gecko-dev/gfx/2d/SIMD.h
Ehsan Akhgari e5e885ae31 Bug 1521000 - Part 2: Adjust our clang-format rules to include spaces after the hash for nested preprocessor directives r=sylvestre
# ignore-this-changeset

--HG--
extra : amend_source : 7221c8d15a765df71171099468e7c7faa648f37c
extra : histedit_source : a0cce6015636202bff09e35a13f72e03257a7695
2019-01-18 10:16:18 +01:00

1040 lines
34 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef _MOZILLA_GFX_SIMD_H_
#define _MOZILLA_GFX_SIMD_H_
/**
* Consumers of this file need to #define SIMD_COMPILE_SSE2 before including it
* if they want access to the SSE2 functions.
*/
#ifdef SIMD_COMPILE_SSE2
# include <xmmintrin.h>
#endif
namespace mozilla {
namespace gfx {
namespace simd {
template <typename u8x16_t>
u8x16_t Load8(const uint8_t* aSource);
template <typename u8x16_t>
u8x16_t From8(uint8_t a, uint8_t b, uint8_t c, uint8_t d, uint8_t e, uint8_t f,
uint8_t g, uint8_t h, uint8_t i, uint8_t j, uint8_t k, uint8_t l,
uint8_t m, uint8_t n, uint8_t o, uint8_t p);
template <typename u8x16_t>
u8x16_t FromZero8();
template <typename i16x8_t>
i16x8_t FromI16(int16_t a, int16_t b, int16_t c, int16_t d, int16_t e,
int16_t f, int16_t g, int16_t h);
template <typename u16x8_t>
u16x8_t FromU16(uint16_t a, uint16_t b, uint16_t c, uint16_t d, uint16_t e,
uint16_t f, uint16_t g, uint16_t h);
template <typename i16x8_t>
i16x8_t FromI16(int16_t a);
template <typename u16x8_t>
u16x8_t FromU16(uint16_t a);
template <typename i32x4_t>
i32x4_t From32(int32_t a, int32_t b, int32_t c, int32_t d);
template <typename i32x4_t>
i32x4_t From32(int32_t a);
template <typename f32x4_t>
f32x4_t FromF32(float a, float b, float c, float d);
template <typename f32x4_t>
f32x4_t FromF32(float a);
// All SIMD backends overload these functions for their SIMD types:
#if 0
// Store 16 bytes to a 16-byte aligned address
void Store8(uint8_t* aTarget, u8x16_t aM);
// Fixed shifts
template<int32_t aNumberOfBits> i16x8_t ShiftRight16(i16x8_t aM);
template<int32_t aNumberOfBits> i32x4_t ShiftRight32(i32x4_t aM);
i16x8_t Add16(i16x8_t aM1, i16x8_t aM2);
i32x4_t Add32(i32x4_t aM1, i32x4_t aM2);
i16x8_t Sub16(i16x8_t aM1, i16x8_t aM2);
i32x4_t Sub32(i32x4_t aM1, i32x4_t aM2);
u8x16_t Min8(u8x16_t aM1, iu8x16_t aM2);
u8x16_t Max8(u8x16_t aM1, iu8x16_t aM2);
i32x4_t Min32(i32x4_t aM1, i32x4_t aM2);
i32x4_t Max32(i32x4_t aM1, i32x4_t aM2);
// Truncating i16 -> i16 multiplication
i16x8_t Mul16(i16x8_t aM1, i16x8_t aM2);
// Long multiplication i16 -> i32
// aFactorsA1B1 = (a1[4] b1[4])
// aFactorsA2B2 = (a2[4] b2[4])
// aProductA = a1 * a2, aProductB = b1 * b2
void Mul16x4x2x2To32x4x2(i16x8_t aFactorsA1B1, i16x8_t aFactorsA2B2,
i32x4_t& aProductA, i32x4_t& aProductB);
// Long multiplication + pairwise addition i16 -> i32
// See the scalar implementation for specifics.
i32x4_t MulAdd16x8x2To32x4(i16x8_t aFactorsA, i16x8_t aFactorsB);
i32x4_t MulAdd16x8x2To32x4(u16x8_t aFactorsA, u16x8_t aFactorsB);
// Set all four 32-bit components to the value of the component at aIndex.
template<int8_t aIndex>
i32x4_t Splat32(i32x4_t aM);
// Interpret the input as four 32-bit values, apply Splat32<aIndex> on them,
// re-interpret the result as sixteen 8-bit values.
template<int8_t aIndex>
u8x16_t Splat32On8(u8x16_t aM);
template<int8_t i0, int8_t i1, int8_t i2, int8_t i3> i32x4 Shuffle32(i32x4 aM);
template<int8_t i0, int8_t i1, int8_t i2, int8_t i3> i16x8 ShuffleLo16(i16x8 aM);
template<int8_t i0, int8_t i1, int8_t i2, int8_t i3> i16x8 ShuffleHi16(i16x8 aM);
u8x16_t InterleaveLo8(u8x16_t m1, u8x16_t m2);
u8x16_t InterleaveHi8(u8x16_t m1, u8x16_t m2);
i16x8_t InterleaveLo16(i16x8_t m1, i16x8_t m2);
i16x8_t InterleaveHi16(i16x8_t m1, i16x8_t m2);
i32x4_t InterleaveLo32(i32x4_t m1, i32x4_t m2);
i16x8_t UnpackLo8x8ToI16x8(u8x16_t m);
i16x8_t UnpackHi8x8ToI16x8(u8x16_t m);
u16x8_t UnpackLo8x8ToU16x8(u8x16_t m);
u16x8_t UnpackHi8x8ToU16x8(u8x16_t m);
i16x8_t PackAndSaturate32To16(i32x4_t m1, i32x4_t m2);
u8x16_t PackAndSaturate16To8(i16x8_t m1, i16x8_t m2);
u8x16_t PackAndSaturate32To8(i32x4_t m1, i32x4_t m2, i32x4_t m3, const i32x4_t& m4);
i32x4 FastDivideBy255(i32x4 m);
i16x8 FastDivideBy255_16(i16x8 m);
#endif
// Scalar
struct Scalaru8x16_t {
uint8_t u8[16];
};
union Scalari16x8_t {
int16_t i16[8];
uint16_t u16[8];
};
typedef Scalari16x8_t Scalaru16x8_t;
struct Scalari32x4_t {
int32_t i32[4];
};
struct Scalarf32x4_t {
float f32[4];
};
template <>
inline Scalaru8x16_t Load8<Scalaru8x16_t>(const uint8_t* aSource) {
return *(Scalaru8x16_t*)aSource;
}
inline void Store8(uint8_t* aTarget, Scalaru8x16_t aM) {
*(Scalaru8x16_t*)aTarget = aM;
}
template <>
inline Scalaru8x16_t From8<Scalaru8x16_t>(uint8_t a, uint8_t b, uint8_t c,
uint8_t d, uint8_t e, uint8_t f,
uint8_t g, uint8_t h, uint8_t i,
uint8_t j, uint8_t k, uint8_t l,
uint8_t m, uint8_t n, uint8_t o,
uint8_t p) {
Scalaru8x16_t _m;
_m.u8[0] = a;
_m.u8[1] = b;
_m.u8[2] = c;
_m.u8[3] = d;
_m.u8[4] = e;
_m.u8[5] = f;
_m.u8[6] = g;
_m.u8[7] = h;
_m.u8[8 + 0] = i;
_m.u8[8 + 1] = j;
_m.u8[8 + 2] = k;
_m.u8[8 + 3] = l;
_m.u8[8 + 4] = m;
_m.u8[8 + 5] = n;
_m.u8[8 + 6] = o;
_m.u8[8 + 7] = p;
return _m;
}
template <>
inline Scalaru8x16_t FromZero8<Scalaru8x16_t>() {
return From8<Scalaru8x16_t>(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
}
template <>
inline Scalari16x8_t FromI16<Scalari16x8_t>(int16_t a, int16_t b, int16_t c,
int16_t d, int16_t e, int16_t f,
int16_t g, int16_t h) {
Scalari16x8_t m;
m.i16[0] = a;
m.i16[1] = b;
m.i16[2] = c;
m.i16[3] = d;
m.i16[4] = e;
m.i16[5] = f;
m.i16[6] = g;
m.i16[7] = h;
return m;
}
template <>
inline Scalaru16x8_t FromU16<Scalaru16x8_t>(uint16_t a, uint16_t b, uint16_t c,
uint16_t d, uint16_t e, uint16_t f,
uint16_t g, uint16_t h) {
Scalaru16x8_t m;
m.u16[0] = a;
m.u16[1] = b;
m.u16[2] = c;
m.u16[3] = d;
m.u16[4] = e;
m.u16[5] = f;
m.u16[6] = g;
m.u16[7] = h;
return m;
}
template <>
inline Scalari16x8_t FromI16<Scalari16x8_t>(int16_t a) {
return FromI16<Scalari16x8_t>(a, a, a, a, a, a, a, a);
}
template <>
inline Scalaru16x8_t FromU16<Scalaru16x8_t>(uint16_t a) {
return FromU16<Scalaru16x8_t>(a, a, a, a, a, a, a, a);
}
template <>
inline Scalari32x4_t From32<Scalari32x4_t>(int32_t a, int32_t b, int32_t c,
int32_t d) {
Scalari32x4_t m;
m.i32[0] = a;
m.i32[1] = b;
m.i32[2] = c;
m.i32[3] = d;
return m;
}
template <>
inline Scalarf32x4_t FromF32<Scalarf32x4_t>(float a, float b, float c,
float d) {
Scalarf32x4_t m;
m.f32[0] = a;
m.f32[1] = b;
m.f32[2] = c;
m.f32[3] = d;
return m;
}
template <>
inline Scalarf32x4_t FromF32<Scalarf32x4_t>(float a) {
return FromF32<Scalarf32x4_t>(a, a, a, a);
}
template <>
inline Scalari32x4_t From32<Scalari32x4_t>(int32_t a) {
return From32<Scalari32x4_t>(a, a, a, a);
}
template <int32_t aNumberOfBits>
inline Scalari16x8_t ShiftRight16(Scalari16x8_t aM) {
return FromI16<Scalari16x8_t>(uint16_t(aM.i16[0]) >> aNumberOfBits,
uint16_t(aM.i16[1]) >> aNumberOfBits,
uint16_t(aM.i16[2]) >> aNumberOfBits,
uint16_t(aM.i16[3]) >> aNumberOfBits,
uint16_t(aM.i16[4]) >> aNumberOfBits,
uint16_t(aM.i16[5]) >> aNumberOfBits,
uint16_t(aM.i16[6]) >> aNumberOfBits,
uint16_t(aM.i16[7]) >> aNumberOfBits);
}
template <int32_t aNumberOfBits>
inline Scalari32x4_t ShiftRight32(Scalari32x4_t aM) {
return From32<Scalari32x4_t>(
aM.i32[0] >> aNumberOfBits, aM.i32[1] >> aNumberOfBits,
aM.i32[2] >> aNumberOfBits, aM.i32[3] >> aNumberOfBits);
}
inline Scalaru16x8_t Add16(Scalaru16x8_t aM1, Scalaru16x8_t aM2) {
return FromU16<Scalaru16x8_t>(
aM1.u16[0] + aM2.u16[0], aM1.u16[1] + aM2.u16[1], aM1.u16[2] + aM2.u16[2],
aM1.u16[3] + aM2.u16[3], aM1.u16[4] + aM2.u16[4], aM1.u16[5] + aM2.u16[5],
aM1.u16[6] + aM2.u16[6], aM1.u16[7] + aM2.u16[7]);
}
inline Scalari32x4_t Add32(Scalari32x4_t aM1, Scalari32x4_t aM2) {
return From32<Scalari32x4_t>(aM1.i32[0] + aM2.i32[0], aM1.i32[1] + aM2.i32[1],
aM1.i32[2] + aM2.i32[2],
aM1.i32[3] + aM2.i32[3]);
}
inline Scalaru16x8_t Sub16(Scalaru16x8_t aM1, Scalaru16x8_t aM2) {
return FromU16<Scalaru16x8_t>(
aM1.u16[0] - aM2.u16[0], aM1.u16[1] - aM2.u16[1], aM1.u16[2] - aM2.u16[2],
aM1.u16[3] - aM2.u16[3], aM1.u16[4] - aM2.u16[4], aM1.u16[5] - aM2.u16[5],
aM1.u16[6] - aM2.u16[6], aM1.u16[7] - aM2.u16[7]);
}
inline Scalari32x4_t Sub32(Scalari32x4_t aM1, Scalari32x4_t aM2) {
return From32<Scalari32x4_t>(aM1.i32[0] - aM2.i32[0], aM1.i32[1] - aM2.i32[1],
aM1.i32[2] - aM2.i32[2],
aM1.i32[3] - aM2.i32[3]);
}
inline int32_t umin(int32_t a, int32_t b) { return a - ((a - b) & -(a > b)); }
inline int32_t umax(int32_t a, int32_t b) { return a - ((a - b) & -(a < b)); }
inline Scalaru8x16_t Min8(Scalaru8x16_t aM1, Scalaru8x16_t aM2) {
return From8<Scalaru8x16_t>(
umin(aM1.u8[0], aM2.u8[0]), umin(aM1.u8[1], aM2.u8[1]),
umin(aM1.u8[2], aM2.u8[2]), umin(aM1.u8[3], aM2.u8[3]),
umin(aM1.u8[4], aM2.u8[4]), umin(aM1.u8[5], aM2.u8[5]),
umin(aM1.u8[6], aM2.u8[6]), umin(aM1.u8[7], aM2.u8[7]),
umin(aM1.u8[8 + 0], aM2.u8[8 + 0]), umin(aM1.u8[8 + 1], aM2.u8[8 + 1]),
umin(aM1.u8[8 + 2], aM2.u8[8 + 2]), umin(aM1.u8[8 + 3], aM2.u8[8 + 3]),
umin(aM1.u8[8 + 4], aM2.u8[8 + 4]), umin(aM1.u8[8 + 5], aM2.u8[8 + 5]),
umin(aM1.u8[8 + 6], aM2.u8[8 + 6]), umin(aM1.u8[8 + 7], aM2.u8[8 + 7]));
}
inline Scalaru8x16_t Max8(Scalaru8x16_t aM1, Scalaru8x16_t aM2) {
return From8<Scalaru8x16_t>(
umax(aM1.u8[0], aM2.u8[0]), umax(aM1.u8[1], aM2.u8[1]),
umax(aM1.u8[2], aM2.u8[2]), umax(aM1.u8[3], aM2.u8[3]),
umax(aM1.u8[4], aM2.u8[4]), umax(aM1.u8[5], aM2.u8[5]),
umax(aM1.u8[6], aM2.u8[6]), umax(aM1.u8[7], aM2.u8[7]),
umax(aM1.u8[8 + 0], aM2.u8[8 + 0]), umax(aM1.u8[8 + 1], aM2.u8[8 + 1]),
umax(aM1.u8[8 + 2], aM2.u8[8 + 2]), umax(aM1.u8[8 + 3], aM2.u8[8 + 3]),
umax(aM1.u8[8 + 4], aM2.u8[8 + 4]), umax(aM1.u8[8 + 5], aM2.u8[8 + 5]),
umax(aM1.u8[8 + 6], aM2.u8[8 + 6]), umax(aM1.u8[8 + 7], aM2.u8[8 + 7]));
}
inline Scalari32x4_t Min32(Scalari32x4_t aM1, Scalari32x4_t aM2) {
return From32<Scalari32x4_t>(
umin(aM1.i32[0], aM2.i32[0]), umin(aM1.i32[1], aM2.i32[1]),
umin(aM1.i32[2], aM2.i32[2]), umin(aM1.i32[3], aM2.i32[3]));
}
inline Scalari32x4_t Max32(Scalari32x4_t aM1, Scalari32x4_t aM2) {
return From32<Scalari32x4_t>(
umax(aM1.i32[0], aM2.i32[0]), umax(aM1.i32[1], aM2.i32[1]),
umax(aM1.i32[2], aM2.i32[2]), umax(aM1.i32[3], aM2.i32[3]));
}
inline Scalaru16x8_t Mul16(Scalaru16x8_t aM1, Scalaru16x8_t aM2) {
return FromU16<Scalaru16x8_t>(
uint16_t(int32_t(aM1.u16[0]) * int32_t(aM2.u16[0])),
uint16_t(int32_t(aM1.u16[1]) * int32_t(aM2.u16[1])),
uint16_t(int32_t(aM1.u16[2]) * int32_t(aM2.u16[2])),
uint16_t(int32_t(aM1.u16[3]) * int32_t(aM2.u16[3])),
uint16_t(int32_t(aM1.u16[4]) * int32_t(aM2.u16[4])),
uint16_t(int32_t(aM1.u16[5]) * int32_t(aM2.u16[5])),
uint16_t(int32_t(aM1.u16[6]) * int32_t(aM2.u16[6])),
uint16_t(int32_t(aM1.u16[7]) * int32_t(aM2.u16[7])));
}
inline void Mul16x4x2x2To32x4x2(Scalari16x8_t aFactorsA1B1,
Scalari16x8_t aFactorsA2B2,
Scalari32x4_t& aProductA,
Scalari32x4_t& aProductB) {
aProductA = From32<Scalari32x4_t>(aFactorsA1B1.i16[0] * aFactorsA2B2.i16[0],
aFactorsA1B1.i16[1] * aFactorsA2B2.i16[1],
aFactorsA1B1.i16[2] * aFactorsA2B2.i16[2],
aFactorsA1B1.i16[3] * aFactorsA2B2.i16[3]);
aProductB = From32<Scalari32x4_t>(aFactorsA1B1.i16[4] * aFactorsA2B2.i16[4],
aFactorsA1B1.i16[5] * aFactorsA2B2.i16[5],
aFactorsA1B1.i16[6] * aFactorsA2B2.i16[6],
aFactorsA1B1.i16[7] * aFactorsA2B2.i16[7]);
}
inline Scalari32x4_t MulAdd16x8x2To32x4(Scalari16x8_t aFactorsA,
Scalari16x8_t aFactorsB) {
return From32<Scalari32x4_t>(
aFactorsA.i16[0] * aFactorsB.i16[0] + aFactorsA.i16[1] * aFactorsB.i16[1],
aFactorsA.i16[2] * aFactorsB.i16[2] + aFactorsA.i16[3] * aFactorsB.i16[3],
aFactorsA.i16[4] * aFactorsB.i16[4] + aFactorsA.i16[5] * aFactorsB.i16[5],
aFactorsA.i16[6] * aFactorsB.i16[6] +
aFactorsA.i16[7] * aFactorsB.i16[7]);
}
template <int8_t aIndex>
inline void AssertIndex() {
static_assert(aIndex == 0 || aIndex == 1 || aIndex == 2 || aIndex == 3,
"Invalid splat index");
}
template <int8_t aIndex>
inline Scalari32x4_t Splat32(Scalari32x4_t aM) {
AssertIndex<aIndex>();
return From32<Scalari32x4_t>(aM.i32[aIndex], aM.i32[aIndex], aM.i32[aIndex],
aM.i32[aIndex]);
}
template <int8_t i>
inline Scalaru8x16_t Splat32On8(Scalaru8x16_t aM) {
AssertIndex<i>();
return From8<Scalaru8x16_t>(
aM.u8[i * 4], aM.u8[i * 4 + 1], aM.u8[i * 4 + 2], aM.u8[i * 4 + 3],
aM.u8[i * 4], aM.u8[i * 4 + 1], aM.u8[i * 4 + 2], aM.u8[i * 4 + 3],
aM.u8[i * 4], aM.u8[i * 4 + 1], aM.u8[i * 4 + 2], aM.u8[i * 4 + 3],
aM.u8[i * 4], aM.u8[i * 4 + 1], aM.u8[i * 4 + 2], aM.u8[i * 4 + 3]);
}
template <int8_t i0, int8_t i1, int8_t i2, int8_t i3>
inline Scalari32x4_t Shuffle32(Scalari32x4_t aM) {
AssertIndex<i0>();
AssertIndex<i1>();
AssertIndex<i2>();
AssertIndex<i3>();
Scalari32x4_t m = aM;
m.i32[0] = aM.i32[i3];
m.i32[1] = aM.i32[i2];
m.i32[2] = aM.i32[i1];
m.i32[3] = aM.i32[i0];
return m;
}
template <int8_t i0, int8_t i1, int8_t i2, int8_t i3>
inline Scalari16x8_t ShuffleLo16(Scalari16x8_t aM) {
AssertIndex<i0>();
AssertIndex<i1>();
AssertIndex<i2>();
AssertIndex<i3>();
Scalari16x8_t m = aM;
m.i16[0] = aM.i16[i3];
m.i16[1] = aM.i16[i2];
m.i16[2] = aM.i16[i1];
m.i16[3] = aM.i16[i0];
return m;
}
template <int8_t i0, int8_t i1, int8_t i2, int8_t i3>
inline Scalari16x8_t ShuffleHi16(Scalari16x8_t aM) {
AssertIndex<i0>();
AssertIndex<i1>();
AssertIndex<i2>();
AssertIndex<i3>();
Scalari16x8_t m = aM;
m.i16[4 + 0] = aM.i16[4 + i3];
m.i16[4 + 1] = aM.i16[4 + i2];
m.i16[4 + 2] = aM.i16[4 + i1];
m.i16[4 + 3] = aM.i16[4 + i0];
return m;
}
template <int8_t aIndexLo, int8_t aIndexHi>
inline Scalaru16x8_t Splat16(Scalaru16x8_t aM) {
AssertIndex<aIndexLo>();
AssertIndex<aIndexHi>();
Scalaru16x8_t m;
int16_t chosenValueLo = aM.u16[aIndexLo];
m.u16[0] = chosenValueLo;
m.u16[1] = chosenValueLo;
m.u16[2] = chosenValueLo;
m.u16[3] = chosenValueLo;
int16_t chosenValueHi = aM.u16[4 + aIndexHi];
m.u16[4] = chosenValueHi;
m.u16[5] = chosenValueHi;
m.u16[6] = chosenValueHi;
m.u16[7] = chosenValueHi;
return m;
}
inline Scalaru8x16_t InterleaveLo8(Scalaru8x16_t m1, Scalaru8x16_t m2) {
return From8<Scalaru8x16_t>(m1.u8[0], m2.u8[0], m1.u8[1], m2.u8[1], m1.u8[2],
m2.u8[2], m1.u8[3], m2.u8[3], m1.u8[4], m2.u8[4],
m1.u8[5], m2.u8[5], m1.u8[6], m2.u8[6], m1.u8[7],
m2.u8[7]);
}
inline Scalaru8x16_t InterleaveHi8(Scalaru8x16_t m1, Scalaru8x16_t m2) {
return From8<Scalaru8x16_t>(
m1.u8[8 + 0], m2.u8[8 + 0], m1.u8[8 + 1], m2.u8[8 + 1], m1.u8[8 + 2],
m2.u8[8 + 2], m1.u8[8 + 3], m2.u8[8 + 3], m1.u8[8 + 4], m2.u8[8 + 4],
m1.u8[8 + 5], m2.u8[8 + 5], m1.u8[8 + 6], m2.u8[8 + 6], m1.u8[8 + 7],
m2.u8[8 + 7]);
}
inline Scalaru16x8_t InterleaveLo16(Scalaru16x8_t m1, Scalaru16x8_t m2) {
return FromU16<Scalaru16x8_t>(m1.u16[0], m2.u16[0], m1.u16[1], m2.u16[1],
m1.u16[2], m2.u16[2], m1.u16[3], m2.u16[3]);
}
inline Scalaru16x8_t InterleaveHi16(Scalaru16x8_t m1, Scalaru16x8_t m2) {
return FromU16<Scalaru16x8_t>(m1.u16[4], m2.u16[4], m1.u16[5], m2.u16[5],
m1.u16[6], m2.u16[6], m1.u16[7], m2.u16[7]);
}
inline Scalari32x4_t InterleaveLo32(Scalari32x4_t m1, Scalari32x4_t m2) {
return From32<Scalari32x4_t>(m1.i32[0], m2.i32[0], m1.i32[1], m2.i32[1]);
}
inline Scalari16x8_t UnpackLo8x8ToI16x8(Scalaru8x16_t aM) {
Scalari16x8_t m;
m.i16[0] = aM.u8[0];
m.i16[1] = aM.u8[1];
m.i16[2] = aM.u8[2];
m.i16[3] = aM.u8[3];
m.i16[4] = aM.u8[4];
m.i16[5] = aM.u8[5];
m.i16[6] = aM.u8[6];
m.i16[7] = aM.u8[7];
return m;
}
inline Scalari16x8_t UnpackHi8x8ToI16x8(Scalaru8x16_t aM) {
Scalari16x8_t m;
m.i16[0] = aM.u8[8 + 0];
m.i16[1] = aM.u8[8 + 1];
m.i16[2] = aM.u8[8 + 2];
m.i16[3] = aM.u8[8 + 3];
m.i16[4] = aM.u8[8 + 4];
m.i16[5] = aM.u8[8 + 5];
m.i16[6] = aM.u8[8 + 6];
m.i16[7] = aM.u8[8 + 7];
return m;
}
inline Scalaru16x8_t UnpackLo8x8ToU16x8(Scalaru8x16_t aM) {
return FromU16<Scalaru16x8_t>(uint16_t(aM.u8[0]), uint16_t(aM.u8[1]),
uint16_t(aM.u8[2]), uint16_t(aM.u8[3]),
uint16_t(aM.u8[4]), uint16_t(aM.u8[5]),
uint16_t(aM.u8[6]), uint16_t(aM.u8[7]));
}
inline Scalaru16x8_t UnpackHi8x8ToU16x8(Scalaru8x16_t aM) {
return FromU16<Scalaru16x8_t>(aM.u8[8 + 0], aM.u8[8 + 1], aM.u8[8 + 2],
aM.u8[8 + 3], aM.u8[8 + 4], aM.u8[8 + 5],
aM.u8[8 + 6], aM.u8[8 + 7]);
}
template <uint8_t aNumBytes>
inline Scalaru8x16_t Rotate8(Scalaru8x16_t a1234, Scalaru8x16_t a5678) {
Scalaru8x16_t m;
for (uint8_t i = 0; i < 16; i++) {
uint8_t sourceByte = i + aNumBytes;
m.u8[i] =
sourceByte < 16 ? a1234.u8[sourceByte] : a5678.u8[sourceByte - 16];
}
return m;
}
template <typename T>
inline int16_t SaturateTo16(T a) {
return int16_t(a >= INT16_MIN ? (a <= INT16_MAX ? a : INT16_MAX) : INT16_MIN);
}
inline Scalari16x8_t PackAndSaturate32To16(Scalari32x4_t m1, Scalari32x4_t m2) {
Scalari16x8_t m;
m.i16[0] = SaturateTo16(m1.i32[0]);
m.i16[1] = SaturateTo16(m1.i32[1]);
m.i16[2] = SaturateTo16(m1.i32[2]);
m.i16[3] = SaturateTo16(m1.i32[3]);
m.i16[4] = SaturateTo16(m2.i32[0]);
m.i16[5] = SaturateTo16(m2.i32[1]);
m.i16[6] = SaturateTo16(m2.i32[2]);
m.i16[7] = SaturateTo16(m2.i32[3]);
return m;
}
template <typename T>
inline uint16_t SaturateToU16(T a) {
return uint16_t(umin(a & -(a >= 0), INT16_MAX));
}
inline Scalaru16x8_t PackAndSaturate32ToU16(Scalari32x4_t m1,
Scalari32x4_t m2) {
Scalaru16x8_t m;
m.u16[0] = SaturateToU16(m1.i32[0]);
m.u16[1] = SaturateToU16(m1.i32[1]);
m.u16[2] = SaturateToU16(m1.i32[2]);
m.u16[3] = SaturateToU16(m1.i32[3]);
m.u16[4] = SaturateToU16(m2.i32[0]);
m.u16[5] = SaturateToU16(m2.i32[1]);
m.u16[6] = SaturateToU16(m2.i32[2]);
m.u16[7] = SaturateToU16(m2.i32[3]);
return m;
}
template <typename T>
inline uint8_t SaturateTo8(T a) {
return uint8_t(umin(a & -(a >= 0), 255));
}
inline Scalaru8x16_t PackAndSaturate32To8(Scalari32x4_t m1, Scalari32x4_t m2,
Scalari32x4_t m3,
const Scalari32x4_t& m4) {
Scalaru8x16_t m;
m.u8[0] = SaturateTo8(m1.i32[0]);
m.u8[1] = SaturateTo8(m1.i32[1]);
m.u8[2] = SaturateTo8(m1.i32[2]);
m.u8[3] = SaturateTo8(m1.i32[3]);
m.u8[4] = SaturateTo8(m2.i32[0]);
m.u8[5] = SaturateTo8(m2.i32[1]);
m.u8[6] = SaturateTo8(m2.i32[2]);
m.u8[7] = SaturateTo8(m2.i32[3]);
m.u8[8] = SaturateTo8(m3.i32[0]);
m.u8[9] = SaturateTo8(m3.i32[1]);
m.u8[10] = SaturateTo8(m3.i32[2]);
m.u8[11] = SaturateTo8(m3.i32[3]);
m.u8[12] = SaturateTo8(m4.i32[0]);
m.u8[13] = SaturateTo8(m4.i32[1]);
m.u8[14] = SaturateTo8(m4.i32[2]);
m.u8[15] = SaturateTo8(m4.i32[3]);
return m;
}
inline Scalaru8x16_t PackAndSaturate16To8(Scalari16x8_t m1, Scalari16x8_t m2) {
Scalaru8x16_t m;
m.u8[0] = SaturateTo8(m1.i16[0]);
m.u8[1] = SaturateTo8(m1.i16[1]);
m.u8[2] = SaturateTo8(m1.i16[2]);
m.u8[3] = SaturateTo8(m1.i16[3]);
m.u8[4] = SaturateTo8(m1.i16[4]);
m.u8[5] = SaturateTo8(m1.i16[5]);
m.u8[6] = SaturateTo8(m1.i16[6]);
m.u8[7] = SaturateTo8(m1.i16[7]);
m.u8[8] = SaturateTo8(m2.i16[0]);
m.u8[9] = SaturateTo8(m2.i16[1]);
m.u8[10] = SaturateTo8(m2.i16[2]);
m.u8[11] = SaturateTo8(m2.i16[3]);
m.u8[12] = SaturateTo8(m2.i16[4]);
m.u8[13] = SaturateTo8(m2.i16[5]);
m.u8[14] = SaturateTo8(m2.i16[6]);
m.u8[15] = SaturateTo8(m2.i16[7]);
return m;
}
// Fast approximate division by 255. It has the property that
// for all 0 <= n <= 255*255, FAST_DIVIDE_BY_255(n) == n/255.
// But it only uses two adds and two shifts instead of an
// integer division (which is expensive on many processors).
//
// equivalent to v/255
template <class B, class A>
inline B FastDivideBy255(A v) {
return ((v << 8) + v + 255) >> 16;
}
inline Scalaru16x8_t FastDivideBy255_16(Scalaru16x8_t m) {
return FromU16<Scalaru16x8_t>(FastDivideBy255<uint16_t>(int32_t(m.u16[0])),
FastDivideBy255<uint16_t>(int32_t(m.u16[1])),
FastDivideBy255<uint16_t>(int32_t(m.u16[2])),
FastDivideBy255<uint16_t>(int32_t(m.u16[3])),
FastDivideBy255<uint16_t>(int32_t(m.u16[4])),
FastDivideBy255<uint16_t>(int32_t(m.u16[5])),
FastDivideBy255<uint16_t>(int32_t(m.u16[6])),
FastDivideBy255<uint16_t>(int32_t(m.u16[7])));
}
inline Scalari32x4_t FastDivideBy255(Scalari32x4_t m) {
return From32<Scalari32x4_t>(
FastDivideBy255<int32_t>(m.i32[0]), FastDivideBy255<int32_t>(m.i32[1]),
FastDivideBy255<int32_t>(m.i32[2]), FastDivideBy255<int32_t>(m.i32[3]));
}
inline Scalaru8x16_t Pick(Scalaru8x16_t mask, Scalaru8x16_t a,
Scalaru8x16_t b) {
return From8<Scalaru8x16_t>(
(a.u8[0] & (~mask.u8[0])) | (b.u8[0] & mask.u8[0]),
(a.u8[1] & (~mask.u8[1])) | (b.u8[1] & mask.u8[1]),
(a.u8[2] & (~mask.u8[2])) | (b.u8[2] & mask.u8[2]),
(a.u8[3] & (~mask.u8[3])) | (b.u8[3] & mask.u8[3]),
(a.u8[4] & (~mask.u8[4])) | (b.u8[4] & mask.u8[4]),
(a.u8[5] & (~mask.u8[5])) | (b.u8[5] & mask.u8[5]),
(a.u8[6] & (~mask.u8[6])) | (b.u8[6] & mask.u8[6]),
(a.u8[7] & (~mask.u8[7])) | (b.u8[7] & mask.u8[7]),
(a.u8[8 + 0] & (~mask.u8[8 + 0])) | (b.u8[8 + 0] & mask.u8[8 + 0]),
(a.u8[8 + 1] & (~mask.u8[8 + 1])) | (b.u8[8 + 1] & mask.u8[8 + 1]),
(a.u8[8 + 2] & (~mask.u8[8 + 2])) | (b.u8[8 + 2] & mask.u8[8 + 2]),
(a.u8[8 + 3] & (~mask.u8[8 + 3])) | (b.u8[8 + 3] & mask.u8[8 + 3]),
(a.u8[8 + 4] & (~mask.u8[8 + 4])) | (b.u8[8 + 4] & mask.u8[8 + 4]),
(a.u8[8 + 5] & (~mask.u8[8 + 5])) | (b.u8[8 + 5] & mask.u8[8 + 5]),
(a.u8[8 + 6] & (~mask.u8[8 + 6])) | (b.u8[8 + 6] & mask.u8[8 + 6]),
(a.u8[8 + 7] & (~mask.u8[8 + 7])) | (b.u8[8 + 7] & mask.u8[8 + 7]));
}
inline Scalari32x4_t Pick(Scalari32x4_t mask, Scalari32x4_t a,
Scalari32x4_t b) {
return From32<Scalari32x4_t>(
(a.i32[0] & (~mask.i32[0])) | (b.i32[0] & mask.i32[0]),
(a.i32[1] & (~mask.i32[1])) | (b.i32[1] & mask.i32[1]),
(a.i32[2] & (~mask.i32[2])) | (b.i32[2] & mask.i32[2]),
(a.i32[3] & (~mask.i32[3])) | (b.i32[3] & mask.i32[3]));
}
inline Scalarf32x4_t MixF32(Scalarf32x4_t a, Scalarf32x4_t b, float t) {
return FromF32<Scalarf32x4_t>(a.f32[0] + (b.f32[0] - a.f32[0]) * t,
a.f32[1] + (b.f32[1] - a.f32[1]) * t,
a.f32[2] + (b.f32[2] - a.f32[2]) * t,
a.f32[3] + (b.f32[3] - a.f32[3]) * t);
}
inline Scalarf32x4_t WSumF32(Scalarf32x4_t a, Scalarf32x4_t b, float wa,
float wb) {
return FromF32<Scalarf32x4_t>(
a.f32[0] * wa + b.f32[0] * wb, a.f32[1] * wa + b.f32[1] * wb,
a.f32[2] * wa + b.f32[2] * wb, a.f32[3] * wa + b.f32[3] * wb);
}
inline Scalarf32x4_t AbsF32(Scalarf32x4_t a) {
return FromF32<Scalarf32x4_t>(fabs(a.f32[0]), fabs(a.f32[1]), fabs(a.f32[2]),
fabs(a.f32[3]));
}
inline Scalarf32x4_t AddF32(Scalarf32x4_t a, Scalarf32x4_t b) {
return FromF32<Scalarf32x4_t>(a.f32[0] + b.f32[0], a.f32[1] + b.f32[1],
a.f32[2] + b.f32[2], a.f32[3] + b.f32[3]);
}
inline Scalarf32x4_t MulF32(Scalarf32x4_t a, Scalarf32x4_t b) {
return FromF32<Scalarf32x4_t>(a.f32[0] * b.f32[0], a.f32[1] * b.f32[1],
a.f32[2] * b.f32[2], a.f32[3] * b.f32[3]);
}
inline Scalarf32x4_t DivF32(Scalarf32x4_t a, Scalarf32x4_t b) {
return FromF32<Scalarf32x4_t>(a.f32[0] / b.f32[0], a.f32[1] / b.f32[1],
a.f32[2] / b.f32[2], a.f32[3] / b.f32[3]);
}
template <uint8_t aIndex>
inline Scalarf32x4_t SplatF32(Scalarf32x4_t m) {
AssertIndex<aIndex>();
return FromF32<Scalarf32x4_t>(m.f32[aIndex], m.f32[aIndex], m.f32[aIndex],
m.f32[aIndex]);
}
inline Scalari32x4_t F32ToI32(Scalarf32x4_t m) {
return From32<Scalari32x4_t>(
int32_t(floor(m.f32[0] + 0.5f)), int32_t(floor(m.f32[1] + 0.5f)),
int32_t(floor(m.f32[2] + 0.5f)), int32_t(floor(m.f32[3] + 0.5f)));
}
#ifdef SIMD_COMPILE_SSE2
// SSE2
template <>
inline __m128i Load8<__m128i>(const uint8_t* aSource) {
return _mm_load_si128((const __m128i*)aSource);
}
inline void Store8(uint8_t* aTarget, __m128i aM) {
_mm_store_si128((__m128i*)aTarget, aM);
}
template <>
inline __m128i FromZero8<__m128i>() {
return _mm_setzero_si128();
}
template <>
inline __m128i From8<__m128i>(uint8_t a, uint8_t b, uint8_t c, uint8_t d,
uint8_t e, uint8_t f, uint8_t g, uint8_t h,
uint8_t i, uint8_t j, uint8_t k, uint8_t l,
uint8_t m, uint8_t n, uint8_t o, uint8_t p) {
return _mm_setr_epi16((b << 8) + a, (d << 8) + c, (e << 8) + f, (h << 8) + g,
(j << 8) + i, (l << 8) + k, (m << 8) + n, (p << 8) + o);
}
template <>
inline __m128i FromI16<__m128i>(int16_t a, int16_t b, int16_t c, int16_t d,
int16_t e, int16_t f, int16_t g, int16_t h) {
return _mm_setr_epi16(a, b, c, d, e, f, g, h);
}
template <>
inline __m128i FromU16<__m128i>(uint16_t a, uint16_t b, uint16_t c, uint16_t d,
uint16_t e, uint16_t f, uint16_t g,
uint16_t h) {
return _mm_setr_epi16(a, b, c, d, e, f, g, h);
}
template <>
inline __m128i FromI16<__m128i>(int16_t a) {
return _mm_set1_epi16(a);
}
template <>
inline __m128i FromU16<__m128i>(uint16_t a) {
return _mm_set1_epi16((int16_t)a);
}
template <>
inline __m128i From32<__m128i>(int32_t a, int32_t b, int32_t c, int32_t d) {
return _mm_setr_epi32(a, b, c, d);
}
template <>
inline __m128i From32<__m128i>(int32_t a) {
return _mm_set1_epi32(a);
}
template <>
inline __m128 FromF32<__m128>(float a, float b, float c, float d) {
return _mm_setr_ps(a, b, c, d);
}
template <>
inline __m128 FromF32<__m128>(float a) {
return _mm_set1_ps(a);
}
template <int32_t aNumberOfBits>
inline __m128i ShiftRight16(__m128i aM) {
return _mm_srli_epi16(aM, aNumberOfBits);
}
template <int32_t aNumberOfBits>
inline __m128i ShiftRight32(__m128i aM) {
return _mm_srai_epi32(aM, aNumberOfBits);
}
inline __m128i Add16(__m128i aM1, __m128i aM2) {
return _mm_add_epi16(aM1, aM2);
}
inline __m128i Add32(__m128i aM1, __m128i aM2) {
return _mm_add_epi32(aM1, aM2);
}
inline __m128i Sub16(__m128i aM1, __m128i aM2) {
return _mm_sub_epi16(aM1, aM2);
}
inline __m128i Sub32(__m128i aM1, __m128i aM2) {
return _mm_sub_epi32(aM1, aM2);
}
inline __m128i Min8(__m128i aM1, __m128i aM2) { return _mm_min_epu8(aM1, aM2); }
inline __m128i Max8(__m128i aM1, __m128i aM2) { return _mm_max_epu8(aM1, aM2); }
inline __m128i Min32(__m128i aM1, __m128i aM2) {
__m128i m1_minus_m2 = _mm_sub_epi32(aM1, aM2);
__m128i m1_greater_than_m2 = _mm_cmpgt_epi32(aM1, aM2);
return _mm_sub_epi32(aM1, _mm_and_si128(m1_minus_m2, m1_greater_than_m2));
}
inline __m128i Max32(__m128i aM1, __m128i aM2) {
__m128i m1_minus_m2 = _mm_sub_epi32(aM1, aM2);
__m128i m2_greater_than_m1 = _mm_cmpgt_epi32(aM2, aM1);
return _mm_sub_epi32(aM1, _mm_and_si128(m1_minus_m2, m2_greater_than_m1));
}
inline __m128i Mul16(__m128i aM1, __m128i aM2) {
return _mm_mullo_epi16(aM1, aM2);
}
inline __m128i MulU16(__m128i aM1, __m128i aM2) {
return _mm_mullo_epi16(aM1, aM2);
}
inline void Mul16x4x2x2To32x4x2(__m128i aFactorsA1B1, __m128i aFactorsA2B2,
__m128i& aProductA, __m128i& aProductB) {
__m128i prodAB_lo = _mm_mullo_epi16(aFactorsA1B1, aFactorsA2B2);
__m128i prodAB_hi = _mm_mulhi_epi16(aFactorsA1B1, aFactorsA2B2);
aProductA = _mm_unpacklo_epi16(prodAB_lo, prodAB_hi);
aProductB = _mm_unpackhi_epi16(prodAB_lo, prodAB_hi);
}
inline __m128i MulAdd16x8x2To32x4(__m128i aFactorsA, __m128i aFactorsB) {
return _mm_madd_epi16(aFactorsA, aFactorsB);
}
template <int8_t i0, int8_t i1, int8_t i2, int8_t i3>
inline __m128i Shuffle32(__m128i aM) {
AssertIndex<i0>();
AssertIndex<i1>();
AssertIndex<i2>();
AssertIndex<i3>();
return _mm_shuffle_epi32(aM, _MM_SHUFFLE(i0, i1, i2, i3));
}
template <int8_t i0, int8_t i1, int8_t i2, int8_t i3>
inline __m128i ShuffleLo16(__m128i aM) {
AssertIndex<i0>();
AssertIndex<i1>();
AssertIndex<i2>();
AssertIndex<i3>();
return _mm_shufflelo_epi16(aM, _MM_SHUFFLE(i0, i1, i2, i3));
}
template <int8_t i0, int8_t i1, int8_t i2, int8_t i3>
inline __m128i ShuffleHi16(__m128i aM) {
AssertIndex<i0>();
AssertIndex<i1>();
AssertIndex<i2>();
AssertIndex<i3>();
return _mm_shufflehi_epi16(aM, _MM_SHUFFLE(i0, i1, i2, i3));
}
template <int8_t aIndex>
inline __m128i Splat32(__m128i aM) {
return Shuffle32<aIndex, aIndex, aIndex, aIndex>(aM);
}
template <int8_t aIndex>
inline __m128i Splat32On8(__m128i aM) {
return Shuffle32<aIndex, aIndex, aIndex, aIndex>(aM);
}
template <int8_t aIndexLo, int8_t aIndexHi>
inline __m128i Splat16(__m128i aM) {
AssertIndex<aIndexLo>();
AssertIndex<aIndexHi>();
return ShuffleHi16<aIndexHi, aIndexHi, aIndexHi, aIndexHi>(
ShuffleLo16<aIndexLo, aIndexLo, aIndexLo, aIndexLo>(aM));
}
inline __m128i UnpackLo8x8ToI16x8(__m128i m) {
__m128i zero = _mm_set1_epi8(0);
return _mm_unpacklo_epi8(m, zero);
}
inline __m128i UnpackHi8x8ToI16x8(__m128i m) {
__m128i zero = _mm_set1_epi8(0);
return _mm_unpackhi_epi8(m, zero);
}
inline __m128i UnpackLo8x8ToU16x8(__m128i m) {
__m128i zero = _mm_set1_epi8(0);
return _mm_unpacklo_epi8(m, zero);
}
inline __m128i UnpackHi8x8ToU16x8(__m128i m) {
__m128i zero = _mm_set1_epi8(0);
return _mm_unpackhi_epi8(m, zero);
}
inline __m128i InterleaveLo8(__m128i m1, __m128i m2) {
return _mm_unpacklo_epi8(m1, m2);
}
inline __m128i InterleaveHi8(__m128i m1, __m128i m2) {
return _mm_unpackhi_epi8(m1, m2);
}
inline __m128i InterleaveLo16(__m128i m1, __m128i m2) {
return _mm_unpacklo_epi16(m1, m2);
}
inline __m128i InterleaveHi16(__m128i m1, __m128i m2) {
return _mm_unpackhi_epi16(m1, m2);
}
inline __m128i InterleaveLo32(__m128i m1, __m128i m2) {
return _mm_unpacklo_epi32(m1, m2);
}
template <uint8_t aNumBytes>
inline __m128i Rotate8(__m128i a1234, __m128i a5678) {
return _mm_or_si128(_mm_srli_si128(a1234, aNumBytes),
_mm_slli_si128(a5678, 16 - aNumBytes));
}
inline __m128i PackAndSaturate32To16(__m128i m1, __m128i m2) {
return _mm_packs_epi32(m1, m2);
}
inline __m128i PackAndSaturate32ToU16(__m128i m1, __m128i m2) {
return _mm_packs_epi32(m1, m2);
}
inline __m128i PackAndSaturate32To8(__m128i m1, __m128i m2, __m128i m3,
const __m128i& m4) {
// Pack into 8 16bit signed integers (saturating).
__m128i m12 = _mm_packs_epi32(m1, m2);
__m128i m34 = _mm_packs_epi32(m3, m4);
// Pack into 16 8bit unsigned integers (saturating).
return _mm_packus_epi16(m12, m34);
}
inline __m128i PackAndSaturate16To8(__m128i m1, __m128i m2) {
// Pack into 16 8bit unsigned integers (saturating).
return _mm_packus_epi16(m1, m2);
}
inline __m128i FastDivideBy255(__m128i m) {
// v = m << 8
__m128i v = _mm_slli_epi32(m, 8);
// v = v + (m + (255,255,255,255))
v = _mm_add_epi32(v, _mm_add_epi32(m, _mm_set1_epi32(255)));
// v = v >> 16
return _mm_srai_epi32(v, 16);
}
inline __m128i FastDivideBy255_16(__m128i m) {
__m128i zero = _mm_set1_epi16(0);
__m128i lo = _mm_unpacklo_epi16(m, zero);
__m128i hi = _mm_unpackhi_epi16(m, zero);
return _mm_packs_epi32(FastDivideBy255(lo), FastDivideBy255(hi));
}
inline __m128i Pick(__m128i mask, __m128i a, __m128i b) {
return _mm_or_si128(_mm_andnot_si128(mask, a), _mm_and_si128(mask, b));
}
inline __m128 MixF32(__m128 a, __m128 b, float t) {
return _mm_add_ps(a, _mm_mul_ps(_mm_sub_ps(b, a), _mm_set1_ps(t)));
}
inline __m128 WSumF32(__m128 a, __m128 b, float wa, float wb) {
return _mm_add_ps(_mm_mul_ps(a, _mm_set1_ps(wa)),
_mm_mul_ps(b, _mm_set1_ps(wb)));
}
inline __m128 AbsF32(__m128 a) {
return _mm_max_ps(_mm_sub_ps(_mm_setzero_ps(), a), a);
}
inline __m128 AddF32(__m128 a, __m128 b) { return _mm_add_ps(a, b); }
inline __m128 MulF32(__m128 a, __m128 b) { return _mm_mul_ps(a, b); }
inline __m128 DivF32(__m128 a, __m128 b) { return _mm_div_ps(a, b); }
template <uint8_t aIndex>
inline __m128 SplatF32(__m128 m) {
AssertIndex<aIndex>();
return _mm_shuffle_ps(m, m, _MM_SHUFFLE(aIndex, aIndex, aIndex, aIndex));
}
inline __m128i F32ToI32(__m128 m) { return _mm_cvtps_epi32(m); }
#endif // SIMD_COMPILE_SSE2
} // namespace simd
} // namespace gfx
} // namespace mozilla
#endif // _MOZILLA_GFX_SIMD_H_