mirror of
https://github.com/mozilla/gecko-dev.git
synced 2024-11-07 20:17:37 +00:00
7e20285e70
The -*- file variable lines -*- establish per-file settings that Emacs will pick up. This patch makes the following changes to those lines (and touches nothing else): - Never set the buffer's mode. Years ago, Emacs did not have a good JavaScript mode, so it made sense to use Java or C++ mode in .js files. However, Emacs has had js-mode for years now; it's perfectly serviceable, and is available and enabled by default in all major Emacs packagings. Selecting a mode in the -*- file variable line -*- is almost always the wrong thing to do anyway. It overrides Emacs's default choice, which is (now) reasonable; and even worse, it overrides settings the user might have made in their '.emacs' file for that file extension. It's only useful when there's something specific about that particular file that makes a particular mode appropriate. - Correctly propagate settings that establish the correct indentation level for this file: c-basic-offset and js2-basic-offset should be js-indent-level. Whatever value they're given should be preserved; different parts of our tree use different indentation styles. - We don't use tabs in Mozilla JS code. Always set indent-tabs-mode: nil. Remove tab-width: settings, at least in files that don't contain tab characters. - Remove js2-mode settings that belong in the user's .emacs file, like js2-skip-preprocessor-directives.
187 lines
5.6 KiB
JavaScript
187 lines
5.6 KiB
JavaScript
/* -*- indent-tabs-mode: nil; js-indent-level: 2 -*- */
|
|
/* vim: set ts=2 et sw=2 tw=80: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
"use strict";
|
|
|
|
/**
|
|
* This worker handles picking, given a set of vertices and a ray (calculates
|
|
* the intersection points and offers back information about the closest hit).
|
|
*
|
|
* Used in the TiltVisualization.Presenter object.
|
|
*/
|
|
self.onmessage = function TWP_onMessage(event)
|
|
{
|
|
let data = event.data;
|
|
let vertices = data.vertices;
|
|
let ray = data.ray;
|
|
|
|
let intersection = null;
|
|
let hit = [];
|
|
|
|
// calculates the squared distance between two points
|
|
function dsq(p1, p2) {
|
|
let xd = p2[0] - p1[0];
|
|
let yd = p2[1] - p1[1];
|
|
let zd = p2[2] - p1[2];
|
|
|
|
return xd * xd + yd * yd + zd * zd;
|
|
}
|
|
|
|
// check each stack face in the visualization mesh for intersections with
|
|
// the mouse ray (using a ray picking algorithm)
|
|
for (let i = 0, len = vertices.length; i < len; i += 36) {
|
|
|
|
// the front quad
|
|
let v0f = [vertices[i], vertices[i + 1], vertices[i + 2]];
|
|
let v1f = [vertices[i + 3], vertices[i + 4], vertices[i + 5]];
|
|
let v2f = [vertices[i + 6], vertices[i + 7], vertices[i + 8]];
|
|
let v3f = [vertices[i + 9], vertices[i + 10], vertices[i + 11]];
|
|
|
|
// the back quad
|
|
let v0b = [vertices[i + 24], vertices[i + 25], vertices[i + 26]];
|
|
let v1b = [vertices[i + 27], vertices[i + 28], vertices[i + 29]];
|
|
let v2b = [vertices[i + 30], vertices[i + 31], vertices[i + 32]];
|
|
let v3b = [vertices[i + 33], vertices[i + 34], vertices[i + 35]];
|
|
|
|
// don't do anything with degenerate quads
|
|
if (!v0f[0] && !v1f[0] && !v2f[0] && !v3f[0]) {
|
|
continue;
|
|
}
|
|
|
|
// for each triangle in the stack box, check for the intersections
|
|
if (self.intersect(v0f, v1f, v2f, ray, hit) || // front left
|
|
self.intersect(v0f, v2f, v3f, ray, hit) || // front right
|
|
self.intersect(v0b, v1b, v1f, ray, hit) || // left back
|
|
self.intersect(v0b, v1f, v0f, ray, hit) || // left front
|
|
self.intersect(v3f, v2b, v3b, ray, hit) || // right back
|
|
self.intersect(v3f, v2f, v2b, ray, hit) || // right front
|
|
self.intersect(v0b, v0f, v3f, ray, hit) || // top left
|
|
self.intersect(v0b, v3f, v3b, ray, hit) || // top right
|
|
self.intersect(v1f, v1b, v2b, ray, hit) || // bottom left
|
|
self.intersect(v1f, v2b, v2f, ray, hit)) { // bottom right
|
|
|
|
// calculate the distance between the intersection hit point and camera
|
|
let d = dsq(hit, ray.origin);
|
|
|
|
// we're picking the closest stack in the mesh from the camera
|
|
if (intersection === null || d < intersection.distance) {
|
|
intersection = {
|
|
// each mesh stack is composed of 12 vertices, so there's information
|
|
// about a node once in 12 * 3 = 36 iterations (to avoid duplication)
|
|
index: i / 36,
|
|
distance: d
|
|
};
|
|
}
|
|
}
|
|
}
|
|
|
|
self.postMessage(intersection);
|
|
close();
|
|
};
|
|
|
|
/**
|
|
* Utility function for finding intersections between a ray and a triangle.
|
|
*/
|
|
self.intersect = (function() {
|
|
|
|
// creates a new instance of a vector
|
|
function create() {
|
|
return new Float32Array(3);
|
|
}
|
|
|
|
// performs a vector addition
|
|
function add(aVec, aVec2, aDest) {
|
|
aDest[0] = aVec[0] + aVec2[0];
|
|
aDest[1] = aVec[1] + aVec2[1];
|
|
aDest[2] = aVec[2] + aVec2[2];
|
|
return aDest;
|
|
}
|
|
|
|
// performs a vector subtraction
|
|
function subtract(aVec, aVec2, aDest) {
|
|
aDest[0] = aVec[0] - aVec2[0];
|
|
aDest[1] = aVec[1] - aVec2[1];
|
|
aDest[2] = aVec[2] - aVec2[2];
|
|
return aDest;
|
|
}
|
|
|
|
// performs a vector scaling
|
|
function scale(aVec, aVal, aDest) {
|
|
aDest[0] = aVec[0] * aVal;
|
|
aDest[1] = aVec[1] * aVal;
|
|
aDest[2] = aVec[2] * aVal;
|
|
return aDest;
|
|
}
|
|
|
|
// generates the cross product of two vectors
|
|
function cross(aVec, aVec2, aDest) {
|
|
let x = aVec[0];
|
|
let y = aVec[1];
|
|
let z = aVec[2];
|
|
let x2 = aVec2[0];
|
|
let y2 = aVec2[1];
|
|
let z2 = aVec2[2];
|
|
|
|
aDest[0] = y * z2 - z * y2;
|
|
aDest[1] = z * x2 - x * z2;
|
|
aDest[2] = x * y2 - y * x2;
|
|
return aDest;
|
|
}
|
|
|
|
// calculates the dot product of two vectors
|
|
function dot(aVec, aVec2) {
|
|
return aVec[0] * aVec2[0] + aVec[1] * aVec2[1] + aVec[2] * aVec2[2];
|
|
}
|
|
|
|
let edge1 = create();
|
|
let edge2 = create();
|
|
let pvec = create();
|
|
let tvec = create();
|
|
let qvec = create();
|
|
let lvec = create();
|
|
|
|
// checks for ray-triangle intersections using the Fast Minimum-Storage
|
|
// (simplified) algorithm by Tomas Moller and Ben Trumbore
|
|
return function intersect(aVert0, aVert1, aVert2, aRay, aDest) {
|
|
let dir = aRay.direction;
|
|
let orig = aRay.origin;
|
|
|
|
// find vectors for two edges sharing vert0
|
|
subtract(aVert1, aVert0, edge1);
|
|
subtract(aVert2, aVert0, edge2);
|
|
|
|
// begin calculating determinant - also used to calculate the U parameter
|
|
cross(dir, edge2, pvec);
|
|
|
|
// if determinant is near zero, ray lines in plane of triangle
|
|
let inv_det = 1 / dot(edge1, pvec);
|
|
|
|
// calculate distance from vert0 to ray origin
|
|
subtract(orig, aVert0, tvec);
|
|
|
|
// calculate U parameter and test bounds
|
|
let u = dot(tvec, pvec) * inv_det;
|
|
if (u < 0 || u > 1) {
|
|
return false;
|
|
}
|
|
|
|
// prepare to test V parameter
|
|
cross(tvec, edge1, qvec);
|
|
|
|
// calculate V parameter and test bounds
|
|
let v = dot(dir, qvec) * inv_det;
|
|
if (v < 0 || u + v > 1) {
|
|
return false;
|
|
}
|
|
|
|
// calculate T, ray intersects triangle
|
|
let t = dot(edge2, qvec) * inv_det;
|
|
|
|
scale(dir, t, lvec);
|
|
add(orig, lvec, aDest);
|
|
return true;
|
|
};
|
|
}());
|