mirror of
https://github.com/mozilla/gecko-dev.git
synced 2024-11-29 15:52:07 +00:00
576 lines
24 KiB
C++
576 lines
24 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
/* Implementations of various class and method modifier attributes. */
|
|
|
|
#ifndef mozilla_Attributes_h
|
|
#define mozilla_Attributes_h
|
|
|
|
#include "mozilla/Compiler.h"
|
|
|
|
/*
|
|
* MOZ_ALWAYS_INLINE is a macro which expands to tell the compiler that the
|
|
* method decorated with it must be inlined, even if the compiler thinks
|
|
* otherwise. This is only a (much) stronger version of the inline hint:
|
|
* compilers are not guaranteed to respect it (although they're much more likely
|
|
* to do so).
|
|
*
|
|
* The MOZ_ALWAYS_INLINE_EVEN_DEBUG macro is yet stronger. It tells the
|
|
* compiler to inline even in DEBUG builds. It should be used very rarely.
|
|
*/
|
|
#if defined(_MSC_VER)
|
|
# define MOZ_ALWAYS_INLINE_EVEN_DEBUG __forceinline
|
|
#elif defined(__GNUC__)
|
|
# define MOZ_ALWAYS_INLINE_EVEN_DEBUG __attribute__((always_inline)) inline
|
|
#else
|
|
# define MOZ_ALWAYS_INLINE_EVEN_DEBUG inline
|
|
#endif
|
|
|
|
#if !defined(DEBUG)
|
|
# define MOZ_ALWAYS_INLINE MOZ_ALWAYS_INLINE_EVEN_DEBUG
|
|
#elif defined(_MSC_VER) && !defined(__cplusplus)
|
|
# define MOZ_ALWAYS_INLINE __inline
|
|
#else
|
|
# define MOZ_ALWAYS_INLINE inline
|
|
#endif
|
|
|
|
#if defined(_MSC_VER)
|
|
/*
|
|
* g++ requires -std=c++0x or -std=gnu++0x to support C++11 functionality
|
|
* without warnings (functionality used by the macros below). These modes are
|
|
* detectable by checking whether __GXX_EXPERIMENTAL_CXX0X__ is defined or, more
|
|
* standardly, by checking whether __cplusplus has a C++11 or greater value.
|
|
* Current versions of g++ do not correctly set __cplusplus, so we check both
|
|
* for forward compatibility.
|
|
*
|
|
* Even though some versions of MSVC support explicit conversion operators, we
|
|
* don't indicate support for them here, due to
|
|
* http://stackoverflow.com/questions/20498142/visual-studio-2013-explicit-keyword-bug
|
|
*/
|
|
# define MOZ_HAVE_NEVER_INLINE __declspec(noinline)
|
|
# define MOZ_HAVE_NORETURN __declspec(noreturn)
|
|
# if _MSC_VER >= 1900
|
|
# define MOZ_HAVE_CXX11_CONSTEXPR
|
|
# define MOZ_HAVE_CXX11_CONSTEXPR_IN_TEMPLATES
|
|
# define MOZ_HAVE_EXPLICIT_CONVERSION
|
|
# endif
|
|
# ifdef __clang__
|
|
/* clang-cl probably supports constexpr and explicit conversions. */
|
|
# if __has_extension(cxx_constexpr)
|
|
# define MOZ_HAVE_CXX11_CONSTEXPR
|
|
# endif
|
|
# if __has_extension(cxx_explicit_conversions)
|
|
# define MOZ_HAVE_EXPLICIT_CONVERSION
|
|
# endif
|
|
# endif
|
|
#elif defined(__clang__)
|
|
/*
|
|
* Per Clang documentation, "Note that marketing version numbers should not
|
|
* be used to check for language features, as different vendors use different
|
|
* numbering schemes. Instead, use the feature checking macros."
|
|
*/
|
|
# ifndef __has_extension
|
|
# define __has_extension __has_feature /* compatibility, for older versions of clang */
|
|
# endif
|
|
# if __has_extension(cxx_constexpr)
|
|
# define MOZ_HAVE_CXX11_CONSTEXPR
|
|
# endif
|
|
# if __has_extension(cxx_explicit_conversions)
|
|
# define MOZ_HAVE_EXPLICIT_CONVERSION
|
|
# endif
|
|
# if __has_attribute(noinline)
|
|
# define MOZ_HAVE_NEVER_INLINE __attribute__((noinline))
|
|
# endif
|
|
# if __has_attribute(noreturn)
|
|
# define MOZ_HAVE_NORETURN __attribute__((noreturn))
|
|
# endif
|
|
#elif defined(__GNUC__)
|
|
# if defined(__GXX_EXPERIMENTAL_CXX0X__) || __cplusplus >= 201103L
|
|
# define MOZ_HAVE_CXX11_CONSTEXPR
|
|
# if MOZ_GCC_VERSION_AT_LEAST(4, 8, 0)
|
|
# define MOZ_HAVE_CXX11_CONSTEXPR_IN_TEMPLATES
|
|
# endif
|
|
# define MOZ_HAVE_EXPLICIT_CONVERSION
|
|
# endif
|
|
# define MOZ_HAVE_NEVER_INLINE __attribute__((noinline))
|
|
# define MOZ_HAVE_NORETURN __attribute__((noreturn))
|
|
#endif
|
|
|
|
/*
|
|
* When built with clang analyzer (a.k.a scan-build), define MOZ_HAVE_NORETURN
|
|
* to mark some false positives
|
|
*/
|
|
#ifdef __clang_analyzer__
|
|
# if __has_extension(attribute_analyzer_noreturn)
|
|
# define MOZ_HAVE_ANALYZER_NORETURN __attribute__((analyzer_noreturn))
|
|
# endif
|
|
#endif
|
|
|
|
/*
|
|
* The MOZ_CONSTEXPR specifier declares that a C++11 compiler can evaluate a
|
|
* function at compile time. A constexpr function cannot examine any values
|
|
* except its arguments and can have no side effects except its return value.
|
|
* The MOZ_CONSTEXPR_VAR specifier tells a C++11 compiler that a variable's
|
|
* value may be computed at compile time. It should be prefered to just
|
|
* marking variables as MOZ_CONSTEXPR because if the compiler does not support
|
|
* constexpr it will fall back to making the variable const, and some compilers
|
|
* do not accept variables being marked both const and constexpr.
|
|
*/
|
|
#ifdef MOZ_HAVE_CXX11_CONSTEXPR
|
|
# define MOZ_CONSTEXPR constexpr
|
|
# define MOZ_CONSTEXPR_VAR constexpr
|
|
# ifdef MOZ_HAVE_CXX11_CONSTEXPR_IN_TEMPLATES
|
|
# define MOZ_CONSTEXPR_TMPL constexpr
|
|
# else
|
|
# define MOZ_CONSTEXPR_TMPL
|
|
# endif
|
|
#else
|
|
# define MOZ_CONSTEXPR /* no support */
|
|
# define MOZ_CONSTEXPR_VAR const
|
|
# define MOZ_CONSTEXPR_TMPL
|
|
#endif
|
|
|
|
/*
|
|
* MOZ_EXPLICIT_CONVERSION is a specifier on a type conversion
|
|
* overloaded operator that declares that a C++11 compiler should restrict
|
|
* this operator to allow only explicit type conversions, disallowing
|
|
* implicit conversions.
|
|
*
|
|
* Example:
|
|
*
|
|
* template<typename T>
|
|
* class Ptr
|
|
* {
|
|
* T* mPtr;
|
|
* MOZ_EXPLICIT_CONVERSION operator bool() const
|
|
* {
|
|
* return mPtr != nullptr;
|
|
* }
|
|
* };
|
|
*
|
|
*/
|
|
#ifdef MOZ_HAVE_EXPLICIT_CONVERSION
|
|
# define MOZ_EXPLICIT_CONVERSION explicit
|
|
#else
|
|
# define MOZ_EXPLICIT_CONVERSION /* no support */
|
|
#endif
|
|
|
|
/*
|
|
* MOZ_NEVER_INLINE is a macro which expands to tell the compiler that the
|
|
* method decorated with it must never be inlined, even if the compiler would
|
|
* otherwise choose to inline the method. Compilers aren't absolutely
|
|
* guaranteed to support this, but most do.
|
|
*/
|
|
#if defined(MOZ_HAVE_NEVER_INLINE)
|
|
# define MOZ_NEVER_INLINE MOZ_HAVE_NEVER_INLINE
|
|
#else
|
|
# define MOZ_NEVER_INLINE /* no support */
|
|
#endif
|
|
|
|
/*
|
|
* MOZ_NORETURN, specified at the start of a function declaration, indicates
|
|
* that the given function does not return. (The function definition does not
|
|
* need to be annotated.)
|
|
*
|
|
* MOZ_NORETURN void abort(const char* msg);
|
|
*
|
|
* This modifier permits the compiler to optimize code assuming a call to such a
|
|
* function will never return. It also enables the compiler to avoid spurious
|
|
* warnings about not initializing variables, or about any other seemingly-dodgy
|
|
* operations performed after the function returns.
|
|
*
|
|
* This modifier does not affect the corresponding function's linking behavior.
|
|
*/
|
|
#if defined(MOZ_HAVE_NORETURN)
|
|
# define MOZ_NORETURN MOZ_HAVE_NORETURN
|
|
#else
|
|
# define MOZ_NORETURN /* no support */
|
|
#endif
|
|
|
|
/**
|
|
* MOZ_COLD tells the compiler that a function is "cold", meaning infrequently
|
|
* executed. This may lead it to optimize for size more aggressively than speed,
|
|
* or to allocate the body of the function in a distant part of the text segment
|
|
* to help keep it from taking up unnecessary icache when it isn't in use.
|
|
*
|
|
* Place this attribute at the very beginning of a function definition. For
|
|
* example, write
|
|
*
|
|
* MOZ_COLD int foo();
|
|
*
|
|
* or
|
|
*
|
|
* MOZ_COLD int foo() { return 42; }
|
|
*/
|
|
#if defined(__GNUC__) || defined(__clang__)
|
|
# define MOZ_COLD __attribute__ ((cold))
|
|
#else
|
|
# define MOZ_COLD
|
|
#endif
|
|
|
|
/**
|
|
* MOZ_NONNULL tells the compiler that some of the arguments to a function are
|
|
* known to be non-null. The arguments are a list of 1-based argument indexes
|
|
* identifying arguments which are known to be non-null.
|
|
*
|
|
* Place this attribute at the very beginning of a function definition. For
|
|
* example, write
|
|
*
|
|
* MOZ_NONNULL(1, 2) int foo(char *p, char *q);
|
|
*/
|
|
#if defined(__GNUC__) || defined(__clang__)
|
|
# define MOZ_NONNULL(...) __attribute__ ((nonnull(__VA_ARGS__)))
|
|
#else
|
|
# define MOZ_NONNULL(...)
|
|
#endif
|
|
|
|
/*
|
|
* MOZ_PRETEND_NORETURN_FOR_STATIC_ANALYSIS, specified at the end of a function
|
|
* declaration, indicates that for the purposes of static analysis, this
|
|
* function does not return. (The function definition does not need to be
|
|
* annotated.)
|
|
*
|
|
* MOZ_ReportCrash(const char* s, const char* file, int ln)
|
|
* MOZ_PRETEND_NORETURN_FOR_STATIC_ANALYSIS
|
|
*
|
|
* Some static analyzers, like scan-build from clang, can use this information
|
|
* to eliminate false positives. From the upstream documentation of scan-build:
|
|
* "This attribute is useful for annotating assertion handlers that actually
|
|
* can return, but for the purpose of using the analyzer we want to pretend
|
|
* that such functions do not return."
|
|
*
|
|
*/
|
|
#if defined(MOZ_HAVE_ANALYZER_NORETURN)
|
|
# define MOZ_PRETEND_NORETURN_FOR_STATIC_ANALYSIS MOZ_HAVE_ANALYZER_NORETURN
|
|
#else
|
|
# define MOZ_PRETEND_NORETURN_FOR_STATIC_ANALYSIS /* no support */
|
|
#endif
|
|
|
|
/*
|
|
* MOZ_ASAN_BLACKLIST is a macro to tell AddressSanitizer (a compile-time
|
|
* instrumentation shipped with Clang and GCC) to not instrument the annotated
|
|
* function. Furthermore, it will prevent the compiler from inlining the
|
|
* function because inlining currently breaks the blacklisting mechanism of
|
|
* AddressSanitizer.
|
|
*/
|
|
#if defined(__has_feature)
|
|
# if __has_feature(address_sanitizer)
|
|
# define MOZ_HAVE_ASAN_BLACKLIST
|
|
# endif
|
|
#elif defined(__GNUC__)
|
|
# if defined(__SANITIZE_ADDRESS__)
|
|
# define MOZ_HAVE_ASAN_BLACKLIST
|
|
# endif
|
|
#endif
|
|
|
|
#if defined(MOZ_HAVE_ASAN_BLACKLIST)
|
|
# define MOZ_ASAN_BLACKLIST MOZ_NEVER_INLINE __attribute__((no_sanitize_address))
|
|
#else
|
|
# define MOZ_ASAN_BLACKLIST /* nothing */
|
|
#endif
|
|
|
|
/*
|
|
* MOZ_TSAN_BLACKLIST is a macro to tell ThreadSanitizer (a compile-time
|
|
* instrumentation shipped with Clang) to not instrument the annotated function.
|
|
* Furthermore, it will prevent the compiler from inlining the function because
|
|
* inlining currently breaks the blacklisting mechanism of ThreadSanitizer.
|
|
*/
|
|
#if defined(__has_feature)
|
|
# if __has_feature(thread_sanitizer)
|
|
# define MOZ_TSAN_BLACKLIST MOZ_NEVER_INLINE __attribute__((no_sanitize_thread))
|
|
# else
|
|
# define MOZ_TSAN_BLACKLIST /* nothing */
|
|
# endif
|
|
#else
|
|
# define MOZ_TSAN_BLACKLIST /* nothing */
|
|
#endif
|
|
|
|
/**
|
|
* MOZ_ALLOCATOR tells the compiler that the function it marks returns either a
|
|
* "fresh", "pointer-free" block of memory, or nullptr. "Fresh" means that the
|
|
* block is not pointed to by any other reachable pointer in the program.
|
|
* "Pointer-free" means that the block contains no pointers to any valid object
|
|
* in the program. It may be initialized with other (non-pointer) values.
|
|
*
|
|
* Placing this attribute on appropriate functions helps GCC analyze pointer
|
|
* aliasing more accurately in their callers.
|
|
*
|
|
* GCC warns if a caller ignores the value returned by a function marked with
|
|
* MOZ_ALLOCATOR: it is hard to imagine cases where dropping the value returned
|
|
* by a function that meets the criteria above would be intentional.
|
|
*
|
|
* Place this attribute after the argument list and 'this' qualifiers of a
|
|
* function definition. For example, write
|
|
*
|
|
* void *my_allocator(size_t) MOZ_ALLOCATOR;
|
|
*
|
|
* or
|
|
*
|
|
* void *my_allocator(size_t bytes) MOZ_ALLOCATOR { ... }
|
|
*/
|
|
#if defined(__GNUC__) || defined(__clang__)
|
|
# define MOZ_ALLOCATOR __attribute__ ((malloc, warn_unused_result))
|
|
#else
|
|
# define MOZ_ALLOCATOR
|
|
#endif
|
|
|
|
/**
|
|
* MOZ_WARN_UNUSED_RESULT tells the compiler to emit a warning if a function's
|
|
* return value is not used by the caller.
|
|
*
|
|
* Place this attribute at the very beginning of a function definition. For
|
|
* example, write
|
|
*
|
|
* MOZ_WARN_UNUSED_RESULT int foo();
|
|
*
|
|
* or
|
|
*
|
|
* MOZ_WARN_UNUSED_RESULT int foo() { return 42; }
|
|
*/
|
|
#if defined(__GNUC__) || defined(__clang__)
|
|
# define MOZ_WARN_UNUSED_RESULT __attribute__ ((warn_unused_result))
|
|
#else
|
|
# define MOZ_WARN_UNUSED_RESULT
|
|
#endif
|
|
|
|
#ifdef __cplusplus
|
|
|
|
/*
|
|
* The following macros are attributes that support the static analysis plugin
|
|
* included with Mozilla, and will be implemented (when such support is enabled)
|
|
* as C++11 attributes. Since such attributes are legal pretty much everywhere
|
|
* and have subtly different semantics depending on their placement, the
|
|
* following is a guide on where to place the attributes.
|
|
*
|
|
* Attributes that apply to a struct or class precede the name of the class:
|
|
* (Note that this is different from the placement of final for classes!)
|
|
*
|
|
* class MOZ_CLASS_ATTRIBUTE SomeClass {};
|
|
*
|
|
* Attributes that apply to functions follow the parentheses and const
|
|
* qualifiers but precede final, override and the function body:
|
|
*
|
|
* void DeclaredFunction() MOZ_FUNCTION_ATTRIBUTE;
|
|
* void SomeFunction() MOZ_FUNCTION_ATTRIBUTE {}
|
|
* void PureFunction() const MOZ_FUNCTION_ATTRIBUTE = 0;
|
|
* void OverriddenFunction() MOZ_FUNCTION_ATTIRBUTE override;
|
|
*
|
|
* Attributes that apply to variables or parameters follow the variable's name:
|
|
*
|
|
* int variable MOZ_VARIABLE_ATTRIBUTE;
|
|
*
|
|
* Attributes that apply to types follow the type name:
|
|
*
|
|
* typedef int MOZ_TYPE_ATTRIBUTE MagicInt;
|
|
* int MOZ_TYPE_ATTRIBUTE someVariable;
|
|
* int* MOZ_TYPE_ATTRIBUTE magicPtrInt;
|
|
* int MOZ_TYPE_ATTRIBUTE* ptrToMagicInt;
|
|
*
|
|
* Attributes that apply to statements precede the statement:
|
|
*
|
|
* MOZ_IF_ATTRIBUTE if (x == 0)
|
|
* MOZ_DO_ATTRIBUTE do { } while (0);
|
|
*
|
|
* Attributes that apply to labels precede the label:
|
|
*
|
|
* MOZ_LABEL_ATTRIBUTE target:
|
|
* goto target;
|
|
* MOZ_CASE_ATTRIBUTE case 5:
|
|
* MOZ_DEFAULT_ATTRIBUTE default:
|
|
*
|
|
* The static analyses that are performed by the plugin are as follows:
|
|
*
|
|
* MOZ_MUST_OVERRIDE: Applies to all C++ member functions. All immediate
|
|
* subclasses must provide an exact override of this method; if a subclass
|
|
* does not override this method, the compiler will emit an error. This
|
|
* attribute is not limited to virtual methods, so if it is applied to a
|
|
* nonvirtual method and the subclass does not provide an equivalent
|
|
* definition, the compiler will emit an error.
|
|
* MOZ_STACK_CLASS: Applies to all classes. Any class with this annotation is
|
|
* expected to live on the stack, so it is a compile-time error to use it, or
|
|
* an array of such objects, as a global or static variable, or as the type of
|
|
* a new expression (unless placement new is being used). If a member of
|
|
* another class uses this class, or if another class inherits from this
|
|
* class, then it is considered to be a stack class as well, although this
|
|
* attribute need not be provided in such cases.
|
|
* MOZ_NONHEAP_CLASS: Applies to all classes. Any class with this annotation is
|
|
* expected to live on the stack or in static storage, so it is a compile-time
|
|
* error to use it, or an array of such objects, as the type of a new
|
|
* expression. If a member of another class uses this class, or if another
|
|
* class inherits from this class, then it is considered to be a non-heap class
|
|
* as well, although this attribute need not be provided in such cases.
|
|
* MOZ_HEAP_CLASS: Applies to all classes. Any class with this annotation is
|
|
* expected to live on the heap, so it is a compile-time error to use it, or
|
|
* an array of such objects, as the type of a variable declaration, or as a
|
|
* temporary object. If a member of another class uses this class, or if
|
|
* another class inherits from this class, then it is considered to be a heap
|
|
* class as well, although this attribute need not be provided in such cases.
|
|
* MOZ_NON_TEMPORARY_CLASS: Applies to all classes. Any class with this
|
|
* annotation is expected not to live in a temporary. If a member of another
|
|
* class uses this class or if another class inherits from this class, then it
|
|
* is considered to be a non-temporary class as well, although this attribute
|
|
* need not be provided in such cases.
|
|
* MOZ_RAII: Applies to all classes. Any class with this annotation is assumed
|
|
* to be a RAII guard, which is expected to live on the stack in an automatic
|
|
* allocation. It is prohibited from being allocated in a temporary, static
|
|
* storage, or on the heap. This is a combination of MOZ_STACK_CLASS and
|
|
* MOZ_NON_TEMPORARY_CLASS.
|
|
* MOZ_ONLY_USED_TO_AVOID_STATIC_CONSTRUCTORS: Applies to all classes that are
|
|
* intended to prevent introducing static initializers. This attribute
|
|
* currently makes it a compile-time error to instantiate these classes
|
|
* anywhere other than at the global scope, or as a static member of a class.
|
|
* MOZ_TRIVIAL_CTOR_DTOR: Applies to all classes that must have both a trivial
|
|
* constructor and a trivial destructor. Setting this attribute on a class
|
|
* makes it a compile-time error for that class to get a non-trivial
|
|
* constructor or destructor for any reason.
|
|
* MOZ_HEAP_ALLOCATOR: Applies to any function. This indicates that the return
|
|
* value is allocated on the heap, and will as a result check such allocations
|
|
* during MOZ_STACK_CLASS and MOZ_NONHEAP_CLASS annotation checking.
|
|
* MOZ_IMPLICIT: Applies to constructors. Implicit conversion constructors
|
|
* are disallowed by default unless they are marked as MOZ_IMPLICIT. This
|
|
* attribute must be used for constructors which intend to provide implicit
|
|
* conversions.
|
|
* MOZ_NO_ARITHMETIC_EXPR_IN_ARGUMENT: Applies to functions. Makes it a compile
|
|
* time error to pass arithmetic expressions on variables to the function.
|
|
* MOZ_OWNING_REF: Applies to declarations of pointers to reference counted
|
|
* types. This attribute tells the compiler that the raw pointer is a strong
|
|
* reference, where ownership through methods such as AddRef and Release is
|
|
* managed manually. This can make the compiler ignore these pointers when
|
|
* validating the usage of pointers otherwise.
|
|
*
|
|
* Example uses include owned pointers inside of unions, and pointers stored
|
|
* in POD types where a using a smart pointer class would make the object
|
|
* non-POD.
|
|
* MOZ_NON_OWNING_REF: Applies to declarations of pointers to reference counted
|
|
* types. This attribute tells the compiler that the raw pointer is a weak
|
|
* reference, which is ensured to be valid by a guarantee that the reference
|
|
* will be nulled before the pointer becomes invalid. This can make the compiler
|
|
* ignore these pointers when validating the usage of pointers otherwise.
|
|
*
|
|
* Examples include an mOwner pointer, which is nulled by the owning class's
|
|
* destructor, and is null-checked before dereferencing.
|
|
* MOZ_UNSAFE_REF: Applies to declarations of pointers to reference counted types.
|
|
* Occasionally there are non-owning references which are valid, but do not take
|
|
* the form of a MOZ_NON_OWNING_REF. Their safety may be dependent on the behaviour
|
|
* of API consumers. The string argument passed to this macro documents the safety
|
|
* conditions. This can make the compiler ignore these pointers when validating
|
|
* the usage of pointers elsewhere.
|
|
*
|
|
* Examples include an nsIAtom* member which is known at compile time to point to a
|
|
* static atom which is valid throughout the lifetime of the program, or an API which
|
|
* stores a pointer, but doesn't take ownership over it, instead requiring the API
|
|
* consumer to correctly null the value before it becomes invalid.
|
|
*
|
|
* Use of this annotation is discouraged when a strong reference or one of the above
|
|
* two annotations can be used instead.
|
|
* MOZ_NO_ADDREF_RELEASE_ON_RETURN: Applies to function declarations. Makes it
|
|
* a compile time error to call AddRef or Release on the return value of a
|
|
* function. This is intended to be used with operator->() of our smart
|
|
* pointer classes to ensure that the refcount of an object wrapped in a
|
|
* smart pointer is not manipulated directly.
|
|
* MOZ_MUST_USE: Applies to type declarations. Makes it a compile time error to not
|
|
* use the return value of a function which has this type. This is intended to be
|
|
* used with types which it is an error to not use.
|
|
* MOZ_NEEDS_NO_VTABLE_TYPE: Applies to template class declarations. Makes it
|
|
* a compile time error to instantiate this template with a type parameter which
|
|
* has a VTable.
|
|
* MOZ_NON_MEMMOVABLE: Applies to class declarations for types that are not safe
|
|
* to be moved in memory using memmove().
|
|
* MOZ_NEEDS_MEMMOVABLE_TYPE: Applies to template class declarations where the
|
|
* template arguments are required to be safe to move in memory using
|
|
* memmove(). Passing MOZ_NON_MEMMOVABLE types to these templates is a
|
|
* compile time error.
|
|
* MOZ_INHERIT_TYPE_ANNOTATIONS_FROM_TEMPLATE_ARGS: Applies to template class
|
|
* declarations where an instance of the template should be considered, for
|
|
* static analysis purposes, to inherit any type annotations (such as
|
|
* MOZ_MUST_USE and MOZ_STACK_CLASS) from its template arguments.
|
|
* MOZ_NON_AUTOABLE: Applies to class declarations. Makes it a compile time error to
|
|
* use `auto` in place of this type in variable declarations. This is intended to
|
|
* be used with types which are intended to be implicitly constructed into other
|
|
* other types before being assigned to variables.
|
|
*/
|
|
#ifdef MOZ_CLANG_PLUGIN
|
|
# define MOZ_MUST_OVERRIDE __attribute__((annotate("moz_must_override")))
|
|
# define MOZ_STACK_CLASS __attribute__((annotate("moz_stack_class")))
|
|
# define MOZ_NONHEAP_CLASS __attribute__((annotate("moz_nonheap_class")))
|
|
# define MOZ_HEAP_CLASS __attribute__((annotate("moz_heap_class")))
|
|
# define MOZ_NON_TEMPORARY_CLASS __attribute__((annotate("moz_non_temporary_class")))
|
|
# define MOZ_TRIVIAL_CTOR_DTOR __attribute__((annotate("moz_trivial_ctor_dtor")))
|
|
# ifdef DEBUG
|
|
/* in debug builds, these classes do have non-trivial constructors. */
|
|
# define MOZ_ONLY_USED_TO_AVOID_STATIC_CONSTRUCTORS __attribute__((annotate("moz_global_class")))
|
|
# else
|
|
# define MOZ_ONLY_USED_TO_AVOID_STATIC_CONSTRUCTORS __attribute__((annotate("moz_global_class"))) \
|
|
MOZ_TRIVIAL_CTOR_DTOR
|
|
# endif
|
|
# define MOZ_IMPLICIT __attribute__((annotate("moz_implicit")))
|
|
# define MOZ_NO_ARITHMETIC_EXPR_IN_ARGUMENT __attribute__((annotate("moz_no_arith_expr_in_arg")))
|
|
# define MOZ_OWNING_REF __attribute__((annotate("moz_strong_ref")))
|
|
# define MOZ_NON_OWNING_REF __attribute__((annotate("moz_weak_ref")))
|
|
# define MOZ_UNSAFE_REF(reason) __attribute__((annotate("moz_weak_ref")))
|
|
# define MOZ_NO_ADDREF_RELEASE_ON_RETURN __attribute__((annotate("moz_no_addref_release_on_return")))
|
|
# define MOZ_MUST_USE __attribute__((annotate("moz_must_use")))
|
|
# define MOZ_NEEDS_NO_VTABLE_TYPE __attribute__((annotate("moz_needs_no_vtable_type")))
|
|
# define MOZ_NON_MEMMOVABLE __attribute__((annotate("moz_non_memmovable")))
|
|
# define MOZ_NEEDS_MEMMOVABLE_TYPE __attribute__((annotate("moz_needs_memmovable_type")))
|
|
# define MOZ_INHERIT_TYPE_ANNOTATIONS_FROM_TEMPLATE_ARGS \
|
|
__attribute__((annotate("moz_inherit_type_annotations_from_template_args")))
|
|
# define MOZ_NON_AUTOABLE __attribute__((annotate("moz_non_autoable")))
|
|
/*
|
|
* It turns out that clang doesn't like void func() __attribute__ {} without a
|
|
* warning, so use pragmas to disable the warning. This code won't work on GCC
|
|
* anyways, so the warning is safe to ignore.
|
|
*/
|
|
# define MOZ_HEAP_ALLOCATOR \
|
|
_Pragma("clang diagnostic push") \
|
|
_Pragma("clang diagnostic ignored \"-Wgcc-compat\"") \
|
|
__attribute__((annotate("moz_heap_allocator"))) \
|
|
_Pragma("clang diagnostic pop")
|
|
#else
|
|
# define MOZ_MUST_OVERRIDE /* nothing */
|
|
# define MOZ_STACK_CLASS /* nothing */
|
|
# define MOZ_NONHEAP_CLASS /* nothing */
|
|
# define MOZ_HEAP_CLASS /* nothing */
|
|
# define MOZ_NON_TEMPORARY_CLASS /* nothing */
|
|
# define MOZ_TRIVIAL_CTOR_DTOR /* nothing */
|
|
# define MOZ_ONLY_USED_TO_AVOID_STATIC_CONSTRUCTORS /* nothing */
|
|
# define MOZ_IMPLICIT /* nothing */
|
|
# define MOZ_NO_ARITHMETIC_EXPR_IN_ARGUMENT /* nothing */
|
|
# define MOZ_HEAP_ALLOCATOR /* nothing */
|
|
# define MOZ_OWNING_REF /* nothing */
|
|
# define MOZ_NON_OWNING_REF /* nothing */
|
|
# define MOZ_UNSAFE_REF(reason) /* nothing */
|
|
# define MOZ_NO_ADDREF_RELEASE_ON_RETURN /* nothing */
|
|
# define MOZ_MUST_USE /* nothing */
|
|
# define MOZ_NEEDS_NO_VTABLE_TYPE /* nothing */
|
|
# define MOZ_NON_MEMMOVABLE /* nothing */
|
|
# define MOZ_NEEDS_MEMMOVABLE_TYPE /* nothing */
|
|
# define MOZ_INHERIT_TYPE_ANNOTATIONS_FROM_TEMPLATE_ARGS /* nothing */
|
|
# define MOZ_NON_AUTOABLE /* nothing */
|
|
#endif /* MOZ_CLANG_PLUGIN */
|
|
|
|
#define MOZ_RAII MOZ_NON_TEMPORARY_CLASS MOZ_STACK_CLASS
|
|
|
|
/*
|
|
* MOZ_HAVE_REF_QUALIFIERS is defined for compilers that support C++11's rvalue
|
|
* qualifier, "&&".
|
|
*/
|
|
#if defined(_MSC_VER) && _MSC_VER >= 1900
|
|
# define MOZ_HAVE_REF_QUALIFIERS
|
|
#elif defined(__clang__)
|
|
// All supported Clang versions
|
|
# define MOZ_HAVE_REF_QUALIFIERS
|
|
#elif defined(__GNUC__)
|
|
# include "mozilla/Compiler.h"
|
|
# if MOZ_GCC_VERSION_AT_LEAST(4, 8, 1)
|
|
# define MOZ_HAVE_REF_QUALIFIERS
|
|
# endif
|
|
#endif
|
|
|
|
#endif /* __cplusplus */
|
|
|
|
#endif /* mozilla_Attributes_h */
|