gecko-dev/dom/media/MediaData.h
Bryce Van Dyk 4ace4150ca Bug 1487416 - Index.cpp's SampleIterator populates cbcs data. r=jya
Rework our mp4 sample iterator to handle cbcs crypto data.

To support this we populate the following new data for samples:
- Crypto pattern information, this is split into a count of encrypted blocks
  and a count of clear blocks.
- A constant IV.

This information is available at a track level and a sample group level. The
sample group level supersedes track level information if both a present.

Prior to this patch, some crypto information was written to samples in
the SampleIterator in Index.cpp, and some in the MP4Demuxer (based on if the
SampleIterator had not populated the data). This patch moves all these
operations into the SampleIterator -- the idea being that the sample iterator
should be the component responsible for setting up sample meta data.

Differential Revision: https://phabricator.services.mozilla.com/D15877

--HG--
extra : moz-landing-system : lando
2019-01-11 15:13:37 +00:00

643 lines
20 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#if !defined(MediaData_h)
#define MediaData_h
#include "AudioConfig.h"
#include "AudioSampleFormat.h"
#include "ImageTypes.h"
#include "SharedBuffer.h"
#include "TimeUnits.h"
#include "mozilla/CheckedInt.h"
#include "mozilla/PodOperations.h"
#include "mozilla/RefPtr.h"
#include "mozilla/Span.h"
#include "mozilla/UniquePtr.h"
#include "mozilla/UniquePtrExtensions.h"
#include "mozilla/gfx/Rect.h"
#include "nsString.h"
#include "nsTArray.h"
namespace mozilla {
namespace layers {
class Image;
class ImageContainer;
class KnowsCompositor;
} // namespace layers
class MediaByteBuffer;
class TrackInfoSharedPtr;
// AlignedBuffer:
// Memory allocations are fallibles. Methods return a boolean indicating if
// memory allocations were successful. Return values should always be checked.
// AlignedBuffer::mData will be nullptr if no memory has been allocated or if
// an error occurred during construction.
// Existing data is only ever modified if new memory allocation has succeeded
// and preserved if not.
//
// The memory referenced by mData will always be Alignment bytes aligned and the
// underlying buffer will always have a size such that Alignment bytes blocks
// can be used to read the content, regardless of the mSize value. Buffer is
// zeroed on creation, elements are not individually constructed.
// An Alignment value of 0 means that the data isn't aligned.
//
// Type must be trivially copyable.
//
// AlignedBuffer can typically be used in place of UniquePtr<Type[]> however
// care must be taken as all memory allocations are fallible.
// Example:
// auto buffer = MakeUniqueFallible<float[]>(samples)
// becomes: AlignedFloatBuffer buffer(samples)
//
// auto buffer = MakeUnique<float[]>(samples)
// becomes:
// AlignedFloatBuffer buffer(samples);
// if (!buffer) { return NS_ERROR_OUT_OF_MEMORY; }
template <typename Type, int Alignment = 32>
class AlignedBuffer {
public:
AlignedBuffer()
: mData(nullptr), mLength(0), mBuffer(nullptr), mCapacity(0) {}
explicit AlignedBuffer(size_t aLength)
: mData(nullptr), mLength(0), mBuffer(nullptr), mCapacity(0) {
if (EnsureCapacity(aLength)) {
mLength = aLength;
}
}
AlignedBuffer(const Type* aData, size_t aLength) : AlignedBuffer(aLength) {
if (!mData) {
return;
}
PodCopy(mData, aData, aLength);
}
AlignedBuffer(const AlignedBuffer& aOther)
: AlignedBuffer(aOther.Data(), aOther.Length()) {}
AlignedBuffer(AlignedBuffer&& aOther)
: mData(aOther.mData),
mLength(aOther.mLength),
mBuffer(std::move(aOther.mBuffer)),
mCapacity(aOther.mCapacity) {
aOther.mData = nullptr;
aOther.mLength = 0;
aOther.mCapacity = 0;
}
AlignedBuffer& operator=(AlignedBuffer&& aOther) {
this->~AlignedBuffer();
new (this) AlignedBuffer(std::move(aOther));
return *this;
}
Type* Data() const { return mData; }
size_t Length() const { return mLength; }
size_t Size() const { return mLength * sizeof(Type); }
Type& operator[](size_t aIndex) {
MOZ_ASSERT(aIndex < mLength);
return mData[aIndex];
}
const Type& operator[](size_t aIndex) const {
MOZ_ASSERT(aIndex < mLength);
return mData[aIndex];
}
// Set length of buffer, allocating memory as required.
// If length is increased, new buffer area is filled with 0.
bool SetLength(size_t aLength) {
if (aLength > mLength && !EnsureCapacity(aLength)) {
return false;
}
mLength = aLength;
return true;
}
// Add aData at the beginning of buffer.
bool Prepend(const Type* aData, size_t aLength) {
if (!EnsureCapacity(aLength + mLength)) {
return false;
}
// Shift the data to the right by aLength to leave room for the new data.
PodMove(mData + aLength, mData, mLength);
PodCopy(mData, aData, aLength);
mLength += aLength;
return true;
}
// Add aData at the end of buffer.
bool Append(const Type* aData, size_t aLength) {
if (!EnsureCapacity(aLength + mLength)) {
return false;
}
PodCopy(mData + mLength, aData, aLength);
mLength += aLength;
return true;
}
// Replace current content with aData.
bool Replace(const Type* aData, size_t aLength) {
// If aLength is smaller than our current length, we leave the buffer as is,
// only adjusting the reported length.
if (!EnsureCapacity(aLength)) {
return false;
}
PodCopy(mData, aData, aLength);
mLength = aLength;
return true;
}
// Clear the memory buffer. Will set target mData and mLength to 0.
void Clear() {
mLength = 0;
mData = nullptr;
}
// Methods for reporting memory.
size_t SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const {
size_t size = aMallocSizeOf(this);
size += aMallocSizeOf(mBuffer.get());
return size;
}
// AlignedBuffer is typically allocated on the stack. As such, you likely
// want to use SizeOfExcludingThis
size_t SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const {
return aMallocSizeOf(mBuffer.get());
}
size_t ComputedSizeOfExcludingThis() const { return mCapacity; }
// For backward compatibility with UniquePtr<Type[]>
Type* get() const { return mData; }
explicit operator bool() const { return mData != nullptr; }
// Size in bytes of extra space allocated for padding.
static size_t AlignmentPaddingSize() { return AlignmentOffset() * 2; }
void PopFront(size_t aSize) {
MOZ_ASSERT(mLength >= aSize);
PodMove(mData, mData + aSize, mLength - aSize);
mLength -= aSize;
}
private:
static size_t AlignmentOffset() { return Alignment ? Alignment - 1 : 0; }
// Ensure that the backend buffer can hold aLength data. Will update mData.
// Will enforce that the start of allocated data is always Alignment bytes
// aligned and that it has sufficient end padding to allow for Alignment bytes
// block read as required by some data decoders.
// Returns false if memory couldn't be allocated.
bool EnsureCapacity(size_t aLength) {
if (!aLength) {
// No need to allocate a buffer yet.
return true;
}
const CheckedInt<size_t> sizeNeeded =
CheckedInt<size_t>(aLength) * sizeof(Type) + AlignmentPaddingSize();
if (!sizeNeeded.isValid() || sizeNeeded.value() >= INT32_MAX) {
// overflow or over an acceptable size.
return false;
}
if (mData && mCapacity >= sizeNeeded.value()) {
return true;
}
auto newBuffer = MakeUniqueFallible<uint8_t[]>(sizeNeeded.value());
if (!newBuffer) {
return false;
}
// Find alignment address.
const uintptr_t alignmask = AlignmentOffset();
Type* newData = reinterpret_cast<Type*>(
(reinterpret_cast<uintptr_t>(newBuffer.get()) + alignmask) &
~alignmask);
MOZ_ASSERT(uintptr_t(newData) % (AlignmentOffset() + 1) == 0);
MOZ_ASSERT(!mLength || mData);
PodZero(newData + mLength, aLength - mLength);
if (mLength) {
PodCopy(newData, mData, mLength);
}
mBuffer = std::move(newBuffer);
mCapacity = sizeNeeded.value();
mData = newData;
return true;
}
Type* mData;
size_t mLength;
UniquePtr<uint8_t[]> mBuffer;
size_t mCapacity;
};
typedef AlignedBuffer<uint8_t> AlignedByteBuffer;
typedef AlignedBuffer<float> AlignedFloatBuffer;
typedef AlignedBuffer<int16_t> AlignedShortBuffer;
typedef AlignedBuffer<AudioDataValue> AlignedAudioBuffer;
// Container that holds media samples.
class MediaData {
public:
NS_INLINE_DECL_THREADSAFE_REFCOUNTING(MediaData)
enum Type { AUDIO_DATA = 0, VIDEO_DATA, RAW_DATA, NULL_DATA };
MediaData(Type aType, int64_t aOffset, const media::TimeUnit& aTimestamp,
const media::TimeUnit& aDuration, uint32_t aFrames)
: mType(aType),
mOffset(aOffset),
mTime(aTimestamp),
mTimecode(aTimestamp),
mDuration(aDuration),
mFrames(aFrames),
mKeyframe(false) {}
// Type of contained data.
const Type mType;
// Approximate byte offset where this data was demuxed from its media.
int64_t mOffset;
// Start time of sample.
media::TimeUnit mTime;
// Codec specific internal time code. For Ogg based codecs this is the
// granulepos.
media::TimeUnit mTimecode;
// Duration of sample, in microseconds.
media::TimeUnit mDuration;
// Amount of frames for contained data.
const uint32_t mFrames;
bool mKeyframe;
media::TimeUnit GetEndTime() const { return mTime + mDuration; }
bool AdjustForStartTime(int64_t aStartTime) {
mTime = mTime - media::TimeUnit::FromMicroseconds(aStartTime);
return !mTime.IsNegative();
}
template <typename ReturnType>
const ReturnType* As() const {
MOZ_ASSERT(this->mType == ReturnType::sType);
return static_cast<const ReturnType*>(this);
}
template <typename ReturnType>
ReturnType* As() {
MOZ_ASSERT(this->mType == ReturnType::sType);
return static_cast<ReturnType*>(this);
}
protected:
MediaData(Type aType, uint32_t aFrames)
: mType(aType), mOffset(0), mFrames(aFrames), mKeyframe(false) {}
virtual ~MediaData() {}
};
// NullData is for decoder generating a sample which doesn't need to be
// rendered.
class NullData : public MediaData {
public:
NullData(int64_t aOffset, const media::TimeUnit& aTime,
const media::TimeUnit& aDuration)
: MediaData(NULL_DATA, aOffset, aTime, aDuration, 0) {}
static const Type sType = NULL_DATA;
};
// Holds chunk a decoded audio frames.
class AudioData : public MediaData {
public:
AudioData(int64_t aOffset, const media::TimeUnit& aTime,
const media::TimeUnit& aDuration, uint32_t aFrames,
AlignedAudioBuffer&& aData, uint32_t aChannels, uint32_t aRate,
uint32_t aChannelMap = AudioConfig::ChannelLayout::UNKNOWN_MAP)
: MediaData(sType, aOffset, aTime, aDuration, aFrames),
mChannels(aChannels),
mChannelMap(aChannelMap),
mRate(aRate),
mAudioData(std::move(aData)) {}
static const Type sType = AUDIO_DATA;
static const char* sTypeName;
// Creates a new AudioData identical to aOther, but with a different
// specified timestamp and duration. All data from aOther is copied
// into the new AudioData but the audio data which is transferred.
// After such call, the original aOther is unusable.
static already_AddRefed<AudioData> TransferAndUpdateTimestampAndDuration(
AudioData* aOther, const media::TimeUnit& aTimestamp,
const media::TimeUnit& aDuration);
size_t SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const;
// If mAudioBuffer is null, creates it from mAudioData.
void EnsureAudioBuffer();
// To check whether mAudioData has audible signal, it's used to distinguish
// the audiable data and silent data.
bool IsAudible() const;
const uint32_t mChannels;
// The AudioConfig::ChannelLayout map. Channels are ordered as per SMPTE
// definition. A value of UNKNOWN_MAP indicates unknown layout.
// ChannelMap is an unsigned bitmap compatible with Windows' WAVE and FFmpeg
// channel map.
const AudioConfig::ChannelLayout::ChannelMap mChannelMap;
const uint32_t mRate;
// At least one of mAudioBuffer/mAudioData must be non-null.
// mChannels channels, each with mFrames frames
RefPtr<SharedBuffer> mAudioBuffer;
// mFrames frames, each with mChannels values
AlignedAudioBuffer mAudioData;
protected:
~AudioData() {}
};
namespace layers {
class TextureClient;
class PlanarYCbCrImage;
} // namespace layers
class VideoInfo;
// Holds a decoded video frame, in YCbCr format. These are queued in the reader.
class VideoData : public MediaData {
public:
typedef gfx::IntRect IntRect;
typedef gfx::IntSize IntSize;
typedef gfx::ColorDepth ColorDepth;
typedef layers::ImageContainer ImageContainer;
typedef layers::Image Image;
typedef layers::PlanarYCbCrImage PlanarYCbCrImage;
static const Type sType = VIDEO_DATA;
static const char* sTypeName;
// YCbCr data obtained from decoding the video. The index's are:
// 0 = Y
// 1 = Cb
// 2 = Cr
struct YCbCrBuffer {
struct Plane {
uint8_t* mData;
uint32_t mWidth;
uint32_t mHeight;
uint32_t mStride;
uint32_t mOffset;
uint32_t mSkip;
};
Plane mPlanes[3];
YUVColorSpace mYUVColorSpace = YUVColorSpace::BT601;
ColorDepth mColorDepth = ColorDepth::COLOR_8;
};
class Listener {
public:
virtual void OnSentToCompositor() = 0;
virtual ~Listener() {}
};
// Constructs a VideoData object. If aImage is nullptr, creates a new Image
// holding a copy of the YCbCr data passed in aBuffer. If aImage is not
// nullptr, it's stored as the underlying video image and aBuffer is assumed
// to point to memory within aImage so no copy is made. aTimecode is a codec
// specific number representing the timestamp of the frame of video data.
// Returns nsnull if an error occurs. This may indicate that memory couldn't
// be allocated to create the VideoData object, or it may indicate some
// problem with the input data (e.g. negative stride).
// Creates a new VideoData containing a deep copy of aBuffer. May use
// aContainer to allocate an Image to hold the copied data.
static already_AddRefed<VideoData> CreateAndCopyData(
const VideoInfo& aInfo, ImageContainer* aContainer, int64_t aOffset,
const media::TimeUnit& aTime, const media::TimeUnit& aDuration,
const YCbCrBuffer& aBuffer, bool aKeyframe,
const media::TimeUnit& aTimecode, const IntRect& aPicture,
layers::KnowsCompositor* aAllocator = nullptr);
static already_AddRefed<VideoData> CreateAndCopyData(
const VideoInfo& aInfo, ImageContainer* aContainer, int64_t aOffset,
const media::TimeUnit& aTime, const media::TimeUnit& aDuration,
const YCbCrBuffer& aBuffer, const YCbCrBuffer::Plane& aAlphaPlane,
bool aKeyframe, const media::TimeUnit& aTimecode,
const IntRect& aPicture);
static already_AddRefed<VideoData> CreateFromImage(
const IntSize& aDisplay, int64_t aOffset, const media::TimeUnit& aTime,
const media::TimeUnit& aDuration, const RefPtr<Image>& aImage,
bool aKeyframe, const media::TimeUnit& aTimecode);
// Initialize PlanarYCbCrImage. Only When aCopyData is true,
// video data is copied to PlanarYCbCrImage.
static bool SetVideoDataToImage(PlanarYCbCrImage* aVideoImage,
const VideoInfo& aInfo,
const YCbCrBuffer& aBuffer,
const IntRect& aPicture, bool aCopyData);
size_t SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const;
// Dimensions at which to display the video frame. The picture region
// will be scaled to this size. This is should be the picture region's
// dimensions scaled with respect to its aspect ratio.
const IntSize mDisplay;
// This frame's image.
RefPtr<Image> mImage;
int32_t mFrameID;
VideoData(int64_t aOffset, const media::TimeUnit& aTime,
const media::TimeUnit& aDuration, bool aKeyframe,
const media::TimeUnit& aTimecode, IntSize aDisplay,
uint32_t aFrameID);
void SetListener(UniquePtr<Listener> aListener);
void MarkSentToCompositor();
bool IsSentToCompositor() { return mSentToCompositor; }
void UpdateDuration(const media::TimeUnit& aDuration);
void UpdateTimestamp(const media::TimeUnit& aTimestamp);
void SetNextKeyFrameTime(const media::TimeUnit& aTime) {
mNextKeyFrameTime = aTime;
}
const media::TimeUnit& NextKeyFrameTime() const { return mNextKeyFrameTime; }
protected:
~VideoData();
bool mSentToCompositor;
UniquePtr<Listener> mListener;
media::TimeUnit mNextKeyFrameTime;
};
enum class CryptoScheme : uint8_t {
None,
Cenc,
Cbcs,
};
class CryptoTrack {
public:
CryptoTrack()
: mCryptoScheme(CryptoScheme::None),
mIVSize(0),
mCryptByteBlock(0),
mSkipByteBlock(0) {}
CryptoScheme mCryptoScheme;
int32_t mIVSize;
nsTArray<uint8_t> mKeyId;
uint8_t mCryptByteBlock;
uint8_t mSkipByteBlock;
nsTArray<uint8_t> mConstantIV;
bool IsEncrypted() const { return mCryptoScheme != CryptoScheme::None; }
};
class CryptoSample : public CryptoTrack {
public:
nsTArray<uint16_t> mPlainSizes;
nsTArray<uint32_t> mEncryptedSizes;
nsTArray<uint8_t> mIV;
nsTArray<nsTArray<uint8_t>> mInitDatas;
nsString mInitDataType;
};
// MediaRawData is a MediaData container used to store demuxed, still compressed
// samples.
// Use MediaRawData::CreateWriter() to obtain a MediaRawDataWriter object that
// provides methods to modify and manipulate the data.
// Memory allocations are fallible. Methods return a boolean indicating if
// memory allocations were successful. Return values should always be checked.
// MediaRawData::mData will be nullptr if no memory has been allocated or if
// an error occurred during construction.
// Existing data is only ever modified if new memory allocation has succeeded
// and preserved if not.
//
// The memory referenced by mData will always be 32 bytes aligned and the
// underlying buffer will always have a size such that 32 bytes blocks can be
// used to read the content, regardless of the mSize value. Buffer is zeroed
// on creation.
//
// Typical usage: create new MediaRawData; create the associated
// MediaRawDataWriter, call SetSize() to allocate memory, write to mData,
// up to mSize bytes.
class MediaRawData;
class MediaRawDataWriter {
public:
// Pointer to data or null if not-yet allocated
uint8_t* Data();
// Writeable size of buffer.
size_t Size();
// Writeable reference to MediaRawData::mCryptoInternal
CryptoSample& mCrypto;
// Data manipulation methods. mData and mSize may be updated accordingly.
// Set size of buffer, allocating memory as required.
// If size is increased, new buffer area is filled with 0.
MOZ_MUST_USE bool SetSize(size_t aSize);
// Add aData at the beginning of buffer.
MOZ_MUST_USE bool Prepend(const uint8_t* aData, size_t aSize);
MOZ_MUST_USE bool Append(const uint8_t* aData, size_t aSize);
// Replace current content with aData.
MOZ_MUST_USE bool Replace(const uint8_t* aData, size_t aSize);
// Clear the memory buffer. Will set target mData and mSize to 0.
void Clear();
// Remove aSize bytes from the front of the sample.
void PopFront(size_t aSize);
private:
friend class MediaRawData;
explicit MediaRawDataWriter(MediaRawData* aMediaRawData);
MOZ_MUST_USE bool EnsureSize(size_t aSize);
MediaRawData* mTarget;
};
class MediaRawData final : public MediaData {
public:
MediaRawData();
MediaRawData(const uint8_t* aData, size_t aSize);
MediaRawData(const uint8_t* aData, size_t aSize, const uint8_t* aAlphaData,
size_t aAlphaSize);
// Pointer to data or null if not-yet allocated
const uint8_t* Data() const { return mBuffer.Data(); }
// Pointer to alpha data or null if not-yet allocated
const uint8_t* AlphaData() const { return mAlphaBuffer.Data(); }
// Size of buffer.
size_t Size() const { return mBuffer.Length(); }
size_t AlphaSize() const { return mAlphaBuffer.Length(); }
size_t ComputedSizeOfIncludingThis() const {
return sizeof(*this) + mBuffer.ComputedSizeOfExcludingThis() +
mAlphaBuffer.ComputedSizeOfExcludingThis();
}
// Access the buffer as a Span.
operator Span<const uint8_t>() { return MakeSpan(Data(), Size()); }
const CryptoSample& mCrypto;
RefPtr<MediaByteBuffer> mExtraData;
// Used by the Vorbis decoder and Ogg demuxer.
// Indicates that this is the last packet of the stream.
bool mEOS = false;
// Indicate to the audio decoder that mDiscardPadding frames should be
// trimmed.
uint32_t mDiscardPadding = 0;
RefPtr<TrackInfoSharedPtr> mTrackInfo;
// Return a deep copy or nullptr if out of memory.
already_AddRefed<MediaRawData> Clone() const;
// Create a MediaRawDataWriter for this MediaRawData. The writer is not
// thread-safe.
UniquePtr<MediaRawDataWriter> CreateWriter();
size_t SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const;
protected:
~MediaRawData();
private:
friend class MediaRawDataWriter;
AlignedByteBuffer mBuffer;
AlignedByteBuffer mAlphaBuffer;
CryptoSample mCryptoInternal;
MediaRawData(const MediaRawData&); // Not implemented
};
// MediaByteBuffer is a ref counted infallible TArray.
class MediaByteBuffer : public nsTArray<uint8_t> {
NS_INLINE_DECL_THREADSAFE_REFCOUNTING(MediaByteBuffer);
MediaByteBuffer() = default;
explicit MediaByteBuffer(size_t aCapacity) : nsTArray<uint8_t>(aCapacity) {}
private:
~MediaByteBuffer() {}
};
} // namespace mozilla
#endif // MediaData_h