mirror of
https://github.com/mozilla/gecko-dev.git
synced 2025-04-04 05:32:56 +00:00

Bug 1429764 details a test failure that was asserting that the performance navigation timers were strictly increasing (or equal). fetchStart should have a timestamp before domainLookupStart. But it didn't. The problem is two-fold. This corrects the test and the issue by addressing one part of the problem, the second part of the problem needs to be written up in a new bug and addressed there. (That bug is not yet filed at writing, but see dependencies of 1429764 in the future to find it.) The second, and underlying, problem is that calling ReduceTimerPrecision with the same value multiple times may continually reduce it. Meaning that the first you call it with, say, .75, (and a precision of .20), it will be reduced to .6. The second time you call it (with .6), instead of staying at .6 it will be reduced to .4. This is because floats are fuzzy. Inside ReduceTimerPrecision we are multiplying a decimal by a decimal, so while floor(.6 / .20) should equal 3, sometimes it's actually 2.999... which gets floors to 2, gets multiplied again by .2, and which results in .4 If that's the underlying problem, the first, and surface, problem is - why are we calling ReduceTimerPrecision multiple times? We shouldn't be. That's what this patch fixes. TimeStampToDOMHighResOrFetchStart will return either TimeStampToDOMHighRes() or FetchStartHighRes(). FetchStartHighRes() internally calls TimeStampToDOMHighRes and then ReduceTimerPrecision - this is where (some of) the two reduction calls happen - because TimeStampToDOMHighRes itself calls ReduceTimerPrecision also. I remove the ReduceTimerPrecision from TimeStampToDOMHighRes. FetchStartHighRes will now only call ReduceTimerPrecision once, at the end of the return. But we have to fix places we call TimeStampToDOMHighResOrFetchStart, because the callers of that function also call ReduceTimerPrecision. So if TimeStampToDOMHighResOrFetchStart returned FetchStartHighRes, we'd be calling ReduceTimerPrecision twice for those callers. So inside first off, we remove the outer call to ReduceTimerPrecision. that surrounds the 5 or so callsites of TimeStampToDOMHighResOrFetchStart. Then inside of TimeStampToDOMHighResOrFetchStart we return either FetchStartHighRes (which is has already called ReduceTimerPrecision) or we call ReduceTimerPrecision with the value. Now. TimeStampToDOMHighRes was used in more places than just FetchStartHighRes - there were several other places where we were doing double rounding, and this fixed those as well. AsyncOpenHighRes, WorkerStartHighRes, DomainLookupEndHighRes, ConnectStartHighRes, SecureConnectionStartHighRes, ConnectEndHighRes, and ResponseEndHighRes. MozReview-Commit-ID: K5nHql135rb --HG-- extra : rebase_source : e06785203f0f8b01fc7b694ce840f07dc09bc4a1
530 lines
17 KiB
C++
530 lines
17 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include "PerformanceTiming.h"
|
|
#include "mozilla/dom/PerformanceTimingBinding.h"
|
|
#include "mozilla/Telemetry.h"
|
|
#include "nsIDocShell.h"
|
|
#include "nsIDocShellTreeItem.h"
|
|
#include "nsIDocument.h"
|
|
#include "nsITimedChannel.h"
|
|
|
|
namespace mozilla {
|
|
namespace dom {
|
|
|
|
NS_IMPL_CYCLE_COLLECTION_WRAPPERCACHE(PerformanceTiming, mPerformance)
|
|
|
|
NS_IMPL_CYCLE_COLLECTION_ROOT_NATIVE(PerformanceTiming, AddRef)
|
|
NS_IMPL_CYCLE_COLLECTION_UNROOT_NATIVE(PerformanceTiming, Release)
|
|
|
|
PerformanceTiming::PerformanceTiming(Performance* aPerformance,
|
|
nsITimedChannel* aChannel,
|
|
nsIHttpChannel* aHttpChannel,
|
|
DOMHighResTimeStamp aZeroTime)
|
|
: mPerformance(aPerformance),
|
|
mFetchStart(0.0),
|
|
mZeroTime(nsRFPService::ReduceTimePrecisionAsMSecs(aZeroTime)),
|
|
mRedirectCount(0),
|
|
mTimingAllowed(true),
|
|
mAllRedirectsSameOrigin(true),
|
|
mInitialized(!!aChannel),
|
|
mReportCrossOriginRedirect(true)
|
|
{
|
|
MOZ_ASSERT(aPerformance, "Parent performance object should be provided");
|
|
|
|
if (!nsContentUtils::IsPerformanceTimingEnabled() ||
|
|
nsContentUtils::ShouldResistFingerprinting()) {
|
|
mZeroTime = 0;
|
|
}
|
|
|
|
// The aHttpChannel argument is null if this PerformanceTiming object is
|
|
// being used for navigation timing (which is only relevant for documents).
|
|
// It has a non-null value if this PerformanceTiming object is being used
|
|
// for resource timing, which can include document loads, both toplevel and
|
|
// in subframes, and resources linked from a document.
|
|
if (aHttpChannel) {
|
|
mTimingAllowed = CheckAllowedOrigin(aHttpChannel, aChannel);
|
|
bool redirectsPassCheck = false;
|
|
aChannel->GetAllRedirectsPassTimingAllowCheck(&redirectsPassCheck);
|
|
mReportCrossOriginRedirect = mTimingAllowed && redirectsPassCheck;
|
|
}
|
|
|
|
mSecureConnection = false;
|
|
nsCOMPtr<nsIURI> uri;
|
|
if (aHttpChannel) {
|
|
aHttpChannel->GetURI(getter_AddRefs(uri));
|
|
} else {
|
|
nsCOMPtr<nsIHttpChannel> httpChannel = do_QueryInterface(aChannel);
|
|
if (httpChannel) {
|
|
httpChannel->GetURI(getter_AddRefs(uri));
|
|
}
|
|
}
|
|
|
|
if (uri) {
|
|
nsresult rv = uri->SchemeIs("https", &mSecureConnection);
|
|
if (NS_FAILED(rv)) {
|
|
mSecureConnection = false;
|
|
}
|
|
}
|
|
InitializeTimingInfo(aChannel);
|
|
|
|
// Non-null aHttpChannel implies that this PerformanceTiming object is being
|
|
// used for subresources, which is irrelevant to this probe.
|
|
if (!aHttpChannel &&
|
|
nsContentUtils::IsPerformanceTimingEnabled() &&
|
|
IsTopLevelContentDocument()) {
|
|
Telemetry::Accumulate(Telemetry::TIME_TO_RESPONSE_START_MS,
|
|
ResponseStartHighRes() - mZeroTime);
|
|
}
|
|
}
|
|
|
|
// Copy the timing info from the channel so we don't need to keep the channel
|
|
// alive just to get the timestamps.
|
|
void
|
|
PerformanceTiming::InitializeTimingInfo(nsITimedChannel* aChannel)
|
|
{
|
|
if (aChannel) {
|
|
aChannel->GetAsyncOpen(&mAsyncOpen);
|
|
aChannel->GetAllRedirectsSameOrigin(&mAllRedirectsSameOrigin);
|
|
aChannel->GetRedirectCount(&mRedirectCount);
|
|
aChannel->GetRedirectStart(&mRedirectStart);
|
|
aChannel->GetRedirectEnd(&mRedirectEnd);
|
|
aChannel->GetDomainLookupStart(&mDomainLookupStart);
|
|
aChannel->GetDomainLookupEnd(&mDomainLookupEnd);
|
|
aChannel->GetConnectStart(&mConnectStart);
|
|
aChannel->GetSecureConnectionStart(&mSecureConnectionStart);
|
|
aChannel->GetConnectEnd(&mConnectEnd);
|
|
aChannel->GetRequestStart(&mRequestStart);
|
|
aChannel->GetResponseStart(&mResponseStart);
|
|
aChannel->GetCacheReadStart(&mCacheReadStart);
|
|
aChannel->GetResponseEnd(&mResponseEnd);
|
|
aChannel->GetCacheReadEnd(&mCacheReadEnd);
|
|
|
|
aChannel->GetDispatchFetchEventStart(&mWorkerStart);
|
|
aChannel->GetHandleFetchEventStart(&mWorkerRequestStart);
|
|
// TODO: Track when FetchEvent.respondWith() promise resolves as
|
|
// ServiceWorker interception responseStart?
|
|
aChannel->GetHandleFetchEventEnd(&mWorkerResponseEnd);
|
|
|
|
// The performance timing api essentially requires that the event timestamps
|
|
// have a strict relation with each other. The truth, however, is the browser
|
|
// engages in a number of speculative activities that sometimes mean connections
|
|
// and lookups begin at different times. Workaround that here by clamping
|
|
// these values to what we expect FetchStart to be. This means the later of
|
|
// AsyncOpen or WorkerStart times.
|
|
if (!mAsyncOpen.IsNull()) {
|
|
// We want to clamp to the expected FetchStart value. This is later of
|
|
// the AsyncOpen and WorkerStart values.
|
|
const TimeStamp* clampTime = &mAsyncOpen;
|
|
if (!mWorkerStart.IsNull() && mWorkerStart > mAsyncOpen) {
|
|
clampTime = &mWorkerStart;
|
|
}
|
|
|
|
if (!mDomainLookupStart.IsNull() && mDomainLookupStart < *clampTime) {
|
|
mDomainLookupStart = *clampTime;
|
|
}
|
|
|
|
if (!mDomainLookupEnd.IsNull() && mDomainLookupEnd < *clampTime) {
|
|
mDomainLookupEnd = *clampTime;
|
|
}
|
|
|
|
if (!mConnectStart.IsNull() && mConnectStart < *clampTime) {
|
|
mConnectStart = *clampTime;
|
|
}
|
|
|
|
if (mSecureConnection && !mSecureConnectionStart.IsNull() &&
|
|
mSecureConnectionStart < *clampTime) {
|
|
mSecureConnectionStart = *clampTime;
|
|
}
|
|
|
|
if (!mConnectEnd.IsNull() && mConnectEnd < *clampTime) {
|
|
mConnectEnd = *clampTime;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
PerformanceTiming::~PerformanceTiming()
|
|
{
|
|
}
|
|
|
|
DOMHighResTimeStamp
|
|
PerformanceTiming::FetchStartHighRes()
|
|
{
|
|
if (!mFetchStart) {
|
|
if (!nsContentUtils::IsPerformanceTimingEnabled() || !IsInitialized() ||
|
|
nsContentUtils::ShouldResistFingerprinting()) {
|
|
return mZeroTime;
|
|
}
|
|
MOZ_ASSERT(!mAsyncOpen.IsNull(), "The fetch start time stamp should always be "
|
|
"valid if the performance timing is enabled");
|
|
if (!mAsyncOpen.IsNull()) {
|
|
if (!mWorkerRequestStart.IsNull() && mWorkerRequestStart > mAsyncOpen) {
|
|
mFetchStart = TimeStampToDOMHighRes(mWorkerRequestStart);
|
|
} else {
|
|
mFetchStart = TimeStampToDOMHighRes(mAsyncOpen);
|
|
}
|
|
}
|
|
}
|
|
return nsRFPService::ReduceTimePrecisionAsMSecs(mFetchStart);
|
|
}
|
|
|
|
DOMTimeMilliSec
|
|
PerformanceTiming::FetchStart()
|
|
{
|
|
return static_cast<int64_t>(FetchStartHighRes());
|
|
}
|
|
|
|
bool
|
|
PerformanceTiming::CheckAllowedOrigin(nsIHttpChannel* aResourceChannel,
|
|
nsITimedChannel* aChannel)
|
|
{
|
|
if (!IsInitialized()) {
|
|
return false;
|
|
}
|
|
|
|
// Check that the current document passes the ckeck.
|
|
nsCOMPtr<nsILoadInfo> loadInfo;
|
|
aResourceChannel->GetLoadInfo(getter_AddRefs(loadInfo));
|
|
if (!loadInfo) {
|
|
return false;
|
|
}
|
|
|
|
// TYPE_DOCUMENT loads have no loadingPrincipal. And that's OK, because we
|
|
// never actually need to have a performance timing entry for TYPE_DOCUMENT
|
|
// loads.
|
|
if (loadInfo->GetExternalContentPolicyType() == nsIContentPolicy::TYPE_DOCUMENT) {
|
|
return false;
|
|
}
|
|
|
|
nsCOMPtr<nsIPrincipal> principal = loadInfo->LoadingPrincipal();
|
|
|
|
// Check if the resource is either same origin as the page that started
|
|
// the load, or if the response contains the proper Timing-Allow-Origin
|
|
// header with the domain of the page that started the load.
|
|
return aChannel->TimingAllowCheck(principal);
|
|
}
|
|
|
|
bool
|
|
PerformanceTiming::TimingAllowed() const
|
|
{
|
|
return mTimingAllowed;
|
|
}
|
|
|
|
uint8_t
|
|
PerformanceTiming::GetRedirectCount() const
|
|
{
|
|
if (!nsContentUtils::IsPerformanceTimingEnabled() || !IsInitialized() ||
|
|
nsContentUtils::ShouldResistFingerprinting()) {
|
|
return 0;
|
|
}
|
|
if (!mAllRedirectsSameOrigin) {
|
|
return 0;
|
|
}
|
|
return mRedirectCount;
|
|
}
|
|
|
|
bool
|
|
PerformanceTiming::ShouldReportCrossOriginRedirect() const
|
|
{
|
|
if (!nsContentUtils::IsPerformanceTimingEnabled() || !IsInitialized() ||
|
|
nsContentUtils::ShouldResistFingerprinting()) {
|
|
return false;
|
|
}
|
|
|
|
// If the redirect count is 0, or if one of the cross-origin
|
|
// redirects doesn't have the proper Timing-Allow-Origin header,
|
|
// then RedirectStart and RedirectEnd will be set to zero
|
|
return (mRedirectCount != 0) && mReportCrossOriginRedirect;
|
|
}
|
|
|
|
DOMHighResTimeStamp
|
|
PerformanceTiming::AsyncOpenHighRes()
|
|
{
|
|
if (!nsContentUtils::IsPerformanceTimingEnabled() || !IsInitialized() ||
|
|
nsContentUtils::ShouldResistFingerprinting() || mAsyncOpen.IsNull()) {
|
|
return mZeroTime;
|
|
}
|
|
return nsRFPService::ReduceTimePrecisionAsMSecs(TimeStampToDOMHighRes(mAsyncOpen));
|
|
}
|
|
|
|
DOMHighResTimeStamp
|
|
PerformanceTiming::WorkerStartHighRes()
|
|
{
|
|
if (!nsContentUtils::IsPerformanceTimingEnabled() || !IsInitialized() ||
|
|
nsContentUtils::ShouldResistFingerprinting() || mWorkerStart.IsNull()) {
|
|
return mZeroTime;
|
|
}
|
|
return nsRFPService::ReduceTimePrecisionAsMSecs(TimeStampToDOMHighRes(mWorkerStart));
|
|
}
|
|
|
|
/**
|
|
* RedirectStartHighRes() is used by both the navigation timing and the
|
|
* resource timing. Since, navigation timing and resource timing check and
|
|
* interpret cross-domain redirects in a different manner,
|
|
* RedirectStartHighRes() will make no checks for cross-domain redirect.
|
|
* It's up to the consumers of this method (PerformanceTiming::RedirectStart()
|
|
* and PerformanceResourceTiming::RedirectStart() to make such verifications.
|
|
*
|
|
* @return a valid timing if the Performance Timing is enabled
|
|
*/
|
|
DOMHighResTimeStamp
|
|
PerformanceTiming::RedirectStartHighRes()
|
|
{
|
|
if (!nsContentUtils::IsPerformanceTimingEnabled() || !IsInitialized() ||
|
|
nsContentUtils::ShouldResistFingerprinting()) {
|
|
return mZeroTime;
|
|
}
|
|
return TimeStampToReducedDOMHighResOrFetchStart(mRedirectStart);
|
|
}
|
|
|
|
DOMTimeMilliSec
|
|
PerformanceTiming::RedirectStart()
|
|
{
|
|
if (!IsInitialized()) {
|
|
return 0;
|
|
}
|
|
// We have to check if all the redirect URIs had the same origin (since there
|
|
// is no check in RedirectStartHighRes())
|
|
if (mAllRedirectsSameOrigin && mRedirectCount) {
|
|
return static_cast<int64_t>(RedirectStartHighRes());
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* RedirectEndHighRes() is used by both the navigation timing and the resource
|
|
* timing. Since, navigation timing and resource timing check and interpret
|
|
* cross-domain redirects in a different manner, RedirectEndHighRes() will make
|
|
* no checks for cross-domain redirect. It's up to the consumers of this method
|
|
* (PerformanceTiming::RedirectEnd() and
|
|
* PerformanceResourceTiming::RedirectEnd() to make such verifications.
|
|
*
|
|
* @return a valid timing if the Performance Timing is enabled
|
|
*/
|
|
DOMHighResTimeStamp
|
|
PerformanceTiming::RedirectEndHighRes()
|
|
{
|
|
if (!nsContentUtils::IsPerformanceTimingEnabled() || !IsInitialized() ||
|
|
nsContentUtils::ShouldResistFingerprinting()) {
|
|
return mZeroTime;
|
|
}
|
|
return TimeStampToReducedDOMHighResOrFetchStart(mRedirectEnd);
|
|
}
|
|
|
|
DOMTimeMilliSec
|
|
PerformanceTiming::RedirectEnd()
|
|
{
|
|
if (!IsInitialized()) {
|
|
return 0;
|
|
}
|
|
// We have to check if all the redirect URIs had the same origin (since there
|
|
// is no check in RedirectEndHighRes())
|
|
if (mAllRedirectsSameOrigin && mRedirectCount) {
|
|
return static_cast<int64_t>(RedirectEndHighRes());
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
DOMHighResTimeStamp
|
|
PerformanceTiming::DomainLookupStartHighRes()
|
|
{
|
|
if (!nsContentUtils::IsPerformanceTimingEnabled() || !IsInitialized() ||
|
|
nsContentUtils::ShouldResistFingerprinting()) {
|
|
return mZeroTime;
|
|
}
|
|
return TimeStampToReducedDOMHighResOrFetchStart(mDomainLookupStart);
|
|
}
|
|
|
|
DOMTimeMilliSec
|
|
PerformanceTiming::DomainLookupStart()
|
|
{
|
|
return static_cast<int64_t>(DomainLookupStartHighRes());
|
|
}
|
|
|
|
DOMHighResTimeStamp
|
|
PerformanceTiming::DomainLookupEndHighRes()
|
|
{
|
|
if (!nsContentUtils::IsPerformanceTimingEnabled() || !IsInitialized() ||
|
|
nsContentUtils::ShouldResistFingerprinting()) {
|
|
return mZeroTime;
|
|
}
|
|
// Bug 1155008 - nsHttpTransaction is racy. Return DomainLookupStart when null
|
|
return mDomainLookupEnd.IsNull() ? DomainLookupStartHighRes()
|
|
: nsRFPService::ReduceTimePrecisionAsMSecs(
|
|
TimeStampToDOMHighRes(mDomainLookupEnd));
|
|
}
|
|
|
|
DOMTimeMilliSec
|
|
PerformanceTiming::DomainLookupEnd()
|
|
{
|
|
return static_cast<int64_t>(DomainLookupEndHighRes());
|
|
}
|
|
|
|
DOMHighResTimeStamp
|
|
PerformanceTiming::ConnectStartHighRes()
|
|
{
|
|
if (!nsContentUtils::IsPerformanceTimingEnabled() || !IsInitialized() ||
|
|
nsContentUtils::ShouldResistFingerprinting()) {
|
|
return mZeroTime;
|
|
}
|
|
return mConnectStart.IsNull() ? DomainLookupEndHighRes()
|
|
: nsRFPService::ReduceTimePrecisionAsMSecs(
|
|
TimeStampToDOMHighRes(mConnectStart));
|
|
}
|
|
|
|
DOMTimeMilliSec
|
|
PerformanceTiming::ConnectStart()
|
|
{
|
|
return static_cast<int64_t>(ConnectStartHighRes());
|
|
}
|
|
|
|
DOMHighResTimeStamp
|
|
PerformanceTiming::SecureConnectionStartHighRes()
|
|
{
|
|
if (!nsContentUtils::IsPerformanceTimingEnabled() || !IsInitialized() ||
|
|
nsContentUtils::ShouldResistFingerprinting()) {
|
|
return mZeroTime;
|
|
}
|
|
return !mSecureConnection
|
|
? 0 // We use 0 here, because mZeroTime is sometimes set to the navigation
|
|
// start time.
|
|
: (mSecureConnectionStart.IsNull() ? mZeroTime
|
|
: nsRFPService::ReduceTimePrecisionAsMSecs(
|
|
TimeStampToDOMHighRes(mSecureConnectionStart)));
|
|
}
|
|
|
|
DOMTimeMilliSec
|
|
PerformanceTiming::SecureConnectionStart()
|
|
{
|
|
return static_cast<int64_t>(SecureConnectionStartHighRes());
|
|
}
|
|
|
|
DOMHighResTimeStamp
|
|
PerformanceTiming::ConnectEndHighRes()
|
|
{
|
|
if (!nsContentUtils::IsPerformanceTimingEnabled() || !IsInitialized() ||
|
|
nsContentUtils::ShouldResistFingerprinting()) {
|
|
return mZeroTime;
|
|
}
|
|
// Bug 1155008 - nsHttpTransaction is racy. Return ConnectStart when null
|
|
return mConnectEnd.IsNull() ? ConnectStartHighRes()
|
|
: nsRFPService::ReduceTimePrecisionAsMSecs(
|
|
TimeStampToDOMHighRes(mConnectEnd));
|
|
}
|
|
|
|
DOMTimeMilliSec
|
|
PerformanceTiming::ConnectEnd()
|
|
{
|
|
return static_cast<int64_t>(ConnectEndHighRes());
|
|
}
|
|
|
|
DOMHighResTimeStamp
|
|
PerformanceTiming::RequestStartHighRes()
|
|
{
|
|
if (!nsContentUtils::IsPerformanceTimingEnabled() || !IsInitialized() ||
|
|
nsContentUtils::ShouldResistFingerprinting()) {
|
|
return mZeroTime;
|
|
}
|
|
|
|
if (mRequestStart.IsNull()) {
|
|
mRequestStart = mWorkerRequestStart;
|
|
}
|
|
|
|
return TimeStampToReducedDOMHighResOrFetchStart(mRequestStart);
|
|
}
|
|
|
|
DOMTimeMilliSec
|
|
PerformanceTiming::RequestStart()
|
|
{
|
|
return static_cast<int64_t>(RequestStartHighRes());
|
|
}
|
|
|
|
DOMHighResTimeStamp
|
|
PerformanceTiming::ResponseStartHighRes()
|
|
{
|
|
if (!nsContentUtils::IsPerformanceTimingEnabled() || !IsInitialized() ||
|
|
nsContentUtils::ShouldResistFingerprinting()) {
|
|
return mZeroTime;
|
|
}
|
|
if (mResponseStart.IsNull() ||
|
|
(!mCacheReadStart.IsNull() && mCacheReadStart < mResponseStart)) {
|
|
mResponseStart = mCacheReadStart;
|
|
}
|
|
|
|
if (mResponseStart.IsNull() ||
|
|
(!mRequestStart.IsNull() && mResponseStart < mRequestStart)) {
|
|
mResponseStart = mRequestStart;
|
|
}
|
|
return TimeStampToReducedDOMHighResOrFetchStart(mResponseStart);
|
|
}
|
|
|
|
DOMTimeMilliSec
|
|
PerformanceTiming::ResponseStart()
|
|
{
|
|
return static_cast<int64_t>(ResponseStartHighRes());
|
|
}
|
|
|
|
DOMHighResTimeStamp
|
|
PerformanceTiming::ResponseEndHighRes()
|
|
{
|
|
if (!nsContentUtils::IsPerformanceTimingEnabled() || !IsInitialized() ||
|
|
nsContentUtils::ShouldResistFingerprinting()) {
|
|
return mZeroTime;
|
|
}
|
|
if (mResponseEnd.IsNull() ||
|
|
(!mCacheReadEnd.IsNull() && mCacheReadEnd < mResponseEnd)) {
|
|
mResponseEnd = mCacheReadEnd;
|
|
}
|
|
if (mResponseEnd.IsNull()) {
|
|
mResponseEnd = mWorkerResponseEnd;
|
|
}
|
|
// Bug 1155008 - nsHttpTransaction is racy. Return ResponseStart when null
|
|
return mResponseEnd.IsNull() ? ResponseStartHighRes()
|
|
: nsRFPService::ReduceTimePrecisionAsMSecs(
|
|
TimeStampToDOMHighRes(mResponseEnd));
|
|
}
|
|
|
|
DOMTimeMilliSec
|
|
PerformanceTiming::ResponseEnd()
|
|
{
|
|
return static_cast<int64_t>(ResponseEndHighRes());
|
|
}
|
|
|
|
bool
|
|
PerformanceTiming::IsInitialized() const
|
|
{
|
|
return mInitialized;
|
|
}
|
|
|
|
JSObject*
|
|
PerformanceTiming::WrapObject(JSContext *cx, JS::Handle<JSObject*> aGivenProto)
|
|
{
|
|
return PerformanceTimingBinding::Wrap(cx, this, aGivenProto);
|
|
}
|
|
|
|
bool
|
|
PerformanceTiming::IsTopLevelContentDocument() const
|
|
{
|
|
nsCOMPtr<nsIDocument> document = mPerformance->GetDocumentIfCurrent();
|
|
if (!document) {
|
|
return false;
|
|
}
|
|
nsCOMPtr<nsIDocShell> docShell = document->GetDocShell();
|
|
if (!docShell) {
|
|
return false;
|
|
}
|
|
nsCOMPtr<nsIDocShellTreeItem> rootItem;
|
|
Unused << docShell->GetSameTypeRootTreeItem(getter_AddRefs(rootItem));
|
|
if (rootItem.get() != static_cast<nsIDocShellTreeItem*>(docShell.get())) {
|
|
return false;
|
|
}
|
|
return rootItem->ItemType() == nsIDocShellTreeItem::typeContent;
|
|
}
|
|
|
|
} // dom namespace
|
|
} // mozilla namespace
|