gecko-dev/gfx/2d/BaseRect.h
2012-05-21 12:12:37 +01:00

407 lines
14 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef MOZILLA_GFX_BASERECT_H_
#define MOZILLA_GFX_BASERECT_H_
#include <cmath>
namespace mozilla {
namespace gfx {
// XXX - <algorithm> conflicts with exceptions on 10.6. Define our own gfx_min/gfx_max
// functions here. Avoid min/max to avoid conflicts with existing #defines on windows.
template<typename T>
T gfx_min(T aVal1, T aVal2)
{
return (aVal1 < aVal2) ? aVal1 : aVal2;
}
template<typename T>
T gfx_max(T aVal1, T aVal2)
{
return (aVal1 > aVal2) ? aVal1 : aVal2;
}
/**
* Rectangles have two interpretations: a set of (zero-size) points,
* and a rectangular area of the plane. Most rectangle operations behave
* the same no matter what interpretation is being used, but some operations
* differ:
* -- Equality tests behave differently. When a rectangle represents an area,
* all zero-width and zero-height rectangles are equal to each other since they
* represent the empty area. But when a rectangle represents a set of
* mathematical points, zero-width and zero-height rectangles can be unequal.
* -- The union operation can behave differently. When rectangles represent
* areas, taking the union of a zero-width or zero-height rectangle with
* another rectangle can just ignore the empty rectangle. But when rectangles
* represent sets of mathematical points, we may need to extend the latter
* rectangle to include the points of a zero-width or zero-height rectangle.
*
* To ensure that these interpretations are explicitly disambiguated, we
* deny access to the == and != operators and require use of IsEqualEdges and
* IsEqualInterior instead. Similarly we provide separate Union and UnionEdges
* methods.
*
* Do not use this class directly. Subclass it, pass that subclass as the
* Sub parameter, and only use that subclass.
*/
template <class T, class Sub, class Point, class SizeT, class Margin>
struct BaseRect {
T x, y, width, height;
// Constructors
BaseRect() : x(0), y(0), width(0), height(0) {}
BaseRect(const Point& aOrigin, const SizeT &aSize) :
x(aOrigin.x), y(aOrigin.y), width(aSize.width), height(aSize.height)
{
}
BaseRect(T aX, T aY, T aWidth, T aHeight) :
x(aX), y(aY), width(aWidth), height(aHeight)
{
}
// Emptiness. An empty rect is one that has no area, i.e. its height or width
// is <= 0
bool IsEmpty() const { return height <= 0 || width <= 0; }
void SetEmpty() { width = height = 0; }
// Returns true if this rectangle contains the interior of aRect. Always
// returns true if aRect is empty, and always returns false is aRect is
// nonempty but this rect is empty.
bool Contains(const Sub& aRect) const
{
return aRect.IsEmpty() ||
(x <= aRect.x && aRect.XMost() <= XMost() &&
y <= aRect.y && aRect.YMost() <= YMost());
}
// Returns true if this rectangle contains the rectangle (aX,aY,1,1).
bool Contains(T aX, T aY) const
{
return x <= aX && aX + 1 <= XMost() &&
y <= aY && aY + 1 <= YMost();
}
// Returns true if this rectangle contains the rectangle (aPoint.x,aPoint.y,1,1).
bool Contains(const Point& aPoint) const { return Contains(aPoint.x, aPoint.y); }
// Intersection. Returns TRUE if the receiver's area has non-empty
// intersection with aRect's area, and FALSE otherwise.
// Always returns false if aRect is empty or 'this' is empty.
bool Intersects(const Sub& aRect) const
{
return x < aRect.XMost() && aRect.x < XMost() &&
y < aRect.YMost() && aRect.y < YMost();
}
// Returns the rectangle containing the intersection of the points
// (including edges) of *this and aRect. If there are no points in that
// intersection, returns an empty rectangle with x/y set to the gfx_max of the x/y
// of *this and aRect.
Sub Intersect(const Sub& aRect) const
{
Sub result;
result.x = gfx_max(x, aRect.x);
result.y = gfx_max(y, aRect.y);
result.width = gfx_min(XMost(), aRect.XMost()) - result.x;
result.height = gfx_min(YMost(), aRect.YMost()) - result.y;
if (result.width < 0 || result.height < 0) {
result.SizeTo(0, 0);
}
return result;
}
// Sets *this to be the rectangle containing the intersection of the points
// (including edges) of *this and aRect. If there are no points in that
// intersection, sets *this to be an empty rectangle with x/y set to the gfx_max
// of the x/y of *this and aRect.
//
// 'this' can be the same object as either aRect1 or aRect2
bool IntersectRect(const Sub& aRect1, const Sub& aRect2)
{
*static_cast<Sub*>(this) = aRect1.Intersect(aRect2);
return !IsEmpty();
}
// Returns the smallest rectangle that contains both the area of both
// this and aRect2.
// Thus, empty input rectangles are ignored.
// If both rectangles are empty, returns this.
Sub Union(const Sub& aRect) const
{
if (IsEmpty()) {
return aRect;
} else if (aRect.IsEmpty()) {
return *static_cast<const Sub*>(this);
} else {
return UnionEdges(aRect);
}
}
// Returns the smallest rectangle that contains both the points (including
// edges) of both aRect1 and aRect2.
// Thus, empty input rectangles are allowed to affect the result.
Sub UnionEdges(const Sub& aRect) const
{
Sub result;
result.x = gfx_min(x, aRect.x);
result.y = gfx_min(y, aRect.y);
result.width = gfx_max(XMost(), aRect.XMost()) - result.x;
result.height = gfx_max(YMost(), aRect.YMost()) - result.y;
return result;
}
// Computes the smallest rectangle that contains both the area of both
// aRect1 and aRect2, and fills 'this' with the result.
// Thus, empty input rectangles are ignored.
// If both rectangles are empty, sets 'this' to aRect2.
//
// 'this' can be the same object as either aRect1 or aRect2
void UnionRect(const Sub& aRect1, const Sub& aRect2)
{
*static_cast<Sub*>(this) = aRect1.Union(aRect2);
}
// Computes the smallest rectangle that contains both the points (including
// edges) of both aRect1 and aRect2.
// Thus, empty input rectangles are allowed to affect the result.
//
// 'this' can be the same object as either aRect1 or aRect2
void UnionRectEdges(const Sub& aRect1, const Sub& aRect2)
{
*static_cast<Sub*>(this) = aRect1.UnionEdges(aRect2);
}
void SetRect(T aX, T aY, T aWidth, T aHeight)
{
x = aX; y = aY; width = aWidth; height = aHeight;
}
void SetRect(const Point& aPt, const SizeT& aSize)
{
SetRect(aPt.x, aPt.y, aSize.width, aSize.height);
}
void MoveTo(T aX, T aY) { x = aX; y = aY; }
void MoveTo(const Point& aPoint) { x = aPoint.x; y = aPoint.y; }
void MoveBy(T aDx, T aDy) { x += aDx; y += aDy; }
void MoveBy(const Point& aPoint) { x += aPoint.x; y += aPoint.y; }
void SizeTo(T aWidth, T aHeight) { width = aWidth; height = aHeight; }
void SizeTo(const SizeT& aSize) { width = aSize.width; height = aSize.height; }
void Inflate(T aD) { Inflate(aD, aD); }
void Inflate(T aDx, T aDy)
{
x -= aDx;
y -= aDy;
width += 2 * aDx;
height += 2 * aDy;
}
void Inflate(const Margin& aMargin)
{
x -= aMargin.left;
y -= aMargin.top;
width += aMargin.LeftRight();
height += aMargin.TopBottom();
}
void Inflate(const SizeT& aSize) { Inflate(aSize.width, aSize.height); }
void Deflate(T aD) { Deflate(aD, aD); }
void Deflate(T aDx, T aDy)
{
x += aDx;
y += aDy;
width = gfx_max(T(0), width - 2 * aDx);
height = gfx_max(T(0), height - 2 * aDy);
}
void Deflate(const Margin& aMargin)
{
x += aMargin.left;
y += aMargin.top;
width = gfx_max(T(0), width - aMargin.LeftRight());
height = gfx_max(T(0), height - aMargin.TopBottom());
}
void Deflate(const SizeT& aSize) { Deflate(aSize.width, aSize.height); }
// Return true if the rectangles contain the same set of points, including
// points on the edges.
// Use when we care about the exact x/y/width/height values being
// equal (i.e. we care about differences in empty rectangles).
bool IsEqualEdges(const Sub& aRect) const
{
return x == aRect.x && y == aRect.y &&
width == aRect.width && height == aRect.height;
}
// Return true if the rectangles contain the same area of the plane.
// Use when we do not care about differences in empty rectangles.
bool IsEqualInterior(const Sub& aRect) const
{
return IsEqualEdges(aRect) || (IsEmpty() && aRect.IsEmpty());
}
Sub operator+(const Point& aPoint) const
{
return Sub(x + aPoint.x, y + aPoint.y, width, height);
}
Sub operator-(const Point& aPoint) const
{
return Sub(x - aPoint.x, y - aPoint.y, width, height);
}
Sub& operator+=(const Point& aPoint)
{
MoveBy(aPoint);
return *static_cast<Sub*>(this);
}
Sub& operator-=(const Point& aPoint)
{
MoveBy(-aPoint);
return *static_cast<Sub*>(this);
}
// Find difference as a Margin
Margin operator-(const Sub& aRect) const
{
return Margin(aRect.x - x, aRect.y - y,
XMost() - aRect.XMost(), YMost() - aRect.YMost());
}
// Helpers for accessing the vertices
Point TopLeft() const { return Point(x, y); }
Point TopRight() const { return Point(XMost(), y); }
Point BottomLeft() const { return Point(x, YMost()); }
Point BottomRight() const { return Point(XMost(), YMost()); }
Point Center() const { return Point(x, y) + Point(width, height)/2; }
SizeT Size() const { return SizeT(width, height); }
// Helper methods for computing the extents
T X() const { return x; }
T Y() const { return y; }
T Width() const { return width; }
T Height() const { return height; }
T XMost() const { return x + width; }
T YMost() const { return y + height; }
// Round the rectangle edges to integer coordinates, such that the rounded
// rectangle has the same set of pixel centers as the original rectangle.
// Edges at offset 0.5 round up.
// Suitable for most places where integral device coordinates
// are needed, but note that any translation should be applied first to
// avoid pixel rounding errors.
// Note that this is *not* rounding to nearest integer if the values are negative.
// They are always rounding as floor(n + 0.5).
// See https://bugzilla.mozilla.org/show_bug.cgi?id=410748#c14
// If you need similar method which is using NS_round(), you should create
// new |RoundAwayFromZero()| method.
void Round()
{
T x0 = static_cast<T>(floor(T(X()) + 0.5));
T y0 = static_cast<T>(floor(T(Y()) + 0.5));
T x1 = static_cast<T>(floor(T(XMost()) + 0.5));
T y1 = static_cast<T>(floor(T(YMost()) + 0.5));
x = x0;
y = y0;
width = x1 - x0;
height = y1 - y0;
}
// Snap the rectangle edges to integer coordinates, such that the
// original rectangle contains the resulting rectangle.
void RoundIn()
{
T x0 = static_cast<T>(ceil(T(X())));
T y0 = static_cast<T>(ceil(T(Y())));
T x1 = static_cast<T>(floor(T(XMost())));
T y1 = static_cast<T>(floor(T(YMost())));
x = x0;
y = y0;
width = x1 - x0;
height = y1 - y0;
}
// Snap the rectangle edges to integer coordinates, such that the
// resulting rectangle contains the original rectangle.
void RoundOut()
{
T x0 = static_cast<T>(floor(T(X())));
T y0 = static_cast<T>(floor(T(Y())));
T x1 = static_cast<T>(ceil(T(XMost())));
T y1 = static_cast<T>(ceil(T(YMost())));
x = x0;
y = y0;
width = x1 - x0;
height = y1 - y0;
}
// Scale 'this' by aScale, converting coordinates to integers so that the result is
// the smallest integer-coordinate rectangle containing the unrounded result.
// Note: this can turn an empty rectangle into a non-empty rectangle
void ScaleRoundOut(double aScale) { ScaleRoundOut(aScale, aScale); }
// Scale 'this' by aXScale and aYScale, converting coordinates to integers so
// that the result is the smallest integer-coordinate rectangle containing the
// unrounded result.
// Note: this can turn an empty rectangle into a non-empty rectangle
void ScaleRoundOut(double aXScale, double aYScale)
{
T right = static_cast<T>(ceil(double(XMost()) * aXScale));
T bottom = static_cast<T>(ceil(double(YMost()) * aYScale));
x = static_cast<T>(floor(double(x) * aXScale));
y = static_cast<T>(floor(double(y) * aYScale));
width = right - x;
height = bottom - y;
}
// Scale 'this' by aScale, converting coordinates to integers so that the result is
// the largest integer-coordinate rectangle contained by the unrounded result.
void ScaleRoundIn(double aScale) { ScaleRoundIn(aScale, aScale); }
// Scale 'this' by aXScale and aYScale, converting coordinates to integers so
// that the result is the largest integer-coordinate rectangle contained by the
// unrounded result.
void ScaleRoundIn(double aXScale, double aYScale)
{
T right = static_cast<T>(floor(double(XMost()) * aXScale));
T bottom = static_cast<T>(floor(double(YMost()) * aYScale));
x = static_cast<T>(ceil(double(x) * aXScale));
y = static_cast<T>(ceil(double(y) * aYScale));
width = gfx_max<T>(0, right - x);
height = gfx_max<T>(0, bottom - y);
}
// Scale 'this' by 1/aScale, converting coordinates to integers so that the result is
// the smallest integer-coordinate rectangle containing the unrounded result.
// Note: this can turn an empty rectangle into a non-empty rectangle
void ScaleInverseRoundOut(double aScale) { ScaleInverseRoundOut(aScale, aScale); }
// Scale 'this' by 1/aXScale and 1/aYScale, converting coordinates to integers so
// that the result is the smallest integer-coordinate rectangle containing the
// unrounded result.
// Note: this can turn an empty rectangle into a non-empty rectangle
void ScaleInverseRoundOut(double aXScale, double aYScale)
{
T right = static_cast<T>(ceil(double(XMost()) / aXScale));
T bottom = static_cast<T>(ceil(double(YMost()) / aYScale));
x = static_cast<T>(floor(double(x) / aXScale));
y = static_cast<T>(floor(double(y) / aYScale));
width = right - x;
height = bottom - y;
}
/**
* Clamp aPoint to this rectangle. It is allowed to end up on any
* edge of the rectangle.
*/
Point ClampPoint(const Point& aPoint) const
{
return Point(NS_MAX(x, NS_MIN(XMost(), aPoint.x)),
NS_MAX(y, NS_MIN(YMost(), aPoint.y)));
}
private:
// Do not use the default operator== or operator!= !
// Use IsEqualEdges or IsEqualInterior explicitly.
bool operator==(const Sub& aRect) const { return false; }
bool operator!=(const Sub& aRect) const { return false; }
};
}
}
#endif /* MOZILLA_GFX_BASERECT_H_ */