mirror of
https://github.com/mozilla/gecko-dev.git
synced 2024-11-06 00:55:37 +00:00
541 lines
16 KiB
C
541 lines
16 KiB
C
/*
|
|
* ***** BEGIN LICENSE BLOCK *****
|
|
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
|
|
*
|
|
* The contents of this file are subject to the Mozilla Public License Version
|
|
* 1.1 (the "License"); you may not use this file except in compliance with
|
|
* the License. You may obtain a copy of the License at
|
|
* http://www.mozilla.org/MPL/
|
|
*
|
|
* Software distributed under the License is distributed on an "AS IS" basis,
|
|
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
|
|
* for the specific language governing rights and limitations under the
|
|
* License.
|
|
*
|
|
* The Original Code is the elliptic curve math library for binary polynomial field curves.
|
|
*
|
|
* The Initial Developer of the Original Code is
|
|
* Sun Microsystems, Inc.
|
|
* Portions created by the Initial Developer are Copyright (C) 2003
|
|
* the Initial Developer. All Rights Reserved.
|
|
*
|
|
* Contributor(s):
|
|
* Douglas Stebila <douglas@stebila.ca>
|
|
*
|
|
* Alternatively, the contents of this file may be used under the terms of
|
|
* either the GNU General Public License Version 2 or later (the "GPL"), or
|
|
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
|
|
* in which case the provisions of the GPL or the LGPL are applicable instead
|
|
* of those above. If you wish to allow use of your version of this file only
|
|
* under the terms of either the GPL or the LGPL, and not to allow others to
|
|
* use your version of this file under the terms of the MPL, indicate your
|
|
* decision by deleting the provisions above and replace them with the notice
|
|
* and other provisions required by the GPL or the LGPL. If you do not delete
|
|
* the provisions above, a recipient may use your version of this file under
|
|
* the terms of any one of the MPL, the GPL or the LGPL.
|
|
*
|
|
* ***** END LICENSE BLOCK ***** */
|
|
|
|
#ifdef NSS_ENABLE_ECC
|
|
/*
|
|
* GF2m_ecl.c: Contains an implementation of elliptic curve math library
|
|
* for curves over GF2m.
|
|
*
|
|
* XXX Can be moved to a separate subdirectory later.
|
|
*
|
|
*/
|
|
|
|
#include "GF2m_ecl.h"
|
|
#include "mpi/mplogic.h"
|
|
#include "mpi/mp_gf2m.h"
|
|
#include <stdlib.h>
|
|
|
|
/* Checks if point P(px, py) is at infinity. Uses affine coordinates. */
|
|
mp_err
|
|
GF2m_ec_pt_is_inf_aff(const mp_int *px, const mp_int *py)
|
|
{
|
|
|
|
if ((mp_cmp_z(px) == 0) && (mp_cmp_z(py) == 0)) {
|
|
return MP_YES;
|
|
} else {
|
|
return MP_NO;
|
|
}
|
|
|
|
}
|
|
|
|
/* Sets P(px, py) to be the point at infinity. Uses affine coordinates. */
|
|
mp_err
|
|
GF2m_ec_pt_set_inf_aff(mp_int *px, mp_int *py)
|
|
{
|
|
mp_zero(px);
|
|
mp_zero(py);
|
|
return MP_OKAY;
|
|
}
|
|
|
|
/* Computes R = P + Q based on IEEE P1363 A.10.2.
|
|
* Elliptic curve points P, Q, and R can all be identical.
|
|
* Uses affine coordinates.
|
|
*/
|
|
mp_err
|
|
GF2m_ec_pt_add_aff(const mp_int *pp, const mp_int *a, const mp_int *px,
|
|
const mp_int *py, const mp_int *qx, const mp_int *qy,
|
|
mp_int *rx, mp_int *ry)
|
|
{
|
|
mp_err err = MP_OKAY;
|
|
mp_int lambda, xtemp, ytemp;
|
|
unsigned int *p;
|
|
int p_size;
|
|
|
|
p_size = mp_bpoly2arr(pp, p, 0) + 1;
|
|
p = (unsigned int *) (malloc(sizeof(unsigned int) * p_size));
|
|
if (p == NULL) goto cleanup;
|
|
mp_bpoly2arr(pp, p, p_size);
|
|
|
|
CHECK_MPI_OK( mp_init(&lambda) );
|
|
CHECK_MPI_OK( mp_init(&xtemp) );
|
|
CHECK_MPI_OK( mp_init(&ytemp) );
|
|
/* if P = inf, then R = Q */
|
|
if (GF2m_ec_pt_is_inf_aff(px, py) == 0) {
|
|
CHECK_MPI_OK( mp_copy(qx, rx) );
|
|
CHECK_MPI_OK( mp_copy(qy, ry) );
|
|
err = MP_OKAY;
|
|
goto cleanup;
|
|
}
|
|
/* if Q = inf, then R = P */
|
|
if (GF2m_ec_pt_is_inf_aff(qx, qy) == 0) {
|
|
CHECK_MPI_OK( mp_copy(px, rx) );
|
|
CHECK_MPI_OK( mp_copy(py, ry) );
|
|
err = MP_OKAY;
|
|
goto cleanup;
|
|
}
|
|
/* if px != qx, then lambda = (py+qy) / (px+qx),
|
|
* xtemp = a + lambda^2 + lambda + px + qx
|
|
*/
|
|
if (mp_cmp(px, qx) != 0) {
|
|
CHECK_MPI_OK( mp_badd(py, qy, &ytemp) );
|
|
CHECK_MPI_OK( mp_badd(px, qx, &xtemp) );
|
|
CHECK_MPI_OK( mp_bdivmod(&ytemp, &xtemp, pp, p, &lambda) );
|
|
CHECK_MPI_OK( mp_bsqrmod(&lambda, p, &xtemp) );
|
|
CHECK_MPI_OK( mp_badd(&xtemp, &lambda, &xtemp) );
|
|
CHECK_MPI_OK( mp_badd(&xtemp, a, &xtemp) );
|
|
CHECK_MPI_OK( mp_badd(&xtemp, px, &xtemp) );
|
|
CHECK_MPI_OK( mp_badd(&xtemp, qx, &xtemp) );
|
|
} else {
|
|
/* if py != qy or qx = 0, then R = inf */
|
|
if (((mp_cmp(py, qy) != 0)) || (mp_cmp_z(qx) == 0)) {
|
|
mp_zero(rx);
|
|
mp_zero(ry);
|
|
err = MP_OKAY;
|
|
goto cleanup;
|
|
}
|
|
/* lambda = qx + qy / qx */
|
|
CHECK_MPI_OK( mp_bdivmod(qy, qx, pp, p, &lambda) );
|
|
CHECK_MPI_OK( mp_badd(&lambda, qx, &lambda) );
|
|
/* xtemp = a + lambda^2 + lambda */
|
|
CHECK_MPI_OK( mp_bsqrmod(&lambda, p, &xtemp) );
|
|
CHECK_MPI_OK( mp_badd(&xtemp, &lambda, &xtemp) );
|
|
CHECK_MPI_OK( mp_badd(&xtemp, a, &xtemp) );
|
|
}
|
|
/* ry = (qx + xtemp) * lambda + xtemp + qy */
|
|
CHECK_MPI_OK( mp_badd(qx, &xtemp, &ytemp) );
|
|
CHECK_MPI_OK( mp_bmulmod(&ytemp, &lambda, p, &ytemp) );
|
|
CHECK_MPI_OK( mp_badd(&ytemp, &xtemp, &ytemp) );
|
|
CHECK_MPI_OK( mp_badd(&ytemp, qy, ry) );
|
|
/* rx = xtemp */
|
|
CHECK_MPI_OK( mp_copy(&xtemp, rx) );
|
|
|
|
cleanup:
|
|
mp_clear(&lambda);
|
|
mp_clear(&xtemp);
|
|
mp_clear(&ytemp);
|
|
free(p);
|
|
return err;
|
|
}
|
|
|
|
/* Computes R = P - Q.
|
|
* Elliptic curve points P, Q, and R can all be identical.
|
|
* Uses affine coordinates.
|
|
*/
|
|
mp_err
|
|
GF2m_ec_pt_sub_aff(const mp_int *pp, const mp_int *a, const mp_int *px,
|
|
const mp_int *py, const mp_int *qx, const mp_int *qy,
|
|
mp_int *rx, mp_int *ry)
|
|
{
|
|
mp_err err = MP_OKAY;
|
|
mp_int nqy;
|
|
MP_DIGITS(&nqy) = 0;
|
|
CHECK_MPI_OK( mp_init(&nqy) );
|
|
/* nqy = qx+qy */
|
|
CHECK_MPI_OK( mp_badd(qx, qy, &nqy) );
|
|
err = GF2m_ec_pt_add_aff(pp, a, px, py, qx, &nqy, rx, ry);
|
|
cleanup:
|
|
mp_clear(&nqy);
|
|
return err;
|
|
}
|
|
|
|
/* Computes R = 2P.
|
|
* Elliptic curve points P and R can be identical.
|
|
* Uses affine coordinates.
|
|
*/
|
|
mp_err
|
|
GF2m_ec_pt_dbl_aff(const mp_int *pp, const mp_int *a, const mp_int *px,
|
|
const mp_int *py, mp_int *rx, mp_int *ry)
|
|
{
|
|
return GF2m_ec_pt_add_aff(pp, a, px, py, px, py, rx, ry);
|
|
}
|
|
|
|
/* Gets the i'th bit in the binary representation of a.
|
|
* If i >= length(a), then return 0.
|
|
* (The above behaviour differs from mpl_get_bit, which
|
|
* causes an error if i >= length(a).)
|
|
*/
|
|
#define MP_GET_BIT(a, i) \
|
|
((i) >= mpl_significant_bits((a))) ? 0 : mpl_get_bit((a), (i))
|
|
|
|
/* Computes R = nP based on IEEE P1363 A.10.3.
|
|
* Elliptic curve points P and R can be identical.
|
|
* Uses affine coordinates.
|
|
*/
|
|
mp_err
|
|
GF2m_ec_pt_mul_aff(const mp_int *pp, const mp_int *a, const mp_int *b,
|
|
const mp_int *px, const mp_int *py, const mp_int *n,
|
|
mp_int *rx, mp_int *ry)
|
|
{
|
|
mp_err err = MP_OKAY;
|
|
mp_int k, k3, qx, qy, sx, sy;
|
|
int b1, b3, i, l;
|
|
unsigned int *p;
|
|
int p_size;
|
|
|
|
MP_DIGITS(&k) = 0;
|
|
MP_DIGITS(&k3) = 0;
|
|
MP_DIGITS(&qx) = 0;
|
|
MP_DIGITS(&qy) = 0;
|
|
MP_DIGITS(&sx) = 0;
|
|
MP_DIGITS(&sy) = 0;
|
|
CHECK_MPI_OK( mp_init(&k) );
|
|
CHECK_MPI_OK( mp_init(&k3) );
|
|
CHECK_MPI_OK( mp_init(&qx) );
|
|
CHECK_MPI_OK( mp_init(&qy) );
|
|
CHECK_MPI_OK( mp_init(&sx) );
|
|
CHECK_MPI_OK( mp_init(&sy) );
|
|
|
|
p_size = mp_bpoly2arr(pp, p, 0) + 1;
|
|
p = (unsigned int *) (malloc(sizeof(unsigned int) * p_size));
|
|
if (p == NULL) goto cleanup;
|
|
mp_bpoly2arr(pp, p, p_size);
|
|
|
|
/* if n = 0 then r = inf */
|
|
if (mp_cmp_z(n) == 0) {
|
|
mp_zero(rx);
|
|
mp_zero(ry);
|
|
err = MP_OKAY;
|
|
goto cleanup;
|
|
}
|
|
/* Q = P, k = n */
|
|
CHECK_MPI_OK( mp_copy(px, &qx) );
|
|
CHECK_MPI_OK( mp_copy(py, &qy) );
|
|
CHECK_MPI_OK( mp_copy(n, &k) );
|
|
/* if n < 0 then Q = -Q, k = -k */
|
|
if (mp_cmp_z(n) < 0) {
|
|
CHECK_MPI_OK( mp_badd(&qx, &qy, &qy) );
|
|
CHECK_MPI_OK( mp_neg(&k, &k) );
|
|
}
|
|
#ifdef EC_DEBUG /* basic double and add method */
|
|
l = mpl_significant_bits(&k) - 1;
|
|
mp_zero(&sx);
|
|
mp_zero(&sy);
|
|
for (i = l; i >= 0; i--) {
|
|
/* if k_i = 1, then S = S + Q */
|
|
if (mpl_get_bit(&k, i) != 0) {
|
|
CHECK_MPI_OK( GF2m_ec_pt_add_aff(pp, a, &sx, &sy, &qx, &qy, &sx, &sy) );
|
|
}
|
|
if (i > 0) {
|
|
/* S = 2S */
|
|
CHECK_MPI_OK( GF2m_ec_pt_dbl_aff(pp, a, &sx, &sy, &sx, &sy) );
|
|
}
|
|
}
|
|
#else /* double and add/subtract method from standard */
|
|
/* k3 = 3 * k */
|
|
mp_set(&k3, 0x3);
|
|
CHECK_MPI_OK( mp_mul(&k, &k3, &k3) );
|
|
/* S = Q */
|
|
CHECK_MPI_OK( mp_copy(&qx, &sx) );
|
|
CHECK_MPI_OK( mp_copy(&qy, &sy) );
|
|
/* l = index of high order bit in binary representation of 3*k */
|
|
l = mpl_significant_bits(&k3) - 1;
|
|
/* for i = l-1 downto 1 */
|
|
for (i = l - 1; i >= 1; i--) {
|
|
/* S = 2S */
|
|
CHECK_MPI_OK( GF2m_ec_pt_dbl_aff(pp, a, &sx, &sy, &sx, &sy) );
|
|
b3 = MP_GET_BIT(&k3, i);
|
|
b1 = MP_GET_BIT(&k, i);
|
|
/* if k3_i = 1 and k_i = 0, then S = S + Q */
|
|
if ((b3 == 1) && (b1 == 0)) {
|
|
CHECK_MPI_OK( GF2m_ec_pt_add_aff(pp, a, &sx, &sy, &qx, &qy, &sx, &sy) );
|
|
/* if k3_i = 0 and k_i = 1, then S = S - Q */
|
|
} else if ((b3 == 0) && (b1 == 1)) {
|
|
CHECK_MPI_OK( GF2m_ec_pt_sub_aff(pp, a, &sx, &sy, &qx, &qy, &sx, &sy) );
|
|
}
|
|
}
|
|
#endif
|
|
/* output S */
|
|
CHECK_MPI_OK( mp_copy(&sx, rx) );
|
|
CHECK_MPI_OK( mp_copy(&sy, ry) );
|
|
|
|
cleanup:
|
|
mp_clear(&k);
|
|
mp_clear(&k3);
|
|
mp_clear(&qx);
|
|
mp_clear(&qy);
|
|
mp_clear(&sx);
|
|
mp_clear(&sy);
|
|
free(p);
|
|
return err;
|
|
}
|
|
|
|
/* Compute the x-coordinate x/z for the point 2*(x/z) in Montgomery projective
|
|
* coordinates.
|
|
* Uses algorithm Mdouble in appendix of
|
|
* Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over
|
|
* GF(2^m) without precomputation".
|
|
* modified to not require precomputation of c=b^{2^{m-1}}.
|
|
*/
|
|
static mp_err
|
|
gf2m_Mdouble(const mp_int *pp, const unsigned int p[], const mp_int *a,
|
|
const mp_int *b, mp_int *x, mp_int *z)
|
|
{
|
|
mp_err err = MP_OKAY;
|
|
mp_int t1;
|
|
|
|
MP_DIGITS(&t1) = 0;
|
|
CHECK_MPI_OK( mp_init(&t1) );
|
|
|
|
CHECK_MPI_OK( mp_bsqrmod(x, p, x) );
|
|
CHECK_MPI_OK( mp_bsqrmod(z, p, &t1) );
|
|
CHECK_MPI_OK( mp_bmulmod(x, &t1, p, z) );
|
|
CHECK_MPI_OK( mp_bsqrmod(x, p, x) );
|
|
CHECK_MPI_OK( mp_bsqrmod(&t1, p, &t1) );
|
|
CHECK_MPI_OK( mp_bmulmod(b, &t1, p, &t1) );
|
|
CHECK_MPI_OK( mp_badd(x, &t1, x) );
|
|
|
|
cleanup:
|
|
mp_clear(&t1);
|
|
return err;
|
|
}
|
|
|
|
/* Compute the x-coordinate x1/z1 for the point (x1/z1)+(x2/x2) in Montgomery
|
|
* projective coordinates.
|
|
* Uses algorithm Madd in appendix of
|
|
* Lopex, J. and Dahab, R. "Fast multiplication on elliptic curves over
|
|
* GF(2^m) without precomputation".
|
|
*/
|
|
static mp_err
|
|
gf2m_Madd(const mp_int *pp, const unsigned int p[], const mp_int *a,
|
|
const mp_int *b, const mp_int *x, mp_int *x1, mp_int *z1, mp_int *x2,
|
|
mp_int *z2)
|
|
{
|
|
mp_err err = MP_OKAY;
|
|
mp_int t1, t2;
|
|
|
|
MP_DIGITS(&t1) = 0;
|
|
MP_DIGITS(&t2) = 0;
|
|
CHECK_MPI_OK( mp_init(&t1) );
|
|
CHECK_MPI_OK( mp_init(&t2) );
|
|
|
|
CHECK_MPI_OK( mp_copy(x, &t1) );
|
|
CHECK_MPI_OK( mp_bmulmod(x1, z2, p, x1) );
|
|
CHECK_MPI_OK( mp_bmulmod(z1, x2, p, z1) );
|
|
CHECK_MPI_OK( mp_bmulmod(x1, z1, p, &t2) );
|
|
CHECK_MPI_OK( mp_badd(z1, x1, z1) );
|
|
CHECK_MPI_OK( mp_bsqrmod(z1, p, z1) );
|
|
CHECK_MPI_OK( mp_bmulmod(z1, &t1, p, x1) );
|
|
CHECK_MPI_OK( mp_badd(x1, &t2, x1) );
|
|
|
|
cleanup:
|
|
mp_clear(&t1);
|
|
mp_clear(&t2);
|
|
return err;
|
|
}
|
|
|
|
/* Compute the x, y affine coordinates from the point (x1, z1) (x2, z2)
|
|
* using Montgomery point multiplication algorithm Mxy() in appendix of
|
|
* Lopex, J. and Dahab, R. "Fast multiplication on elliptic curves over
|
|
* GF(2^m) without precomputation".
|
|
* Returns:
|
|
* 0 on error
|
|
* 1 if return value should be the point at infinity
|
|
* 2 otherwise
|
|
*/
|
|
static int
|
|
gf2m_Mxy(const mp_int *pp, const unsigned int p[], const mp_int *a,
|
|
const mp_int *b, const mp_int *x, const mp_int *y, mp_int *x1, mp_int *z1,
|
|
mp_int *x2, mp_int *z2)
|
|
{
|
|
mp_err err = MP_OKAY;
|
|
int ret;
|
|
mp_int t3, t4, t5;
|
|
|
|
MP_DIGITS(&t3) = 0;
|
|
MP_DIGITS(&t4) = 0;
|
|
MP_DIGITS(&t5) = 0;
|
|
CHECK_MPI_OK( mp_init(&t3) );
|
|
CHECK_MPI_OK( mp_init(&t4) );
|
|
CHECK_MPI_OK( mp_init(&t5) );
|
|
|
|
if (mp_cmp_z(z1) == 0) {
|
|
mp_zero(x2);
|
|
mp_zero(z2);
|
|
ret = 1;
|
|
goto cleanup;
|
|
}
|
|
|
|
if (mp_cmp_z(z2) == 0) {
|
|
CHECK_MPI_OK( mp_copy(x, x2) );
|
|
CHECK_MPI_OK( mp_badd(x, y, z2) );
|
|
ret = 2;
|
|
goto cleanup;
|
|
}
|
|
|
|
mp_set(&t5, 0x1);
|
|
|
|
CHECK_MPI_OK( mp_bmulmod(z1, z2, p, &t3) );
|
|
|
|
CHECK_MPI_OK( mp_bmulmod(z1, x, p, z1) );
|
|
CHECK_MPI_OK( mp_badd(z1, x1, z1) );
|
|
CHECK_MPI_OK( mp_bmulmod(z2, x, p, z2) );
|
|
CHECK_MPI_OK( mp_bmulmod(z2, x1, p, x1) );
|
|
CHECK_MPI_OK( mp_badd(z2, x2, z2) );
|
|
|
|
CHECK_MPI_OK( mp_bmulmod(z2, z1, p, z2) );
|
|
CHECK_MPI_OK( mp_bsqrmod(x, p, &t4) );
|
|
CHECK_MPI_OK( mp_badd(&t4, y, &t4) );
|
|
CHECK_MPI_OK( mp_bmulmod(&t4, &t3, p, &t4) );
|
|
CHECK_MPI_OK( mp_badd(&t4, z2, &t4) );
|
|
|
|
CHECK_MPI_OK( mp_bmulmod(&t3, x, p, &t3) );
|
|
CHECK_MPI_OK( mp_bdivmod(&t5, &t3, pp, p, &t3) );
|
|
CHECK_MPI_OK( mp_bmulmod(&t3, &t4, p, &t4) );
|
|
CHECK_MPI_OK( mp_bmulmod(x1, &t3, p, x2) );
|
|
CHECK_MPI_OK( mp_badd(x2, x, z2) );
|
|
|
|
CHECK_MPI_OK( mp_bmulmod(z2, &t4, p, z2) );
|
|
CHECK_MPI_OK( mp_badd(z2, y, z2) );
|
|
|
|
ret = 2;
|
|
|
|
cleanup:
|
|
mp_clear(&t3);
|
|
mp_clear(&t4);
|
|
mp_clear(&t5);
|
|
if (err == MP_OKAY) {
|
|
return ret;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Computes R = nP based on algorithm 2P of
|
|
* Lopex, J. and Dahab, R. "Fast multiplication on elliptic curves over
|
|
* GF(2^m) without precomputation".
|
|
* Elliptic curve points P and R can be identical.
|
|
* Uses Montgomery projective coordinates.
|
|
*/
|
|
mp_err
|
|
GF2m_ec_pt_mul_mont(const mp_int *pp, const mp_int *a, const mp_int *b,
|
|
const mp_int *px, const mp_int *py, const mp_int *n,
|
|
mp_int *rx, mp_int *ry)
|
|
{
|
|
mp_err err = MP_OKAY;
|
|
mp_int x1, x2, z1, z2;
|
|
int i, j;
|
|
mp_digit top_bit, mask;
|
|
unsigned int *p;
|
|
int p_size;
|
|
|
|
MP_DIGITS(&x1) = 0;
|
|
MP_DIGITS(&x2) = 0;
|
|
MP_DIGITS(&z1) = 0;
|
|
MP_DIGITS(&z2) = 0;
|
|
CHECK_MPI_OK( mp_init(&x1) );
|
|
CHECK_MPI_OK( mp_init(&x2) );
|
|
CHECK_MPI_OK( mp_init(&z1) );
|
|
CHECK_MPI_OK( mp_init(&z2) );
|
|
|
|
p_size = mp_bpoly2arr(pp, p, 0) + 1;
|
|
p = (unsigned int *) (malloc(sizeof(unsigned int) * p_size));
|
|
if (p == NULL) goto cleanup;
|
|
mp_bpoly2arr(pp, p, p_size);
|
|
|
|
/* if result should be point at infinity */
|
|
if ((mp_cmp_z(n) == 0) || (GF2m_ec_pt_is_inf_aff(px, py) == MP_YES)) {
|
|
CHECK_MPI_OK( GF2m_ec_pt_set_inf_aff(rx, ry) );
|
|
goto cleanup;
|
|
}
|
|
|
|
CHECK_MPI_OK( mp_copy(rx, &x2) ); /* x2 = rx */
|
|
CHECK_MPI_OK( mp_copy(ry, &z2) ); /* z2 = ry */
|
|
|
|
CHECK_MPI_OK( mp_copy(px, &x1) ); /* x1 = px */
|
|
mp_set(&z1, 0x1); /* z1 = 1 */
|
|
CHECK_MPI_OK( mp_bsqrmod(&x1, p, &z2) ); /* z2 = x1^2 = x2^2 */
|
|
CHECK_MPI_OK( mp_bsqrmod(&z2, p, &x2) );
|
|
CHECK_MPI_OK( mp_badd(&x2, b, &x2) ); /* x2 = px^4 + b */
|
|
|
|
/* find top-most bit and go one past it */
|
|
i = MP_USED(n) - 1;
|
|
j = MP_DIGIT_BIT - 1;
|
|
top_bit = 1;
|
|
top_bit <<= MP_DIGIT_BIT - 1;
|
|
mask = top_bit;
|
|
while (!(MP_DIGITS(n)[i] & mask)) {
|
|
mask >>= 1;
|
|
j--;
|
|
}
|
|
mask >>= 1; j--;
|
|
|
|
/* if top most bit was at word break, go to next word */
|
|
if (!mask) {
|
|
i--;
|
|
j = MP_DIGIT_BIT - 1;
|
|
mask = top_bit;
|
|
}
|
|
|
|
for (; i >= 0; i--) {
|
|
for (; j >= 0; j--) {
|
|
if (MP_DIGITS(n)[i] & mask) {
|
|
CHECK_MPI_OK( gf2m_Madd(pp, p, a, b, px, &x1, &z1, &x2, &z2) );
|
|
CHECK_MPI_OK( gf2m_Mdouble(pp, p, a, b, &x2, &z2) );
|
|
} else {
|
|
CHECK_MPI_OK( gf2m_Madd(pp, p, a, b, px, &x2, &z2, &x1, &z1) );
|
|
CHECK_MPI_OK( gf2m_Mdouble(pp, p, a, b, &x1, &z1) );
|
|
}
|
|
mask >>= 1;
|
|
}
|
|
j = MP_DIGIT_BIT - 1;
|
|
mask = top_bit;
|
|
}
|
|
|
|
/* convert out of "projective" coordinates */
|
|
i = gf2m_Mxy(pp, p, a, b, px, py, &x1, &z1, &x2, &z2);
|
|
if (i == 0) {
|
|
err = MP_BADARG;
|
|
goto cleanup;
|
|
} else if (i == 1) {
|
|
CHECK_MPI_OK( GF2m_ec_pt_set_inf_aff(rx, ry) );
|
|
} else {
|
|
CHECK_MPI_OK( mp_copy(&x2, rx) );
|
|
CHECK_MPI_OK( mp_copy(&z2, ry) );
|
|
}
|
|
|
|
cleanup:
|
|
mp_clear(&x1);
|
|
mp_clear(&x2);
|
|
mp_clear(&z1);
|
|
mp_clear(&z2);
|
|
free(p);
|
|
return err;
|
|
}
|
|
|
|
#endif /* NSS_ENABLE_ECC */
|