match the Item type).
// @param index the place to insert the new elements. This must be no
// greater than the current length of the array.
// @param count the number of elements to insert.
// @param item the value to use when constructing the new elements.
template<class Item>
elem_type *InsertElementsAt(index_type index, size_type count,
const Item& item) {
if (!base_type::InsertSlotsAt(index, count, sizeof(elem_type), MOZ_ALIGNOF(elem_type))) {
return nullptr;
}
// Initialize the extra array elements
elem_type *iter = Elements() + index, *end = iter + count;
for (; iter != end; ++iter) {
elem_traits::Construct(iter, item);
}
return Elements() + index;
}
// This method may be called to minimize the memory used by this array.
void Compact() {
ShrinkCapacity(sizeof(elem_type), MOZ_ALIGNOF(elem_type));
}
//
// Sorting
//
// This function is meant to be used with the NS_QuickSort function. It
// maps the callback API expected by NS_QuickSort to the Comparator API
// used by nsTArray_Impl. See nsTArray_Impl::Sort.
template<class Comparator>
static int Compare(const void* e1, const void* e2, void *data) {
const Comparator* c = reinterpret_cast<const Comparator*>(data);
const elem_type* a = static_cast<const elem_type*>(e1);
const elem_type* b = static_cast<const elem_type*>(e2);
return c->LessThan(*a, *b) ? -1 : (c->Equals(*a, *b) ? 0 : 1);
}
// This method sorts the elements of the array. It uses the LessThan
// method defined on the given Comparator object to collate elements.
// @param comp The Comparator used to collate elements.
template<class Comparator>
void Sort(const Comparator& comp) {
NS_QuickSort(Elements(), Length(), sizeof(elem_type),
Compare<Comparator>, const_cast<Comparator*>(&comp));
}
// A variation on the Sort method defined above that assumes that
// 'operator<' is defined for elem_type.
void Sort() {
Sort(nsDefaultComparator<elem_type, elem_type>());
}
//
// Binary Heap
//
// Sorts the array into a binary heap.
// @param comp The Comparator used to create the heap
template<class Comparator>
void MakeHeap(const Comparator& comp) {
if (!Length()) {
return;
}
index_type index = (Length() - 1) / 2;
do {
SiftDown(index, comp);
} while (index--);
}
// A variation on the MakeHeap method defined above.
void MakeHeap() {
MakeHeap(nsDefaultComparator<elem_type, elem_type>());
}
// Adds an element to the heap
// @param item The item to add
// @param comp The Comparator used to sift-up the item
template<class Item, class Comparator>
elem_type *PushHeap(const Item& item, const Comparator& comp) {
if (!base_type::InsertSlotsAt(Length(), 1, sizeof(elem_type), MOZ_ALIGNOF(elem_type))) {
return nullptr;
}
// Sift up the new node
elem_type *elem = Elements();
index_type index = Length() - 1;
index_type parent_index = (index - 1) / 2;
while (index && comp.LessThan(elem[parent_index], item)) {
elem[index] = elem[parent_index];
index = parent_index;
parent_index = (index - 1) / 2;
}
elem[index] = item;
return &elem[index];
}
// A variation on the PushHeap method defined above.
template<class Item>
elem_type *PushHeap(const Item& item) {
return PushHeap(item, nsDefaultComparator<elem_type, Item>());
}
// Delete the root of the heap and restore the heap
// @param comp The Comparator used to restore the heap
template<class Comparator>
void PopHeap(const Comparator& comp) {
if (!Length()) {
return;
}
index_type last_index = Length() - 1;
elem_type *elem = Elements();
elem[0] = elem[last_index];
TruncateLength(last_index);
if (Length()) {
SiftDown(0, comp);
}
}
// A variation on the PopHeap method defined above.
void PopHeap() {
PopHeap(nsDefaultComparator<elem_type, elem_type>());
}
protected:
using base_type::Hdr;
using base_type::ShrinkCapacity;
// This method invokes elem_type's destructor on a range of elements.
// @param start The index of the first element to destroy.
// @param count The number of elements to destroy.
void DestructRange(index_type start, size_type count) {
elem_type *iter = Elements() + start, *end = iter + count;
for (; iter != end; ++iter) {
elem_traits::Destruct(iter);
}
}
// This method invokes elem_type's copy-constructor on a range of elements.
// @param start The index of the first element to construct.
// @param count The number of elements to construct.
// @param values The array of elements to copy.
template<class Item>
void AssignRange(index_type start, size_type count,
const Item *values) {
AssignRangeAlgorithm<mozilla::IsPod<Item>::value,
mozilla::IsSame<Item, elem_type>::value>
::implementation(Elements(), start, count, values);
}
// This method sifts an item down to its proper place in a binary heap
// @param index The index of the node to start sifting down from
// @param comp The Comparator used to sift down
template<class Comparator>
void SiftDown(index_type index, const Comparator& comp) {
elem_type *elem = Elements();
elem_type item = elem[index];
index_type end = Length() - 1;
while ((index * 2) < end) {
const index_type left = (index * 2) + 1;
const index_type right = (index * 2) + 2;
const index_type parent_index = index;
if (comp.LessThan(item, elem[left])) {
if (left < end &&
comp.LessThan(elem[left], elem[right])) {
index = right;
} else {
index = left;
}
} else if (left < end &&
comp.LessThan(item, elem[right])) {
index = right;
} else {
break;
}
elem[parent_index] = elem[index];
}
elem[index] = item;
}
};
template <typename E, typename Alloc>
inline void
ImplCycleCollectionUnlink(nsTArray_Impl<E, Alloc>& aField)
{
aField.Clear();
}
template <typename E, typename Alloc>
inline void
ImplCycleCollectionTraverse(nsCycleCollectionTraversalCallback& aCallback,
nsTArray_Impl<E, Alloc>& aField,
const char* aName,
uint32_t aFlags = 0)
{
aFlags |= CycleCollectionEdgeNameArrayFlag;
size_t length = aField.Length();
for (size_t i = 0; i < length; ++i) {
ImplCycleCollectionTraverse(aCallback, aField[i], aName, aFlags);
}
}
//
// nsTArray is an infallible vector class. See the comment at the top of this
// file for more details.
//
template <class E>
class nsTArray : public nsTArray_Impl<E, nsTArrayInfallibleAllocator>
{
public:
typedef nsTArray_Impl<E, nsTArrayInfallibleAllocator> base_type;
typedef nsTArray<E> self_type;
typedef typename base_type::size_type size_type;
nsTArray() {}
explicit nsTArray(size_type capacity) : base_type(capacity) {}
explicit nsTArray(const nsTArray& other) : base_type(other) {}
template<class Allocator>
explicit nsTArray(const nsTArray_Impl<E, Allocator>& other) : base_type(other) {}
};
//
// FallibleTArray is a fallible vector class.
//
template <class E>
class FallibleTArray : public nsTArray_Impl<E, nsTArrayFallibleAllocator>
{
public:
typedef nsTArray_Impl<E, nsTArrayFallibleAllocator> base_type;
typedef FallibleTArray<E> self_type;
typedef typename base_type::size_type size_type;
FallibleTArray() {}
explicit FallibleTArray(size_type capacity) : base_type(capacity) {}
explicit FallibleTArray(const FallibleTArray<E>& other) : base_type(other) {}
template<class Allocator>
explicit FallibleTArray(const nsTArray_Impl<E, Allocator>& other) : base_type(other) {}
};
//
// nsAutoArrayBase is a base class for AutoFallibleTArray and nsAutoTArray.
// You shouldn't use this class directly.
//
template <class TArrayBase, uint32_t N>
class nsAutoArrayBase : public TArrayBase
{
public:
typedef nsAutoArrayBase<TArrayBase, N> self_type;
typedef TArrayBase base_type;
typedef typename base_type::Header Header;
typedef typename base_type::elem_type elem_type;
template<typename Allocator>
self_type& operator=(const nsTArray_Impl<elem_type, Allocator>& other) {
base_type::operator=(other);
return *this;
}
protected:
nsAutoArrayBase() {
Init();
}
// We need this constructor because nsAutoTArray and friends all have
// implicit copy-constructors. If we don't have this method, those
// copy-constructors will call nsAutoArrayBase's implicit copy-constructor,
// which won't call Init() and set up the auto buffer!
nsAutoArrayBase(const TArrayBase &aOther) {
Init();
AppendElements(aOther);
}
private:
// nsTArray_base casts itself as an nsAutoArrayBase in order to get a pointer
// to mAutoBuf.
template<class Allocator, class Copier>
friend class nsTArray_base;
void Init() {
MOZ_STATIC_ASSERT(MOZ_ALIGNOF(elem_type) <= 8,
"can't handle alignments greater than 8, "
"see nsTArray_base::UsesAutoArrayBuffer()");
// Temporary work around for VS2012 RC compiler crash
Header** phdr = base_type::PtrToHdr();
*phdr = reinterpret_cast<Header*>(&mAutoBuf);
(*phdr)->mLength = 0;
(*phdr)->mCapacity = N;
(*phdr)->mIsAutoArray = 1;
MOZ_ASSERT(base_type::GetAutoArrayBuffer(MOZ_ALIGNOF(elem_type)) ==
reinterpret_cast<Header*>(&mAutoBuf),
"GetAutoArrayBuffer needs to be fixed");
}
// Declare mAutoBuf aligned to the maximum of the header's alignment and
// elem_type's alignment. We need to use a union rather than
// MOZ_ALIGNED_DECL because GCC is picky about what goes into
// __attribute__((aligned(foo))).
union {
char mAutoBuf[sizeof(nsTArrayHeader) + N * sizeof(elem_type)];
// Do the max operation inline to ensure that it is a compile-time constant.
mozilla::AlignedElem<(MOZ_ALIGNOF(Header) > MOZ_ALIGNOF(elem_type))
? MOZ_ALIGNOF(Header) : MOZ_ALIGNOF(elem_type)> mAlign;
};
};
//
// nsAutoTArray<E, N> is an infallible vector class with N elements of inline
// storage. If you try to store more than N elements inside an
// nsAutoTArray<E, N>, we'll call malloc() and store them all on the heap.
//
// Note that you can cast an nsAutoTArray<E, N> to
// |const AutoFallibleTArray<E, N>&|.
//
template<class E, uint32_t N>
class nsAutoTArray : public nsAutoArrayBase<nsTArray<E>, N>
{
typedef nsAutoTArray<E, N> self_type;
typedef nsAutoArrayBase<nsTArray<E>, N> Base;
public:
nsAutoTArray() {}
template<typename Allocator>
explicit nsAutoTArray(const nsTArray_Impl<E, Allocator>& other) {
Base::AppendElements(other);
}
operator const AutoFallibleTArray<E, N>&() const {
return *reinterpret_cast<const AutoFallibleTArray<E, N>*>(this);
}
};
//
// AutoFallibleTArray<E, N> is a fallible vector class with N elements of
// inline storage.
//
template<class E, uint32_t N>
class AutoFallibleTArray : public nsAutoArrayBase<FallibleTArray<E>, N>
{
typedef AutoFallibleTArray<E, N> self_type;
typedef nsAutoArrayBase<FallibleTArray<E>, N> Base;
public:
AutoFallibleTArray() {}
template<typename Allocator>
explicit AutoFallibleTArray(const nsTArray_Impl<E, Allocator>& other) {
Base::AppendElements(other);
}
operator const nsAutoTArray<E, N>&() const {
return *reinterpret_cast<const nsAutoTArray<E, N>*>(this);
}
};
// Assert that nsAutoTArray doesn't have any extra padding inside.
//
// It's important that the data stored in this auto array takes up a multiple of
// 8 bytes; e.g. nsAutoTArray<uint32_t, 1> wouldn't work. Since nsAutoTArray
// contains a pointer, its size must be a multiple of alignof(void*). (This is
// because any type may be placed into an array, and there's no padding between
// elements of an array.) The compiler pads the end of the structure to
// enforce this rule.
//
// If we used nsAutoTArray<uint32_t, 1> below, this assertion would fail on a
// 64-bit system, where the compiler inserts 4 bytes of padding at the end of
// the auto array to make its size a multiple of alignof(void*) == 8 bytes.
MOZ_STATIC_ASSERT(sizeof(nsAutoTArray<uint32_t, 2>) ==
sizeof(void*) + sizeof(nsTArrayHeader) + sizeof(uint32_t) * 2,
"nsAutoTArray shouldn't contain any extra padding, "
"see the comment");
// Definitions of nsTArray_Impl methods
#include "nsTArray-inl.h"
#endif // nsTArray_h__