mirror of
https://github.com/mozilla/gecko-dev.git
synced 2025-01-13 07:24:47 +00:00
127 lines
3.3 KiB
C
127 lines
3.3 KiB
C
/*-
|
|
* See the file LICENSE for redistribution information.
|
|
*
|
|
* Copyright (c) 1996, 1997, 1998
|
|
* Sleepycat Software. All rights reserved.
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#ifndef lint
|
|
static const char sccsid[] = "@(#)db_shash.c 10.9 (Sleepycat) 4/10/98";
|
|
#endif /* not lint */
|
|
|
|
#ifndef NO_SYSTEM_INCLUDES
|
|
#include <sys/types.h>
|
|
#endif
|
|
|
|
#include "db_int.h"
|
|
#include "shqueue.h"
|
|
#include "common_ext.h"
|
|
|
|
/*
|
|
* Table of good hash values. Up to ~250,000 buckets, we use powers of 2.
|
|
* After that, we slow the rate of increase by half. For each choice, we
|
|
* then use a nearby prime number as the hash value.
|
|
*
|
|
* If a terabyte is the maximum cache we'll see, and we assume there are
|
|
* 10 1K buckets on each hash chain, then 107374182 is the maximum number
|
|
* of buckets we'll ever need.
|
|
*/
|
|
static const struct {
|
|
u_int32_t power;
|
|
u_int32_t prime;
|
|
} list[] = {
|
|
{ 64, 67}, /* 2^6 */
|
|
{ 128, 131}, /* 2^7 */
|
|
{ 256, 257}, /* 2^8 */
|
|
{ 512, 521}, /* 2^9 */
|
|
{ 1024, 1031}, /* 2^10 */
|
|
{ 2048, 2053}, /* 2^11 */
|
|
{ 4096, 4099}, /* 2^12 */
|
|
{ 8192, 8191}, /* 2^13 */
|
|
{ 16384, 16381}, /* 2^14 */
|
|
{ 32768, 32771}, /* 2^15 */
|
|
{ 65536, 65537}, /* 2^16 */
|
|
{ 131072, 131071}, /* 2^17 */
|
|
{ 262144, 262147}, /* 2^18 */
|
|
{ 393216, 393209}, /* 2^18 + 2^18/2 */
|
|
{ 524288, 524287}, /* 2^19 */
|
|
{ 786432, 786431}, /* 2^19 + 2^19/2 */
|
|
{ 1048576, 1048573}, /* 2^20 */
|
|
{ 1572864, 1572869}, /* 2^20 + 2^20/2 */
|
|
{ 2097152, 2097169}, /* 2^21 */
|
|
{ 3145728, 3145721}, /* 2^21 + 2^21/2 */
|
|
{ 4194304, 4194301}, /* 2^22 */
|
|
{ 6291456, 6291449}, /* 2^22 + 2^22/2 */
|
|
{ 8388608, 8388617}, /* 2^23 */
|
|
{ 12582912, 12582917}, /* 2^23 + 2^23/2 */
|
|
{ 16777216, 16777213}, /* 2^24 */
|
|
{ 25165824, 25165813}, /* 2^24 + 2^24/2 */
|
|
{ 33554432, 33554393}, /* 2^25 */
|
|
{ 50331648, 50331653}, /* 2^25 + 2^25/2 */
|
|
{ 67108864, 67108859}, /* 2^26 */
|
|
{ 100663296, 100663291}, /* 2^26 + 2^26/2 */
|
|
{ 134217728, 134217757}, /* 2^27 */
|
|
{ 201326592, 201326611}, /* 2^27 + 2^27/2 */
|
|
{ 268435456, 268435459}, /* 2^28 */
|
|
{ 402653184, 402653189}, /* 2^28 + 2^28/2 */
|
|
{ 536870912, 536870909}, /* 2^29 */
|
|
{ 805306368, 805306357}, /* 2^29 + 2^29/2 */
|
|
{1073741824, 1073741827}, /* 2^30 */
|
|
{0, 0}
|
|
};
|
|
|
|
/*
|
|
* __db_tablesize --
|
|
* Choose a size for the hash table.
|
|
*
|
|
* PUBLIC: int __db_tablesize __P((u_int32_t));
|
|
*/
|
|
int
|
|
__db_tablesize(n_buckets)
|
|
u_int32_t n_buckets;
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* We try to be clever about how big we make the hash tables. Use a
|
|
* prime number close to the "suggested" number of elements that will
|
|
* be in the hash table. Use 64 as the minimum hash table size.
|
|
*
|
|
* Ref: Sedgewick, Algorithms in C, "Hash Functions"
|
|
*/
|
|
if (n_buckets < 64)
|
|
n_buckets = 64;
|
|
|
|
for (i = 0;; ++i) {
|
|
if (list[i].power == 0) {
|
|
--i;
|
|
break;
|
|
}
|
|
if (list[i].power >= n_buckets)
|
|
break;
|
|
}
|
|
return (list[i].prime);
|
|
}
|
|
|
|
/*
|
|
* __db_hashinit --
|
|
* Initialize a hash table that resides in shared memory.
|
|
*
|
|
* PUBLIC: void __db_hashinit __P((void *, u_int32_t));
|
|
*/
|
|
void
|
|
__db_hashinit(begin, nelements)
|
|
void *begin;
|
|
u_int32_t nelements;
|
|
{
|
|
u_int32_t i;
|
|
SH_TAILQ_HEAD(hash_head) *headp;
|
|
|
|
headp = (struct hash_head *)begin;
|
|
|
|
for (i = 0; i < nelements; i++, headp++)
|
|
SH_TAILQ_INIT(headp);
|
|
}
|