gecko-dev/xpcom/threads/nsProxyRelease.h
Andreas Farre 25ca8d7890 Bug 1620594 - Part 7: Remove TabGroup and SystemGroup. r=nika,bas
TabGroup never really made any difference in which thread something go
dispatched to. This was the intended use, but development of TabGroups
with abstract main threads never made it that far. The good thing is
that thish makes it safe to also remove to the SystemGroup and instead
switch all SystemGroup dispatches to dispatches to main thread.

Timers for setTimeout and workers were the sole users of wrapped and
throttled event targets, that those throttled queues have been moved
to the BrowsingContextGroup and are now accessed explicitly.

The SchedulerEventTarget has been removed, since there are no longer a
separate event target for every TaskCategory. Instead a
LabellingEventTarget has been added to DocGroup to handle the case
where an event is dispatched do DocGroup or when an AbstractThread is
created using a DocGroup. This means that we'll actually label more
events correctly with the DocGroup that they belong to.

DocGroups have also been moved to BrowsingContextGroup.

Depends on D67636

Differential Revision: https://phabricator.services.mozilla.com/D65936

--HG--
extra : moz-landing-system : lando
2020-04-07 15:17:47 +00:00

377 lines
13 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef nsProxyRelease_h__
#define nsProxyRelease_h__
#include <utility>
#include "MainThreadUtils.h"
#include "mozilla/Likely.h"
#include "mozilla/Unused.h"
#include "nsCOMPtr.h"
#include "nsIEventTarget.h"
#include "nsIThread.h"
#include "nsPrintfCString.h"
#include "nsThreadUtils.h"
#ifdef XPCOM_GLUE_AVOID_NSPR
# error NS_ProxyRelease implementation depends on NSPR.
#endif
namespace detail {
template <typename T>
class ProxyReleaseEvent : public mozilla::CancelableRunnable {
public:
ProxyReleaseEvent(const char* aName, already_AddRefed<T> aDoomed)
: CancelableRunnable(aName), mDoomed(aDoomed.take()) {}
NS_IMETHOD Run() override {
NS_IF_RELEASE(mDoomed);
return NS_OK;
}
nsresult Cancel() override { return Run(); }
#ifdef MOZ_COLLECTING_RUNNABLE_TELEMETRY
NS_IMETHOD GetName(nsACString& aName) override {
if (mName) {
aName.Append(nsPrintfCString("ProxyReleaseEvent for %s", mName));
} else {
aName.AssignLiteral("ProxyReleaseEvent");
}
return NS_OK;
}
#endif
private:
T* MOZ_OWNING_REF mDoomed;
};
template <typename T>
void ProxyRelease(const char* aName, nsIEventTarget* aTarget,
already_AddRefed<T> aDoomed, bool aAlwaysProxy) {
// Auto-managing release of the pointer.
RefPtr<T> doomed = aDoomed;
nsresult rv;
if (!doomed || !aTarget) {
return;
}
if (!aAlwaysProxy) {
bool onCurrentThread = false;
rv = aTarget->IsOnCurrentThread(&onCurrentThread);
if (NS_SUCCEEDED(rv) && onCurrentThread) {
return;
}
}
nsCOMPtr<nsIRunnable> ev = new ProxyReleaseEvent<T>(aName, doomed.forget());
rv = aTarget->Dispatch(ev, NS_DISPATCH_NORMAL);
if (NS_FAILED(rv)) {
NS_WARNING("failed to post proxy release event, leaking!");
// It is better to leak the aDoomed object than risk crashing as
// a result of deleting it on the wrong thread.
}
}
template <bool nsISupportsBased>
struct ProxyReleaseChooser {
template <typename T>
static void ProxyRelease(const char* aName, nsIEventTarget* aTarget,
already_AddRefed<T> aDoomed, bool aAlwaysProxy) {
::detail::ProxyRelease(aName, aTarget, std::move(aDoomed), aAlwaysProxy);
}
};
template <>
struct ProxyReleaseChooser<true> {
// We need an intermediate step for handling classes with ambiguous
// inheritance to nsISupports.
template <typename T>
static void ProxyRelease(const char* aName, nsIEventTarget* aTarget,
already_AddRefed<T> aDoomed, bool aAlwaysProxy) {
ProxyReleaseISupports(aName, aTarget, ToSupports(aDoomed.take()),
aAlwaysProxy);
}
static void ProxyReleaseISupports(const char* aName, nsIEventTarget* aTarget,
nsISupports* aDoomed, bool aAlwaysProxy);
};
} // namespace detail
/**
* Ensures that the delete of a smart pointer occurs on the target thread.
*
* @param aName
* the labelling name of the runnable involved in the releasing.
* @param aTarget
* the target thread where the doomed object should be released.
* @param aDoomed
* the doomed object; the object to be released on the target thread.
* @param aAlwaysProxy
* normally, if NS_ProxyRelease is called on the target thread, then the
* doomed object will be released directly. However, if this parameter is
* true, then an event will always be posted to the target thread for
* asynchronous release.
*/
template <class T>
inline NS_HIDDEN_(void)
NS_ProxyRelease(const char* aName, nsIEventTarget* aTarget,
already_AddRefed<T> aDoomed, bool aAlwaysProxy = false) {
::detail::ProxyReleaseChooser<
std::is_base_of<nsISupports, T>::value>::ProxyRelease(aName, aTarget,
std::move(aDoomed),
aAlwaysProxy);
}
/**
* Ensures that the delete of a smart pointer occurs on the main thread.
*
* @param aName
* the labelling name of the runnable involved in the releasing
* @param aDoomed
* the doomed object; the object to be released on the main thread.
* @param aAlwaysProxy
* normally, if NS_ReleaseOnMainThread is called on the main
* thread, then the doomed object will be released directly. However, if
* this parameter is true, then an event will always be posted to the
* main thread for asynchronous release.
*/
template <class T>
inline NS_HIDDEN_(void)
NS_ReleaseOnMainThread(const char* aName, already_AddRefed<T> aDoomed,
bool aAlwaysProxy = false) {
// NS_ProxyRelease treats a null event target as "the current thread". So a
// handle on the main thread is only necessary when we're not already on the
// main thread or the release must happen asynchronously.
nsCOMPtr<nsIEventTarget> target;
if (!NS_IsMainThread() || aAlwaysProxy) {
target = mozilla::GetMainThreadSerialEventTarget();
if (!target) {
MOZ_ASSERT_UNREACHABLE("Could not get main thread; leaking an object!");
mozilla::Unused << aDoomed.take();
return;
}
}
NS_ProxyRelease(aName, target, std::move(aDoomed), aAlwaysProxy);
}
template <class T>
inline NS_HIDDEN_(void) NS_ReleaseOnMainThread(already_AddRefed<T> aDoomed,
bool aAlwaysProxy = false) {
NS_ReleaseOnMainThread("NS_ReleaseOnMainThread", std::move(aDoomed),
aAlwaysProxy);
}
/**
* Class to safely handle main-thread-only pointers off the main thread.
*
* Classes like XPCWrappedJS are main-thread-only, which means that it is
* forbidden to call methods on instances of these classes off the main thread.
* For various reasons (see bug 771074), this restriction applies to
* AddRef/Release as well.
*
* This presents a problem for consumers that wish to hold a callback alive
* on non-main-thread code. A common example of this is the proxy callback
* pattern, where non-main-thread code holds a strong-reference to the callback
* object, and dispatches new Runnables (also with a strong reference) to the
* main thread in order to execute the callback. This involves several AddRef
* and Release calls on the other thread, which is verboten.
*
* The basic idea of this class is to introduce a layer of indirection.
* nsMainThreadPtrHolder is a threadsafe reference-counted class that internally
* maintains one strong reference to the main-thread-only object. It must be
* instantiated on the main thread (so that the AddRef of the underlying object
* happens on the main thread), but consumers may subsequently pass references
* to the holder anywhere they please. These references are meant to be opaque
* when accessed off-main-thread (assertions enforce this).
*
* The semantics of RefPtr<nsMainThreadPtrHolder<T>> would be cumbersome, so we
* also introduce nsMainThreadPtrHandle<T>, which is conceptually identical to
* the above (though it includes various convenience methods). The basic pattern
* is as follows.
*
* // On the main thread:
* nsCOMPtr<nsIFooCallback> callback = ...;
* nsMainThreadPtrHandle<nsIFooCallback> callbackHandle =
* new nsMainThreadPtrHolder<nsIFooCallback>(callback);
* // Pass callbackHandle to structs/classes that might be accessed on other
* // threads.
*
* All structs and classes that might be accessed on other threads should store
* an nsMainThreadPtrHandle<T> rather than an nsCOMPtr<T>.
*/
template <class T>
class MOZ_IS_SMARTPTR_TO_REFCOUNTED nsMainThreadPtrHolder final {
public:
// We can only acquire a pointer on the main thread. We want to fail fast for
// threading bugs, so by default we assert if our pointer is used or acquired
// off-main-thread. But some consumers need to use the same pointer for
// multiple classes, some of which are main-thread-only and some of which
// aren't. So we allow them to explicitly disable this strict checking.
nsMainThreadPtrHolder(const char* aName, T* aPtr, bool aStrict = true,
nsIEventTarget* aMainThreadEventTarget = nullptr)
: mRawPtr(aPtr),
mStrict(aStrict),
mMainThreadEventTarget(aMainThreadEventTarget)
#ifndef RELEASE_OR_BETA
,
mName(aName)
#endif
{
// We can only AddRef our pointer on the main thread, which means that the
// holder must be constructed on the main thread.
MOZ_ASSERT(!mStrict || NS_IsMainThread());
NS_IF_ADDREF(mRawPtr);
}
nsMainThreadPtrHolder(const char* aName, already_AddRefed<T> aPtr,
bool aStrict = true,
nsIEventTarget* aMainThreadEventTarget = nullptr)
: mRawPtr(aPtr.take()),
mStrict(aStrict),
mMainThreadEventTarget(aMainThreadEventTarget)
#ifndef RELEASE_OR_BETA
,
mName(aName)
#endif
{
// Since we don't need to AddRef the pointer, this constructor is safe to
// call on any thread.
}
// Copy constructor and operator= deleted. Once constructed, the holder is
// immutable.
T& operator=(nsMainThreadPtrHolder& aOther) = delete;
nsMainThreadPtrHolder(const nsMainThreadPtrHolder& aOther) = delete;
private:
// We can be released on any thread.
~nsMainThreadPtrHolder() {
if (NS_IsMainThread()) {
NS_IF_RELEASE(mRawPtr);
} else if (mRawPtr) {
if (!mMainThreadEventTarget) {
mMainThreadEventTarget = do_GetMainThread();
}
MOZ_ASSERT(mMainThreadEventTarget);
NS_ProxyRelease(
#ifdef RELEASE_OR_BETA
nullptr,
#else
mName,
#endif
mMainThreadEventTarget, dont_AddRef(mRawPtr));
}
}
public:
T* get() const {
// Nobody should be touching the raw pointer off-main-thread.
if (mStrict && MOZ_UNLIKELY(!NS_IsMainThread())) {
NS_ERROR("Can't dereference nsMainThreadPtrHolder off main thread");
MOZ_CRASH();
}
return mRawPtr;
}
bool operator==(const nsMainThreadPtrHolder<T>& aOther) const {
return mRawPtr == aOther.mRawPtr;
}
bool operator!() const { return !mRawPtr; }
NS_INLINE_DECL_THREADSAFE_REFCOUNTING(nsMainThreadPtrHolder<T>)
private:
// Our wrapped pointer.
T* mRawPtr = nullptr;
// Whether to strictly enforce thread invariants in this class.
bool mStrict = true;
nsCOMPtr<nsIEventTarget> mMainThreadEventTarget;
#ifndef RELEASE_OR_BETA
const char* mName = nullptr;
#endif
};
template <class T>
class MOZ_IS_SMARTPTR_TO_REFCOUNTED nsMainThreadPtrHandle {
public:
nsMainThreadPtrHandle() : mPtr(nullptr) {}
MOZ_IMPLICIT nsMainThreadPtrHandle(decltype(nullptr)) : mPtr(nullptr) {}
explicit nsMainThreadPtrHandle(nsMainThreadPtrHolder<T>* aHolder)
: mPtr(aHolder) {}
explicit nsMainThreadPtrHandle(
already_AddRefed<nsMainThreadPtrHolder<T>> aHolder)
: mPtr(aHolder) {}
nsMainThreadPtrHandle(const nsMainThreadPtrHandle& aOther) = default;
nsMainThreadPtrHandle(nsMainThreadPtrHandle&& aOther) = default;
nsMainThreadPtrHandle& operator=(const nsMainThreadPtrHandle& aOther) =
default;
nsMainThreadPtrHandle& operator=(nsMainThreadPtrHandle&& aOther) = default;
nsMainThreadPtrHandle& operator=(nsMainThreadPtrHolder<T>* aHolder) {
mPtr = aHolder;
return *this;
}
// These all call through to nsMainThreadPtrHolder, and thus implicitly
// assert that we're on the main thread (if strict). Off-main-thread consumers
// must treat these handles as opaque.
T* get() const {
if (mPtr) {
return mPtr.get()->get();
}
return nullptr;
}
operator T*() const { return get(); }
T* operator->() const MOZ_NO_ADDREF_RELEASE_ON_RETURN { return get(); }
// These are safe to call on other threads with appropriate external locking.
bool operator==(const nsMainThreadPtrHandle<T>& aOther) const {
if (!mPtr || !aOther.mPtr) {
return mPtr == aOther.mPtr;
}
return *mPtr == *aOther.mPtr;
}
bool operator!=(const nsMainThreadPtrHandle<T>& aOther) const {
return !operator==(aOther);
}
bool operator==(decltype(nullptr)) const { return mPtr == nullptr; }
bool operator!=(decltype(nullptr)) const { return mPtr != nullptr; }
bool operator!() const { return !mPtr || !*mPtr; }
private:
RefPtr<nsMainThreadPtrHolder<T>> mPtr;
};
class nsCycleCollectionTraversalCallback;
template <typename T>
void CycleCollectionNoteChild(nsCycleCollectionTraversalCallback& aCallback,
T* aChild, const char* aName, uint32_t aFlags);
template <typename T>
inline void ImplCycleCollectionTraverse(
nsCycleCollectionTraversalCallback& aCallback,
nsMainThreadPtrHandle<T>& aField, const char* aName, uint32_t aFlags = 0) {
CycleCollectionNoteChild(aCallback, aField.get(), aName, aFlags);
}
template <typename T>
inline void ImplCycleCollectionUnlink(nsMainThreadPtrHandle<T>& aField) {
aField = nullptr;
}
#endif