gecko-dev/security/nss/lib/freebl/GF2m_ecl.c
2004-04-25 15:03:26 +00:00

541 lines
16 KiB
C

/*
* ***** BEGIN LICENSE BLOCK *****
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is the elliptic curve math library for binary polynomial field curves.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Douglas Stebila <douglas@stebila.ca>
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
* ***** END LICENSE BLOCK ***** */
#ifdef NSS_ENABLE_ECC
/*
* GF2m_ecl.c: Contains an implementation of elliptic curve math library
* for curves over GF2m.
*
* XXX Can be moved to a separate subdirectory later.
*
*/
#include "GF2m_ecl.h"
#include "mpi/mplogic.h"
#include "mpi/mp_gf2m.h"
#include <stdlib.h>
/* Checks if point P(px, py) is at infinity. Uses affine coordinates. */
mp_err
GF2m_ec_pt_is_inf_aff(const mp_int *px, const mp_int *py)
{
if ((mp_cmp_z(px) == 0) && (mp_cmp_z(py) == 0)) {
return MP_YES;
} else {
return MP_NO;
}
}
/* Sets P(px, py) to be the point at infinity. Uses affine coordinates. */
mp_err
GF2m_ec_pt_set_inf_aff(mp_int *px, mp_int *py)
{
mp_zero(px);
mp_zero(py);
return MP_OKAY;
}
/* Computes R = P + Q based on IEEE P1363 A.10.2.
* Elliptic curve points P, Q, and R can all be identical.
* Uses affine coordinates.
*/
mp_err
GF2m_ec_pt_add_aff(const mp_int *pp, const mp_int *a, const mp_int *px,
const mp_int *py, const mp_int *qx, const mp_int *qy,
mp_int *rx, mp_int *ry)
{
mp_err err = MP_OKAY;
mp_int lambda, xtemp, ytemp;
unsigned int *p;
int p_size;
p_size = mp_bpoly2arr(pp, p, 0) + 1;
p = (unsigned int *) (malloc(sizeof(unsigned int) * p_size));
if (p == NULL) goto cleanup;
mp_bpoly2arr(pp, p, p_size);
CHECK_MPI_OK( mp_init(&lambda) );
CHECK_MPI_OK( mp_init(&xtemp) );
CHECK_MPI_OK( mp_init(&ytemp) );
/* if P = inf, then R = Q */
if (GF2m_ec_pt_is_inf_aff(px, py) == 0) {
CHECK_MPI_OK( mp_copy(qx, rx) );
CHECK_MPI_OK( mp_copy(qy, ry) );
err = MP_OKAY;
goto cleanup;
}
/* if Q = inf, then R = P */
if (GF2m_ec_pt_is_inf_aff(qx, qy) == 0) {
CHECK_MPI_OK( mp_copy(px, rx) );
CHECK_MPI_OK( mp_copy(py, ry) );
err = MP_OKAY;
goto cleanup;
}
/* if px != qx, then lambda = (py+qy) / (px+qx),
* xtemp = a + lambda^2 + lambda + px + qx
*/
if (mp_cmp(px, qx) != 0) {
CHECK_MPI_OK( mp_badd(py, qy, &ytemp) );
CHECK_MPI_OK( mp_badd(px, qx, &xtemp) );
CHECK_MPI_OK( mp_bdivmod(&ytemp, &xtemp, pp, p, &lambda) );
CHECK_MPI_OK( mp_bsqrmod(&lambda, p, &xtemp) );
CHECK_MPI_OK( mp_badd(&xtemp, &lambda, &xtemp) );
CHECK_MPI_OK( mp_badd(&xtemp, a, &xtemp) );
CHECK_MPI_OK( mp_badd(&xtemp, px, &xtemp) );
CHECK_MPI_OK( mp_badd(&xtemp, qx, &xtemp) );
} else {
/* if py != qy or qx = 0, then R = inf */
if (((mp_cmp(py, qy) != 0)) || (mp_cmp_z(qx) == 0)) {
mp_zero(rx);
mp_zero(ry);
err = MP_OKAY;
goto cleanup;
}
/* lambda = qx + qy / qx */
CHECK_MPI_OK( mp_bdivmod(qy, qx, pp, p, &lambda) );
CHECK_MPI_OK( mp_badd(&lambda, qx, &lambda) );
/* xtemp = a + lambda^2 + lambda */
CHECK_MPI_OK( mp_bsqrmod(&lambda, p, &xtemp) );
CHECK_MPI_OK( mp_badd(&xtemp, &lambda, &xtemp) );
CHECK_MPI_OK( mp_badd(&xtemp, a, &xtemp) );
}
/* ry = (qx + xtemp) * lambda + xtemp + qy */
CHECK_MPI_OK( mp_badd(qx, &xtemp, &ytemp) );
CHECK_MPI_OK( mp_bmulmod(&ytemp, &lambda, p, &ytemp) );
CHECK_MPI_OK( mp_badd(&ytemp, &xtemp, &ytemp) );
CHECK_MPI_OK( mp_badd(&ytemp, qy, ry) );
/* rx = xtemp */
CHECK_MPI_OK( mp_copy(&xtemp, rx) );
cleanup:
mp_clear(&lambda);
mp_clear(&xtemp);
mp_clear(&ytemp);
free(p);
return err;
}
/* Computes R = P - Q.
* Elliptic curve points P, Q, and R can all be identical.
* Uses affine coordinates.
*/
mp_err
GF2m_ec_pt_sub_aff(const mp_int *pp, const mp_int *a, const mp_int *px,
const mp_int *py, const mp_int *qx, const mp_int *qy,
mp_int *rx, mp_int *ry)
{
mp_err err = MP_OKAY;
mp_int nqy;
MP_DIGITS(&nqy) = 0;
CHECK_MPI_OK( mp_init(&nqy) );
/* nqy = qx+qy */
CHECK_MPI_OK( mp_badd(qx, qy, &nqy) );
err = GF2m_ec_pt_add_aff(pp, a, px, py, qx, &nqy, rx, ry);
cleanup:
mp_clear(&nqy);
return err;
}
/* Computes R = 2P.
* Elliptic curve points P and R can be identical.
* Uses affine coordinates.
*/
mp_err
GF2m_ec_pt_dbl_aff(const mp_int *pp, const mp_int *a, const mp_int *px,
const mp_int *py, mp_int *rx, mp_int *ry)
{
return GF2m_ec_pt_add_aff(pp, a, px, py, px, py, rx, ry);
}
/* Gets the i'th bit in the binary representation of a.
* If i >= length(a), then return 0.
* (The above behaviour differs from mpl_get_bit, which
* causes an error if i >= length(a).)
*/
#define MP_GET_BIT(a, i) \
((i) >= mpl_significant_bits((a))) ? 0 : mpl_get_bit((a), (i))
/* Computes R = nP based on IEEE P1363 A.10.3.
* Elliptic curve points P and R can be identical.
* Uses affine coordinates.
*/
mp_err
GF2m_ec_pt_mul_aff(const mp_int *pp, const mp_int *a, const mp_int *b,
const mp_int *px, const mp_int *py, const mp_int *n,
mp_int *rx, mp_int *ry)
{
mp_err err = MP_OKAY;
mp_int k, k3, qx, qy, sx, sy;
int b1, b3, i, l;
unsigned int *p;
int p_size;
MP_DIGITS(&k) = 0;
MP_DIGITS(&k3) = 0;
MP_DIGITS(&qx) = 0;
MP_DIGITS(&qy) = 0;
MP_DIGITS(&sx) = 0;
MP_DIGITS(&sy) = 0;
CHECK_MPI_OK( mp_init(&k) );
CHECK_MPI_OK( mp_init(&k3) );
CHECK_MPI_OK( mp_init(&qx) );
CHECK_MPI_OK( mp_init(&qy) );
CHECK_MPI_OK( mp_init(&sx) );
CHECK_MPI_OK( mp_init(&sy) );
p_size = mp_bpoly2arr(pp, p, 0) + 1;
p = (unsigned int *) (malloc(sizeof(unsigned int) * p_size));
if (p == NULL) goto cleanup;
mp_bpoly2arr(pp, p, p_size);
/* if n = 0 then r = inf */
if (mp_cmp_z(n) == 0) {
mp_zero(rx);
mp_zero(ry);
err = MP_OKAY;
goto cleanup;
}
/* Q = P, k = n */
CHECK_MPI_OK( mp_copy(px, &qx) );
CHECK_MPI_OK( mp_copy(py, &qy) );
CHECK_MPI_OK( mp_copy(n, &k) );
/* if n < 0 then Q = -Q, k = -k */
if (mp_cmp_z(n) < 0) {
CHECK_MPI_OK( mp_badd(&qx, &qy, &qy) );
CHECK_MPI_OK( mp_neg(&k, &k) );
}
#ifdef EC_DEBUG /* basic double and add method */
l = mpl_significant_bits(&k) - 1;
mp_zero(&sx);
mp_zero(&sy);
for (i = l; i >= 0; i--) {
/* if k_i = 1, then S = S + Q */
if (mpl_get_bit(&k, i) != 0) {
CHECK_MPI_OK( GF2m_ec_pt_add_aff(pp, a, &sx, &sy, &qx, &qy, &sx, &sy) );
}
if (i > 0) {
/* S = 2S */
CHECK_MPI_OK( GF2m_ec_pt_dbl_aff(pp, a, &sx, &sy, &sx, &sy) );
}
}
#else /* double and add/subtract method from standard */
/* k3 = 3 * k */
mp_set(&k3, 0x3);
CHECK_MPI_OK( mp_mul(&k, &k3, &k3) );
/* S = Q */
CHECK_MPI_OK( mp_copy(&qx, &sx) );
CHECK_MPI_OK( mp_copy(&qy, &sy) );
/* l = index of high order bit in binary representation of 3*k */
l = mpl_significant_bits(&k3) - 1;
/* for i = l-1 downto 1 */
for (i = l - 1; i >= 1; i--) {
/* S = 2S */
CHECK_MPI_OK( GF2m_ec_pt_dbl_aff(pp, a, &sx, &sy, &sx, &sy) );
b3 = MP_GET_BIT(&k3, i);
b1 = MP_GET_BIT(&k, i);
/* if k3_i = 1 and k_i = 0, then S = S + Q */
if ((b3 == 1) && (b1 == 0)) {
CHECK_MPI_OK( GF2m_ec_pt_add_aff(pp, a, &sx, &sy, &qx, &qy, &sx, &sy) );
/* if k3_i = 0 and k_i = 1, then S = S - Q */
} else if ((b3 == 0) && (b1 == 1)) {
CHECK_MPI_OK( GF2m_ec_pt_sub_aff(pp, a, &sx, &sy, &qx, &qy, &sx, &sy) );
}
}
#endif
/* output S */
CHECK_MPI_OK( mp_copy(&sx, rx) );
CHECK_MPI_OK( mp_copy(&sy, ry) );
cleanup:
mp_clear(&k);
mp_clear(&k3);
mp_clear(&qx);
mp_clear(&qy);
mp_clear(&sx);
mp_clear(&sy);
free(p);
return err;
}
/* Compute the x-coordinate x/z for the point 2*(x/z) in Montgomery projective
* coordinates.
* Uses algorithm Mdouble in appendix of
* Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over
* GF(2^m) without precomputation".
* modified to not require precomputation of c=b^{2^{m-1}}.
*/
static mp_err
gf2m_Mdouble(const mp_int *pp, const unsigned int p[], const mp_int *a,
const mp_int *b, mp_int *x, mp_int *z)
{
mp_err err = MP_OKAY;
mp_int t1;
MP_DIGITS(&t1) = 0;
CHECK_MPI_OK( mp_init(&t1) );
CHECK_MPI_OK( mp_bsqrmod(x, p, x) );
CHECK_MPI_OK( mp_bsqrmod(z, p, &t1) );
CHECK_MPI_OK( mp_bmulmod(x, &t1, p, z) );
CHECK_MPI_OK( mp_bsqrmod(x, p, x) );
CHECK_MPI_OK( mp_bsqrmod(&t1, p, &t1) );
CHECK_MPI_OK( mp_bmulmod(b, &t1, p, &t1) );
CHECK_MPI_OK( mp_badd(x, &t1, x) );
cleanup:
mp_clear(&t1);
return err;
}
/* Compute the x-coordinate x1/z1 for the point (x1/z1)+(x2/x2) in Montgomery
* projective coordinates.
* Uses algorithm Madd in appendix of
* Lopex, J. and Dahab, R. "Fast multiplication on elliptic curves over
* GF(2^m) without precomputation".
*/
static mp_err
gf2m_Madd(const mp_int *pp, const unsigned int p[], const mp_int *a,
const mp_int *b, const mp_int *x, mp_int *x1, mp_int *z1, mp_int *x2,
mp_int *z2)
{
mp_err err = MP_OKAY;
mp_int t1, t2;
MP_DIGITS(&t1) = 0;
MP_DIGITS(&t2) = 0;
CHECK_MPI_OK( mp_init(&t1) );
CHECK_MPI_OK( mp_init(&t2) );
CHECK_MPI_OK( mp_copy(x, &t1) );
CHECK_MPI_OK( mp_bmulmod(x1, z2, p, x1) );
CHECK_MPI_OK( mp_bmulmod(z1, x2, p, z1) );
CHECK_MPI_OK( mp_bmulmod(x1, z1, p, &t2) );
CHECK_MPI_OK( mp_badd(z1, x1, z1) );
CHECK_MPI_OK( mp_bsqrmod(z1, p, z1) );
CHECK_MPI_OK( mp_bmulmod(z1, &t1, p, x1) );
CHECK_MPI_OK( mp_badd(x1, &t2, x1) );
cleanup:
mp_clear(&t1);
mp_clear(&t2);
return err;
}
/* Compute the x, y affine coordinates from the point (x1, z1) (x2, z2)
* using Montgomery point multiplication algorithm Mxy() in appendix of
* Lopex, J. and Dahab, R. "Fast multiplication on elliptic curves over
* GF(2^m) without precomputation".
* Returns:
* 0 on error
* 1 if return value should be the point at infinity
* 2 otherwise
*/
static int
gf2m_Mxy(const mp_int *pp, const unsigned int p[], const mp_int *a,
const mp_int *b, const mp_int *x, const mp_int *y, mp_int *x1, mp_int *z1,
mp_int *x2, mp_int *z2)
{
mp_err err = MP_OKAY;
int ret;
mp_int t3, t4, t5;
MP_DIGITS(&t3) = 0;
MP_DIGITS(&t4) = 0;
MP_DIGITS(&t5) = 0;
CHECK_MPI_OK( mp_init(&t3) );
CHECK_MPI_OK( mp_init(&t4) );
CHECK_MPI_OK( mp_init(&t5) );
if (mp_cmp_z(z1) == 0) {
mp_zero(x2);
mp_zero(z2);
ret = 1;
goto cleanup;
}
if (mp_cmp_z(z2) == 0) {
CHECK_MPI_OK( mp_copy(x, x2) );
CHECK_MPI_OK( mp_badd(x, y, z2) );
ret = 2;
goto cleanup;
}
mp_set(&t5, 0x1);
CHECK_MPI_OK( mp_bmulmod(z1, z2, p, &t3) );
CHECK_MPI_OK( mp_bmulmod(z1, x, p, z1) );
CHECK_MPI_OK( mp_badd(z1, x1, z1) );
CHECK_MPI_OK( mp_bmulmod(z2, x, p, z2) );
CHECK_MPI_OK( mp_bmulmod(z2, x1, p, x1) );
CHECK_MPI_OK( mp_badd(z2, x2, z2) );
CHECK_MPI_OK( mp_bmulmod(z2, z1, p, z2) );
CHECK_MPI_OK( mp_bsqrmod(x, p, &t4) );
CHECK_MPI_OK( mp_badd(&t4, y, &t4) );
CHECK_MPI_OK( mp_bmulmod(&t4, &t3, p, &t4) );
CHECK_MPI_OK( mp_badd(&t4, z2, &t4) );
CHECK_MPI_OK( mp_bmulmod(&t3, x, p, &t3) );
CHECK_MPI_OK( mp_bdivmod(&t5, &t3, pp, p, &t3) );
CHECK_MPI_OK( mp_bmulmod(&t3, &t4, p, &t4) );
CHECK_MPI_OK( mp_bmulmod(x1, &t3, p, x2) );
CHECK_MPI_OK( mp_badd(x2, x, z2) );
CHECK_MPI_OK( mp_bmulmod(z2, &t4, p, z2) );
CHECK_MPI_OK( mp_badd(z2, y, z2) );
ret = 2;
cleanup:
mp_clear(&t3);
mp_clear(&t4);
mp_clear(&t5);
if (err == MP_OKAY) {
return ret;
} else {
return 0;
}
}
/* Computes R = nP based on algorithm 2P of
* Lopex, J. and Dahab, R. "Fast multiplication on elliptic curves over
* GF(2^m) without precomputation".
* Elliptic curve points P and R can be identical.
* Uses Montgomery projective coordinates.
*/
mp_err
GF2m_ec_pt_mul_mont(const mp_int *pp, const mp_int *a, const mp_int *b,
const mp_int *px, const mp_int *py, const mp_int *n,
mp_int *rx, mp_int *ry)
{
mp_err err = MP_OKAY;
mp_int x1, x2, z1, z2;
int i, j;
mp_digit top_bit, mask;
unsigned int *p;
int p_size;
MP_DIGITS(&x1) = 0;
MP_DIGITS(&x2) = 0;
MP_DIGITS(&z1) = 0;
MP_DIGITS(&z2) = 0;
CHECK_MPI_OK( mp_init(&x1) );
CHECK_MPI_OK( mp_init(&x2) );
CHECK_MPI_OK( mp_init(&z1) );
CHECK_MPI_OK( mp_init(&z2) );
p_size = mp_bpoly2arr(pp, p, 0) + 1;
p = (unsigned int *) (malloc(sizeof(unsigned int) * p_size));
if (p == NULL) goto cleanup;
mp_bpoly2arr(pp, p, p_size);
/* if result should be point at infinity */
if ((mp_cmp_z(n) == 0) || (GF2m_ec_pt_is_inf_aff(px, py) == MP_YES)) {
CHECK_MPI_OK( GF2m_ec_pt_set_inf_aff(rx, ry) );
goto cleanup;
}
CHECK_MPI_OK( mp_copy(rx, &x2) ); /* x2 = rx */
CHECK_MPI_OK( mp_copy(ry, &z2) ); /* z2 = ry */
CHECK_MPI_OK( mp_copy(px, &x1) ); /* x1 = px */
mp_set(&z1, 0x1); /* z1 = 1 */
CHECK_MPI_OK( mp_bsqrmod(&x1, p, &z2) ); /* z2 = x1^2 = x2^2 */
CHECK_MPI_OK( mp_bsqrmod(&z2, p, &x2) );
CHECK_MPI_OK( mp_badd(&x2, b, &x2) ); /* x2 = px^4 + b */
/* find top-most bit and go one past it */
i = MP_USED(n) - 1;
j = MP_DIGIT_BIT - 1;
top_bit = 1;
top_bit <<= MP_DIGIT_BIT - 1;
mask = top_bit;
while (!(MP_DIGITS(n)[i] & mask)) {
mask >>= 1;
j--;
}
mask >>= 1; j--;
/* if top most bit was at word break, go to next word */
if (!mask) {
i--;
j = MP_DIGIT_BIT - 1;
mask = top_bit;
}
for (; i >= 0; i--) {
for (; j >= 0; j--) {
if (MP_DIGITS(n)[i] & mask) {
CHECK_MPI_OK( gf2m_Madd(pp, p, a, b, px, &x1, &z1, &x2, &z2) );
CHECK_MPI_OK( gf2m_Mdouble(pp, p, a, b, &x2, &z2) );
} else {
CHECK_MPI_OK( gf2m_Madd(pp, p, a, b, px, &x2, &z2, &x1, &z1) );
CHECK_MPI_OK( gf2m_Mdouble(pp, p, a, b, &x1, &z1) );
}
mask >>= 1;
}
j = MP_DIGIT_BIT - 1;
mask = top_bit;
}
/* convert out of "projective" coordinates */
i = gf2m_Mxy(pp, p, a, b, px, py, &x1, &z1, &x2, &z2);
if (i == 0) {
err = MP_BADARG;
goto cleanup;
} else if (i == 1) {
CHECK_MPI_OK( GF2m_ec_pt_set_inf_aff(rx, ry) );
} else {
CHECK_MPI_OK( mp_copy(&x2, rx) );
CHECK_MPI_OK( mp_copy(&z2, ry) );
}
cleanup:
mp_clear(&x1);
mp_clear(&x2);
mp_clear(&z1);
mp_clear(&z2);
free(p);
return err;
}
#endif /* NSS_ENABLE_ECC */